
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 447

ISSN No. 0976-5697

Use of Design Patterns in E-commerce Application:Survey

Pallavi S.Kulkarni*
Computer Technology Department

VJTI Mumbai, India

 pskulkarni77@gmail.com

Pradnya B. Rane
Computer Technology Department

VJTI Mumbai, India

pradnyarane@gmail.com

Suchita P.Patil
Computer Technology Department

VJTI Mumbai, India

suchitapatil26@gmail.com

Dr.B.B.Meshram
Computer Technology Department

VJTI Mumbai, India

bbmeshram@vjti.org.in

Abstract: Design patterns are proven solution for common recurring problems. Design patterns which are described by Gang of Four has been used
by developer for reuse, maintainability, flexibility and thus to improve quality of the software. As these are the abstraction of the ideas many
variations are also given to the existing patterns to overcome some of the problems existing in the pattern implementation in some specific conditions
as use of Singleton pattern in case of multithreading. This paper describes the patterns with applications of the patterns in the E-commerce
applications.

Keywords: MVC, Observer, Memento, E-commerce, Template Method

I. INTRODUCTION

Design patterns are proven solution for common recurring

problems like creating only one instance of the class in the

application, maintaining states of the objects and delegation of

the responsibilities according to state value etc.[1][2][3][4]

Patterns are mainly categories into four types

Creational Patterns: The patterns which are useful for creation

of objects.

Behavioural Patterns: The patterns which are helpful for
addressing the behavioural of the objects (functional

interactions between objects.)

Structural Patterns: The patterns which are managing the

structural relationship between objects.

System Patterns: The patterns which are useful for the system

level interaction.[5]

The World Wide Web has become a popular platform for E-

commerce applications.

These applications combine navigation through an electronic

catalogue with operations affecting this catalogue. In this

sense e-commerce applications are a particular kind of Web
applications with similar requirements: good navigational

structures, usable interfaces, a clear domain model, etc.[6]

However, E-commerce applications presently providing

easy solution for online shopping. Here the user should find

the product he is interested in and at the same time it should

provide usability also. For example we should keep him

informed about new releases and, keep him in the electronic

shop for a longer time. As modern e-commerce applications

become very complex, the need for lower maintenance costs

becomes more and more obvious [6] It is likely that customers

issue requests based on out-of-date information in e-commerce

application systems. Some preference models has to be
implemented in such situations. [7]

E-commerce applications are categories into different types

a) B2B – Business to Business E-commerce

b) B2C – Business to Consumer

c) C2C-Consumer to Consumer
d) B2E – Business to Employee

e) C2B-Consumer to Business

f) G2G- Government to Government

Use of Design patterns in E-commerce application is

proven to be effective so as to reduce the development effort

and improve the quality of the application.

At the same time developer has to keep in mind that design

pattern can increase complexity sometimes in the development

like if number of states are less in the application State Pattern

will increase the complexity of the application. Here just

simple If –then-Else will work.
This paper is organized as follows. Section I is

introduction which gives brief ides about design patterns.

Section II focused on the design patterns which are useful in

the E-commerce Applications. Section III discusses the

structure of the patterns. Paper concludes with section IV with

application of patterns in E-commerce application.

II. RELATED WORK

Web applications are normally build from scratch. Design

patterns are providing reusability in the web application

design.[2] There are two types of patterns which are majorly

used in the web application.

a. Interface Related Patterns – Patterns in this category are

related to GUI and look and feel of the application.

b. Hypermedia Application Related Patterns –This category

of patterns deal with the behavioural, creational or

structural patterns for the web application like MVC,
State pattern, Session Pattern etc.

Pallavi S.Kulkarni et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 447-453

© 2010, IJARCS All Rights Reserved 448

All the patterns can be used with the application in

different ways. Every pattern has some advantages and

disadvantages.

III. DISCUSSION

This section discusses various design pattern used int E-

commerce application in different ways.

Following patterns are useful in E-commerce application

Creational Patterns: Abstract Factory, Factory method,

Prototype, Singleton

Structural Patterns: Decorator

Behavioral Patterns: Command, Observer, Iterator, State,

Session, Transaction, CallBack, Template Method, Strategy,

Memento

System Pattern: Model-View-Controller

A. Abstract Factory:

This is creational pattern which is used in the application

where different objects to be created for different resources.

This pattern helps us to have a generic resource creator. The

factory has one or more create methods, which can be called

to produce generic resources or abstract products.[5][8]
This pattern has following structure

a. Concrete Factory – A class derived from the abstract

factory. It implements create methods for one or more

concrete products.

b. Concrete Product – A class derived from the abstract

product, providing an implementation for a specific

resource or operating environment.

c. Variant: Multiple Concrete Factory can be produced

which allows the application to use multiple families of

Concrete Products.[5][8]

B. Factory Method:

Factory Method is also creational Pattern which is useful

to create one type of objects. It is used to define a standard

method to create an object, apart from a constructor. Subclass

will decide what type of object is to be created.

The pattern has following structure

a. Product – The interface of objects created by the factory.
b. Concrete Product – The implementing class of Product.

Objects of this class are created by the Concrete Creator.

c. Creator – The interface that defines the factory method

(s) (factory Method).

d. Concrete Creator – The class that extends Creator and

that provides an implementation for the factory Method.

This can return any object that implements the Product

interface.

e. Variants: Creator can provide a standard implementation

for the factory method. Product can be implemented as

an abstract class. The factory method can take a

parameter so that it can create more than one type of
objects.[5][8]

C. Prototype:

It provides a copy method. That method returns an instance

of the same class with the same values as the original

Prototype instance. The new instance can be a deep or shallow
copy of the original. [9][5]

The pattern has the following structure

a. Prototype – Provides a copy method. That method

returns an instance of the same class with the same

values as the original Prototype instance. The new

instance can be a deep or shallow copy of the original.

b. Variants: Copy constructor –A copy constructor takes an

instance of the same class as an argument and returns a

new copy with the same values as the argument.[5]

c. Clone method –For the method to be usable on an

instance, the class of that object has to implement the

java. lang. Clonable interface to indicate that an instance
of this class may be copied.[5]

D. Singleton:

This is also a creational pattern. Singleton is used when

only one instance of the object is to be created. Some

application requires a single object in the entire application.
Singleton pattern allows the object to be created only once and

then used by the entire application.

The pattern has the following structure

a. Singleton – Provides a private constructor, maintains a

private static reference to the single instance of this class,

and provides a static accessor method to return a

reference to the single instance.

b. Variants: One variant can be having more than one copy.

The benefit is that the rest of the application can remain

the same, while those that are aware of these multiple

instances can use other methods to get other instances.[5]

E. Command:

The command object decouples the object that invokes the

action from the object that performs the action.

Three terms always associated with the command pattern

are client, invoker and receiver. The client instantiates the

command object and provides the information required to call
the method at a later time. The invoker decides when the

method should be called. The receiver is an instance of the

class that contains the method's code.[5][8]

The pattern has following structure

a. Command – The interface that defines the methods for

the Invoker to use.

b. Invoker – The invoker of the execute method of the

Command object.

c. Receiver – The target of the Command and the object

that fulfills the request; it has all the information needed.

d. Concrete Command – Implementation of the Command

interface. It keeps a reference to the intended Receiver.
When the execute method is called, Concrete Command will

call one or more methods on the Receiver.

Handling of call is done either with the approach that the

class that implements the Command interface can just be a

coupling between the invoker and the receiver, and forward all

the calls directly. This makes the Concrete Command

lightweight.

The Concrete Command can be the receiver and handle all

the requests itself. This is most appropriate when there is no

specific receiver for that request.

e. Variants: Undo – The Command pattern lends itself to
providing undo functions. To support an undo for only

Pallavi S.Kulkarni et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 447-453

© 2010, IJARCS All Rights Reserved 449

the last command, the application needs to keep a

reference only to the last command.[8]

Commands can be used several times in different contexts

so they are to be placed in the history list.

F. Observer:

This is the behavioral pattern. It defines one to many

dependencies so that when one object changes state all of its

dependents are notified and updated automatically. When the

subject changes the state then all the dependents are

notified.[3][8][10] [9]

The pattern has the following structure

a. Observable – The interface that defines how the

observers/clients can interact with an Observable. These

methods include adding and removing observers, and one

or more notification methods to send information

through the Observable to its clients.
b. Concrete Observable – A class that provides

implementations for each of the methods in the

Observable interface. It needs to maintain a collection of

Observers. The notification methods copy (or clone) the

Observer list and iterate through the list, and call the

specific listener methods on each Observer.

c. Observer – The interface the Observer uses to

communicate with the clients.

d. Concrete Observer – Implements the Observable

interface and determines in each implemented method

how to respond to the message received from the

Observable. Normally the application framework
registers the specific observers to the Observable.

e. Variants: Many to many relationship can be

implemented in subjects and observer with Hash table or

some other mapping mechanism. Observer can have

some mechanism to notify the subjects about the deletion

of the observer.

G. Iterator:

Iterator is normally used to travserse through collection

like array, list,set etc. [9][5][8]

The Iterator described in Design Patterns provides the

following fundamental operations:
a. First

b. Next

c. Is Done

d. Current Item

The pattern has following structure

a. Iterator – This interface defines the standard iteration

methods. At a minimum, the interface defines methods

for navigation, retrieval and validation (first, next, has

More Elements and get Current Item)

b. Concrete Iterator – Classes that implement the Iterator.

These classes reference the underlying collection.

Normally, instances are created by the concrete
Aggregate. Because of the tight coupling with the

Concrete Aggregate, the Concrete Iterator often is an

inner class of the Concrete Aggregate.

c. Aggregate – This interface defines a factory method to

produce the Iterator.

d. Concrete Aggregate – This class implements the

Aggregate, building a Concrete Iterator on demand. The

Concrete Aggregate performs this task in addition to its

fundamental responsibility of representing a collection of

objects in a system. Concrete Aggregate creates the

Concrete Iterator instance.

e. Variants: Null iterators can be defined to make traversal

of complex structures, such as trees, more

straightforward. [5]

H. State:

Implementing this decision-making in the individual

methods makes the code hard to maintain and read. The result

is that these methods contain long if/ else statements. A
common tactic is to store the state of an object in a single

variable using constants for a value. With this approach the

methods normally contain large switch/case statements that

are very similar in each method. [9]

Objects are state and behavior; state is kept in its attributes

and the behavior is defined in methods. The State pattern

allows you to change the behavior of an object dynamically.

This dynamic behavior is achieved by delegating all method

calls that rely on certain values to a State object. Such a State

object is state and behavior as well, so that when you change

State objects, you also receive a different behavior. The
methods in the specific State classes no longer have to use

if/else or switch statements; the State object defines the

behavior for one state.[5][8]

The pattern has following structure

a. Context – Keeps a reference to the current state, and is

the interface for other clients to use. It delegates all state-

specific method calls to the current State object. State –

Defines all the methods that depend on the state of the

object.

b. Concrete State– Implements the State interface, and

implements specific behavior for one state.
The Context or the Concrete State can determine the

transition between states. This is not specified by the State

pattern. When the number of states is fixed, the most

appropriate place to put the transition logic is in the Context.

Variants: Enumerated type or hash table can be used to save

the values of states. When the states are less then just have a

conditional statement usage.

I. Session:

Session is used to provide a way for servers in distributed

systems to distinguish among clients, allowing applications to

associate state with the client-server communication. Session

specific data has to be stored in between requests, and made
available to the code handling a request either on client or on

server. Session pattern can be used as state ful and stateless.

States can be stored at server or at client.[5]

The pattern has following structure

a. Session Tracker: It will create and destroy sessions.

b. Session: It will have session Id.

c. Variants: Variants can be saving the data related to

session on server or client. If it is saved on the server

assign a token to the individual session. Use this token as

a key into the data structure in the server that holds the

session specific data for all clients. If the data is saved on
the client then the data has to be transferred to the server

every time when the request is made.

Pallavi S.Kulkarni et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 447-453

© 2010, IJARCS All Rights Reserved 450

J. Decorator:

The Decorator Pattern attaches additional responsibilities

to an object dynamically. Decorators provide a flexible

alternative to subclassing for extending functionality. It

provides a way to flexibly add or remove component
functionality without changing its external appearance or

function.[1]

The pattern has following structure

a. Component – Represents the component containing

generic behavior. It can be an abstract class or an

interface.

b. Decorator – Decorator defines the standard behaviors

expected of all Decorators. Decorator can be an abstract

class or an interface. The Decorator provides support for

containment; that is, it holds a reference to a Component,

which can be a Concrete Component or another
Decorator. By defining the Decorator class hierarchy as a

subclass of the component(s) they extend, the same

reference can be used for either purpose.

c. One or more Concrete Decorators – Each Decorator

subclass needs to support chaining (reference to a

component, plus the ability to add and remove that

reference). Beyond the base requirement, each Decorator

can define additional methods and/or variables to extend

the component.[5]

d. Variants: Decorator pattern can be used with XML files

for creating different GUIs in case of web application.[1]

K. Model View Controller:

It is possible to view the component or subsystem in

different ways. The internal representation for the system may

be completely different from the representation on a

screen.[6][9][11]

There are different possible types of behavior, meaning
that multiple sources are allowed to invoke behavior on the

same component but the behavior may be different. Behavior

or representation that changes as the component is used.[8]

[12]

a. Variants: View resolver can be added to render the

proper view to the user. View resolver can be a

Decorator pattern which helps if to generate different

GUI‟s depending on the requirement or role of user.

Many of the frameworks are having XML file as a

configuration file for selection of the view.

L. Transaction:

To group a collection of methods so that they either all

succeed or they all fail collectively.

If we are transferring funds from one account to another

account then if only withdrawal from one account takes place

and another account is not deposited then it is a wrong

transaction so here both the events should happen or both

should fail.
Transaction makes sure that the transaction is either

successful completely or it is failed completely.

The pattern has the following structure

a. Transaction Participant– The interface that defines the

methods to control every participant.

b. Specific Participant – As an extension to the generic

interface, this interface contains the business methods.

All methods involved in the transaction take an ID as

parameter. Methods involved in transaction can throw

Exceptions as a signal of failure.

c. Concrete Participant– Implements Specific Participant

interface. It defines what happens if the transaction

manager (in this case, client) decides to roll-back or

commit. It has to keep a reference to the original state to

be able to restore it when cancel is invoked.

d. Client – Acts as transaction manager. The client calls the
join method on the participants to start the transaction

and ultimately calls either cancel or commit on the

participants.[5]

e. Variants: Two-phase commit is the variant of transaction

where the manager asks the sub ordinates about the

transaction status.

M. Call Back :

This pattern is behavioural pattern which is used to allow a

client to register with a server for extended operations. This

enables the server to notify the client when the operation has

been completed.

Use the Callback pattern for a client-server system with

time-consuming client operations.

The Callback pattern provides this capability, allowing for

asynchronous client-server communication. The process

consists of three simple steps Client registration, Server

processing, Server call back[5]
The pattern has following structure

a. Sender: This will send the request.

b. Receiver: Who will receive the request

c. Variants: Queuing of Client request can be possible with

the help of command object and then the queue will be

resolved with the help of multithreading.[5]

N. Template Method :

This is a behavioural Pattern. This pattern is used to

provide a method that allows subclasses to override parts of

the method without rewriting it. [9][5][8]

Template Method is giving the template for the method
which can be overridden for the customized behaviours.

The Pattern has the following structure

a. Abstract Class– The Abstract Class is (perhaps not

surprisingly) an abstract class that contains the template

method and defines one or more abstract methods. The

template method contains the skeletal code and calls one

or more of the abstract methods. To prevent subclasses

from overriding the template method it should be

declared final.

b. Concrete Class – The Concrete Class extends the

Abstract Class and implements the abstract methods of

the Abstract Class. It relies on the Abstract Class to
provide the structure of the operation contained in the

template method.

c. Variants: One variant is to have the Template Method

call concrete methods instead of abstract methods. These

methods are called hook methods.[8]

Pallavi S.Kulkarni et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 447-453

© 2010, IJARCS All Rights Reserved 451

O. Memento:

This can be used for producing an object to maintain a

snapshot of state that cannot be modified by other objects in a

system.

Delegate some activity to some other class like some
helper classes to do the job.[5]

The memento pattern is used to encapsulate the current

state of an object in a memento object in order to be able to

restore the object state later without exposing the internal

representation of the object to the outside world.

The pattern has the following structure

a. Originator – Creates Memento and uses this Memento to

later restore its state.

b. Memento – Static inner class of the Originator and

holder of the Originator‟s state. The Originator

determines how much is stored in the Memento and only
the Originator should be able to read the Memento. State

within the Memento should be inaccessible to everybody

except the Originator.

c. State Holder – The object that wishes to preserve the

state. It never needs to know what is within a Memento;

it only needs to know that the object it receives enables it

to restore the state of the Originator.

d. Variant: To be able to extend the Originator but not need

to change the Memento code, the methods can have

package access instead of being private. This allows

subclasses of the Originator to use the same Memento

class.[5]

P. Strategy Pattern:

This is a behavioral pattern. It is used to define a group of

classes that represent a set of possible behaviors. These

behaviors can then be flexibly plugged into an application,

changing the functionality on the fly. .[5][8][9][10]

The pattern has the following structure

a. Strategy Client – This is the class that uses the different

strategies for certain tasks. It keeps a reference to the

Strategy instance that it uses and has a method to replace

the current Strategy instance with another Strategy

implementation.

b. Strategy – The interface that defines all the methods

available for the Strategy Client to use.

c. Concrete Strategy – A class that implements the Strategy

interface using a specific set of rules for each of the

methods in the interface.[5][9]
d. Variants: Strategy used with Decorator pattern for

changing the entire functionality of the object.

IV. CONCLUSION

Many of the existing design patterns are used in the E-

commerce application in association with other patterns.

Mainly MVC pattern is used in E-commerce application.

Pattern has some draw backs. Some variations can be added to

patterns to make it efficient. Design patterns are proven

solution to re-occurring patterns.

Design patterns are proven design building blocks that

benefit the design process by (1) reusing design early in the

development lifecycle, (2) reducing development effort and

cost, (3) increasing software quality, and (4) providing a

common vocabulary for design among different

stakeholders.[13]
Some patterns are provide hints to the Web application

designer in order to make these applications more usable and

effective both from the point of customers and owners of the

store like push communication, advising etc.[14]

Table I List of Patterns with use in E-commerce Application

Pattern Name Type Use in E-commerce

Abstract Factory

Creational Pattern This pattern is useful in E-commerce application when the

shipping address is to be stored. As the addresses are

different in different countries this pattern is useful to

create address and phone number as two countries can

have different format for the address and phone number

field.[5]

Factory Method Creational Pattern Lots of ecommerce applications, provide profile

management by storing static and dynamic information

about users. Providing individual or multiple users access

to resources such as individual files, directory structures,

user-defined entities (such as catalogs, purchase orders

etc.) etc., can be controlled based on the

individual/group's organization/role with and within an
organization.[5]

Prototype Pattern Creational Pattern When a user asks for information for a certain product the

application could gather that information by instantiating

the objects at predefined intervals and keep them in a

cache, when an object is requested, it is retrieved from

cache and cloned. When the legacy database is updated,

discard the content of the cache and re-load with new
objects.[8]

Pallavi S.Kulkarni et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 447-453

© 2010, IJARCS All Rights Reserved 452

Singleton Pattern Creational History List is the major application of Singleton.

Another application is the Database Connection. For the

entire application only one connection object is created
and then that object is used.

Command Pattern Behavioural Pattern When history list is created is grows as the application use

is increased. Here the command object can be used as a

history list. Just add the commands in the object and then

execute the commands through execute command.[8]

Observer Pattern Behavioural Pattern When the item is not in the inventory observer pattern

can be useful to notify user about the availability of the

item. Second use is notificatio to the user in case of

shipping the item. The item undergoes various stages like

shipped delivered such phases can be notified to user
through Observer Pattern.

Iterator pattern Behavioural Pattern Iterator pattern is normally used for the traversal through

the item list in the application.

State Pattern Behaviroal Pattern E-commerce Application can use state pattern to handle

the states of use or the system. The user in expects to see

the following state transitions when using the ecommerce

program:

the initial state, Moving from the initial state into the

purchase state,Moving from the purchase state into the

exit state,Moving from the exit state to the end of the

program or back to the initial state.

Session Pattern System Pattern To maintain the state of the client as a session so that the

validations or purchase can be associated with the session

pattern. Series of business transactions is maintained with
the use of the Session Pattern.

Decorator Pattern Structural Pattern While creating or rendering GUI, decorator helps us to

create different GUIs depending on the user role.

Decorator pattern can be used with XML file to do this. It
reduces extension to sub classing.

Transaction Pattern System Pattern In E-commerce Application in payment transaction and

in Shopping cart application Transaction pattern can be
used.

CallBack Pattern Behavioural Pattern When user selected the notify option with observer

pattern the subject means the mail object will be revoked

and then the mail will be sent to the user about the
availability of the Item.

Template Method Behavioural Pattern In case of E-commerce Application, while executing

query, template method is used. With this pattern, the

query interface is created .This can be used with different

databases by changing the algorithm steps for connection

and selection.

Memento Pattern Behavioural Pattern Memento pattern is used in case of Undo operation where

the previous state of the originator is stored.[8]

Strategy Pattern Bahavioural Pattern In E-commerce application while the time of discount
calculation strategy pattern is used.

Model View Controller System Pattern Model View Controller separates the logic into user

interface, business layer and database layer.E-commerce

application can use MVC to make the code maintainable

and to improve the quality of the same.[8]

V. REFERENCES

[1] Steve Macdonald,Kai Tan,Jonathan Schaeffer amd Duane

Szafron, “Deferring Design Pattern Decisions and

Automating Structural Pattern Changes Using a Design-

Pattern-Based Programming System”,ACM Transactions on

Programming Languages and Systems, Vol. 31, No. 3,

Article 9, Pub. date: April 2009, DOI

10.1145/1498926.1498927

http://doi.acm.org/10.1145/1498926.1498927,1-48

[2] Allan Shalloway,James R.Trotta, ,“ The Principles and

Strategies of Design Patterns”, Net Objectives EZINE

volume 1 Issue 4,April 2004,pp:1-13

Pallavi S.Kulkarni et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 447-453

© 2010, IJARCS All Rights Reserved 453

[3] Giuseppe Antonio Di Lucca, Anna Rita Fasolino, Porfirio

Tramontana, ,“Recovering Interaction Design Patterns in

Web Applications”, Proceedings of the Ninth European

Conference on Software Maintenance and Reengineering

(CSMR‟05) 1534-5351/05 © 2005 IEEE,pp:not available

[4] Jeffrey Heer and Maneesh Agrawala, “Software Design

Patterns for Information Visualization”, IEEE

TRANSACTIONS ON VISUALIZATION AND

COMPUTER GRAPHICS, VOL. 12, NO. 5,

SEPTEMBER/OCTOBER 2006,pp:853-860

[5] Stephen Stelting,Olav Maassen,“Applied Java™ Patterns”,

,Publisher: Prentice Hall PTR First Edition December 01,

2001,pp:12-31,41-45,52-56,63-85,93-96,114-119,134-

138,140-154,160-166,178-182

[6] Maria Mouratidou, Vassilios Lourdas, Alexander

Chatzigeorgiou and Christos K. Georgiadis, ”An Assessment

of Design Patterns' Influenceon a Java-based E-Commerce

Application”, Journal of Theoretical and Applied Electronic

Commerce Research ISSN 0718–1876 Electronic Version

VOL 5 / ISSUE 1 / APRIL 2010 / 25-38 © 2010 Universidad

de Talca – Chile, DOI: 10.4067/S0718-

18762010000100004,pp:25-38

[7] Peng Li ,Manghui Tu,I-Ling Yen, Zhonghang Xia,

”Preference update for e-commerce applications:

Model,language, and processing “,Springer, Electron

Commerce Res (2007) 7:17–44 , Springer Science+Business

Media, LLC 2007,DOI 10.1007,pp:17-44

[8] Eric freeman and Elisabeth Freeman ,“Head first design

patterns”,Orielly publication,1st Edition, October 2004,pp:1-

191,275-300,385-495

[9] Bruce Eckel ,”Thinking in Patterns”,Revision 0.9, 5-20-

2003,pp:8-75

[10] Phek Lan Thung, Chu Jian Ng, Swee Jing Thung, Shahida

Sulaiman,“Improving a Web Application Using Design

Patterns: A Case Study”, 978-1-4244-6716-7/10/$26.00

©2010 IEEE,pp:not available

[11] Patrick Sauter ,Gabriel Vogler, Gunther Specht Thomas

Flor,“A Model–View–Controller extension for pervasive

multi-client user interfaces”, Pers Ubiquit Comput (2005) 9:

100–107 Springer-Verlag London Limited 2004, 1 October

2004, DOI 10.1007/s00779-004-0314-7,pp:100-107

[12] Avraham Leff, James T. Rayfield ,”Web-Application

Development Using the ModelNiewlController Design

Pattern”,0-7695-1345-2UOl, 2001 IEEE,pp:118-127

[13] Jaeyong Park,David C. Rine,Elizabeth White, “Assessing

Conformance of Pattern-based Design in UML”, ACM-SE

„08, March 28–29, 2008, Auburn, AL, USA. Copyright 2008

ACM ISBN 978-1-60558-105-7/08/03,pp:298-303

[14] Gustavo Rossi, Fernando Lyardet, Daniel Schwabe,” Patterns

for E-commerce applications”, In Proceedings of Europlop

2000, pp: 1-13, doi=10.1.1.31.6668

