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Abstract: A well known example of a Combinatorial Optimization Problem is the Travelling Salesman Problem. The Combinatorial Programming 

Problems share the following properties: They are Optimization Problems, are easy to state, and have a finite but usually ver y large number of 
feasible solutions. Lexi-Search is by far the mostly used tool for solving large scale NP-hard Combinatorial Optimization problems. Lexi-Search is, 
however, an algorithm paradigm, which has to be filled out for each specific problem type, and numerous choices for each of the components exist. 
Even then, principles for the design of efficient Lexi-Search algorithms have emerged over the years. Although Lexi-Search methods are among the 
most widely used techniques for solving hard problems, it is still a challenge to make these methods smarter. The motivation of the calculation of the 
lower bounds is based on ideas frequently used in solving problems. Computationally, the algorithm extended the size of problem and find better 
solution. 
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I. INTRODUCTION  

The Travelling Salesman Problem (TSP) is a classical 

problem of combinatorial optimization of operations 

research area. The purpose is to find a shortest tour through 

a given no. of locations such that every location is visited 

exactly once. The cost of travelling from location i to 

location j is denoted by Cij.  These costs are symmetric if Cij 

= Cji for each of pair of cities i and j, and asymmetric 

otherwise. There are several practical uses for this problem, 

such as vehicle routing with the additional constraints of 

vehicle’s route, such as capacity of vehicles [1], drilling 
problems [2], minimize waste [3], clustering data arrays [4], 

X-ray crystallography [5], shot sequence generation for scan 

lithography [6] and many others. 

This problem has also been used during the last years as 

comparison basis for improving several optimizations 

techniques, such as genetic algorithms [7], simulated 

annealing [8], tabu search [9], local search [10], ant colony 

[11] and Branch and Bound (B&B). The principal types of 

B&B used to solve the TSP are: The best known exact 

algorithms are based on either the B&B method for the 

Asymmetric TSP (ATSP) [12] or the Branch and Cut (B&C) 
method for the Symmetric TSP (STSP) using the double 

index formulation of the problem [13]. Currently, most 

algorithms for the TSP ignore high cost arcs or edges and 

save the low cost ones. A drawback of this strategy is that 

costs of arcs and edges are not accurate indicators whether 

those arcs or edges are saved in an optimal TSP solution.  

 

State-of-the-art B&B algorithms for the ATSP can be 

found in [14]&[15], [16]&[17] and later [18]. The 

algorithms by Miller and Carpaneto apply patching to obtain 

upper bounds, use AP lower bounds, and branch on a 

smallest cycle in the current AP solution, i.e., a cycle of 

smallest cardinality. The search strategy of both algorithms 
is BFS. This means that for many ATSP instances, solutions 

are obtained in very short time. On the other hand, a list of 

sub problems should be maintained in order to determine the 

most promising one. As a consequence, BFS algorithms 

tend to run out of memory when the search trees grow large. 

Upper bounds of B&B algorithm for the ATSP was 

improved by [18] with iterative patching which is a 

procedure for constructing good feasible solutions of the 

ATSP. Iterative patching procedures reduce the number of 

sub problems in the spanning B&B tree, so that smaller 

computation times are needed. This method only considers 

the time consuming problems.  
In this paper, while claiming that our algorithm is faster 

than that of Branch and Bound for most of the problems, 

fresh computational results which are obtained after refining 

the arrangement of the alphabet table for the Truncated 

Time Dependent Travelling Salesman Problem (TTDTSP) is 

being presented in this paper. In Section 2, a Lexi-Search 
method was developed for the TTDTSP and mathematical 

formulation is shown in Section 3. The algorithm is 

presented in Section 4. The computational results are 

provided in Section 5 and the concluding remarks are given 

in Section 6. 
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II. AN ALGORITHM FOR TTDTSP 

The name Lexicographic-search or Lexi-search method 

implies that the search is made for an optimal solution in a 

systematic way, just as one search for meaning of a word in 

a dictionary. When the process of feasibility checking of a 

partial word becomes difficult, though lower bound 

computation is easy, Pattern Recognition Technique [19] 
can be used. Lexi-Search algorithms, in general, require less 

memory, due to the existence of Lexicographic order of 

partial words. If Pattern Recognition Technique is used, the 

dimension requirement of the problem can be reduced, since 

it reduces to the two-dimensional cost array into a linear and 

the problem can be reduced to a linear form of finding an 

optimal word of length n [19] and hence reduces 

computational work in getting an optimal solution. 

III. MATHEMATICAL FORMULATION 

 

 

 

 
Where =1 indicates that the salesman started from city 

i, otherwise 0. =1 indicates that the salesman visited from 

city j, otherwise 0. =1 indicates the time/facility for the 

tour form city i to city j, otherwise 0. In addition to the 

above constraints X will be a feasible solution as follows. If 

it gives a tour for the salesman who visits any of the m0 

cities in m0 times/facilities with the condition that a point of 
time in his tour he will not visit more than one pair of cities. 

The problem is to find a tour for set of m0 cities out of n 

cities such that the total cost of the tour of m0 cities is 

minimum. 

IV. THE ALGORITHM 

The name Lexicographic-search or Lexi-search method 

implies that the search is made for an optimal solution in a 

systematic way, just as one search for meaning of a word in 

a dictionary. When the process of feasibility checking of a 

partial word becomes difficult, though lower bound 

computation is easy, Pattern Recognition Technique [19] 

can be used. Lexi-Search algorithms, in general, require less 

memory, due to the existence of Lexicographic order of 

partial words. If Pattern Recognition Technique is used, the 

dimension requirement of the problem can be reduced, since 
it reduces to the two-dimensional cost array into a linear and 

the problem can be reduced to a linear form of finding an 

optimal word of length n [19] and hence reduces 

computational work in getting an optimal solution. The 

concepts and notations involved in the Lexi-Search are 

briefly described below. 

A. Pattern Recognition Technique: 

The search efficiency of a Lexi-Search algorithm is 
based on the choice of an appropriate Alphabet-Table. In 

this case two conflicting characteristics of the search list 

have to be taken into account: one is the difficulty in setting 

bounds to the values of the partial words (that defines partial 

solutions representing subsets of solutions). The other 

difficulty is in checking the feasibility of a partial word. 

Thus two cases arises in the choice of Alphabet Table 

[19][20]. 

(i). The process of checking the feasibility of a partial word 

is easy, while the calculations of a lower bound is bulky and  

(ii). Computation of lower bound is easy, while the 
feasibility checking is difficult. 

When the process of feasibility checking of a partial 

word becomes difficult and the lower bound computation is 

easy, a modified Lexi-Search i.e. Lexi-Search with 

recognizing the Pattern of the solution known as Pattern 

Recognition Technique [19][20] can be adopted. In this 

method, in order to improve the efficiency of the algorithm, 

first the bounds are calculated and then the partial word, for 

which the value is less than the initial (trial) value are 

checked for the feasibility. 

B. Pattern: 

An indicator matrix X, associated with an appropriate 

assignment of tasks to the agents is defined as a Pattern. A 

Pattern is said to be feasible, if X is feasible. Each pattern X 

can also be represented by the set of all ordered triples {(i, j, 

k)}, for which X (i, j, k) =1. In general, there will be m*n*k 

ordered pairs in a matrix X (m, n, k).  

C. Alphabet Table & Word: 

Let SN = (1,2, . . . ,n3) be the set of indices, BD be an 

array of corresponding costs of the ordered pairs and DD be 

the array of cumulative sums of elements in BD. Let arrays 

R, C and T be respectively row, column and time/facility 

indices of the ordered triples. Let Lk = (a1,a2. . .ak). aiε SN be 
a ordered sequence of k indices from S. The pattern 

represented by the ordered triples indices are given by Lk is 

independent of the order of ai in the sequence. For 

uniqueness, the indices in Lk are arranged in increasing 

order, such that ai < ai+1, i = 1,2, . . .,k-1. The set S is defined 

as Alphabet-Table with alphabetic order as (1,2, . . .,n3) and 

the ordered sequence Lk is defined as a word of length k. A 

word Lk is said to be sensible word if ai < ai+1, i = 1, 2. . . k-1; 

non sensible otherwise. It is said to be feasible, if it 

represents a feasible pattern. Any of the letters in S can 

occupy the first place in a word Lk. Our interest is only in 

set of words of length atmost equal to n, since the words of 
length greater than n are necessarily infeasible, as any 

feasible pattern can have only n unit entries in it. If k < n, Lk 

is called a Partial word and if K = n, it is a full length word 

or simply a word. A partial word Lk represents a block of 

words with Lk as a leader i.e. as its first k letters. A leader is 
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said to be feasible, if the block of words defined by it has at 

least one feasible word. 

D. Value of the Word: 

The value of the (partial) word Lk, V(Lk) is recursively 
defined as V(Lk) = V(Lk-1) + BD (ak) with V(L0) =0, where 
BD is the cost array arranged such that, BD(ak) < BD(ak+1). V 
(Lk) and the value of the pattern X, will be the same, since X 
is the (partial) pattern represented by Lk. 

E. Lowerbound of a Partial Word: 

A lower bound LB (Lk), for the values of the blocks of 

words represented by Lk = (a1, a2. . . ak) can be defined as 
follows: 

 
It can be seen that LB (Lk) is the value of the complete 

word, which is obtained by concatenating the first m0 –k 

letters to the partial word Lk. 

F. Feasibility criterion of a Partial Word: 

A feasibility criterion is developed, in order to check the 

feasibility of a partial word Lk+1 = (a1, a2. . .ak, ak+1) given 

that, Lk is a partial word. Let IR be an array, IR (i) =1, i ε N 

represents that the salesman is visiting some city from city i 

otherwise 0. IC be an array where IC (i) =1, i ε N represents 

that the salesman is coming to city i from some city, 

otherwise 0. IT be an array where IT (i) =1, ii ε N represents 

that the salesman at time i travels one pair of cities. SW be 

an array where SW (i) is the city that the salesman visiting 

from city i and SW (i) = 0 indicates that the salesman is not 

visiting any city from city i. ISC be an array where ISC (i) is 

the number of times the index i as a city or time involved the 
word Lk. Then for a given partial word Lk = (a1, a2. . .ak, ak) 

the values of the arrays IR,IC,IT,SW,ISC are as follows. 

IR(R(ai)) =1, i = 1,2,…,k and IR(j) = 0 for other 

elements of j. 

IC(C(ai))=1,  i=1,2,…,k and IC(j) = 0 for other elements of j. 

IT(T(ai))=1,  i=1,2,…,k and IT(j) = 0 for other elements of j. 

SW(R (ai) =C (ai), i=1, 2…, k and SW (j) for other values of 

j. 

ISC(R (ai)) = ISC(R (ai)) + 1 

ISC(C (ai)) = ISC(C (ai)) + 1         i = 1, 2… k 

ISC (T (ai)) = ISC (T (ai)) + 1 
 

The recursive algorithm for checking the feasibility of a 

partial word is as follows. In the algorithm first we equate  

IX=0. 

TR = R (ap+1); TC = C (ap+1); TT = T (ap+1);  

STEP 1: IX=0; TCX=TC; IDXT=IDX;               GOTO 

2. 

STEP 2: IS (IR (TR) =1) IF YES GOTO 12;    IF NO 

GOTO 3. 

STEP 3: IS(IC (TC) =1) IF YES GOTO 12;    IF NO 

GOTO 4. 

STEP 4: IS (IT (TT) =1) IF YES GOTO 12;   IF NO 

GOTO 5. 

STEP 5: IS (ISC (TR).EQ.0) IF YES IDXT = IDXT + 

1 GOTO 6; IF NO GOTO 6. 

STEP 6: IS (ISC (TC).EQ.0)   IF YES IDXT = IDXT 

+ 1 GOTO 7; IF NO GOTO 7. 

STEP 7: IS (ISC (TT).EQ.0) IF YES IDXT = IDXT + 

1 GOTO 8; IF NO GOTO 8. 

STEP 8: IS (IDXT.GT.M)   IF YES GOTO 12; IF 
NO GOTO 9. 

STEP 9: IS (SW (TCX) =0) IF YES IX=1 GOTO 12; 

IF NO IK=SW (TCX) GOTO 10. 

STEP 10: IS (IK=TR)  IF YES GOTO 11; IF 

NO TCX=IK GOTO 9. 

STEP 11: IS (I=N)  IF YES IX=1 GOTO 12; 

GOTO 12. 

STEP 12:                                                            STOP. 

At the end if IX=1 then the partial word is feasible, 

otherwise it is infeasible. This recursive algorithm is used as 

a subroutine in the Lexi-Search algorithm(vide 4.6), to 
check the feasibility of a partial word. Search starts with a 

very large value (= 9999999) as the trail value of VT. If the 

value of a feasible word is known, it can as well be taken as 

the value of VT. During the search VT is improved (in fact, 

it gets decreased). At the end of the search, the current value 

VT gives value of the optimal feasible word. A partial word 

Lk, is constructed as Lk = Lk-1*(ak). (Where * indicates 

concatenation) and V (Lk) and LB (Lk) are calculated. Then 

two situations arise: one for branching and the other for 

continuing search. 

(i) LB(Lk) ≥ VT: if it is the case, we reject the partial word, 

i.e., the block of words with Lk as leader is rejected for 

not having an optimal word and we also reject all the 

partial words of order K the succeed Lk. 

(ii) LB (Lk) < VT: if it is so, we check whether Lk is feasible. 

If it is feasible, we proceed to consider a partial word a 

order which represents a sub-block of words represented 

by Lk. If Lk is not feasible, we consider the next partial 

word of order k, by considering another letter in kth 

position which succeeds ak. If all the partial words of 
order k are exhausted, then we consider the next partial 

word of order (k-1). 

V.    COMPUTATIONAL RESULTS 

A Computer program for the proposed algorithm is 
written in C language and is tested on the COMPAQ system. 
We tried a set of problems for different sizes. Random 
numbers are used to construct the Time matrix. The 
following table gives the list of the problems tried along with 
the average CPU time in seconds required for solving them. 
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Table: 1(CPU run time in seconds for Lexi-Search Algorithm) 

Sr. 

No. 

Problem Dimensions AT Type-I  Type-II  Type-III 

 m n l  Min  Max  Avg Min  Max Avg Min Max Avg 

1 5 6 2 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 8 10 3 0.0004 0.001 0.004 0.0025 0.004 0.005 0.0045 0.003 0.001 0.002 

3 10 10 3 0.04 0.0041 0.0006 0.0047 0.0059 0.0214 0.0136 0.0047 0.0153 0.0100 

4 10 25 3 0.09 0.660 0.943 0.8016 0.893 0.941 0.917 0.968 0.1 0.534 

5 30 50 3 2.146 2.141 2.562 2.3515 2.468 2.9 2.684 2.61 2.8 2.705 

VI.      CONCLUSIONS 

The Lexi - Search algorithm presented in this chapter, 
incorporating Pattern Recognition Technique is tested. The 
same problem sets have been tested with using C language 
and successfully applied to many real problems. The findings 
of the model-testing and a wide range of sensitivity analyses 
using an artificially generated data set are presented. Both 
solution procedures prove to be efficient and effective in 
providing close to optimal solutions and proven with a 
surprisingly small number of patterns. Lexi-search 
algorithms are proved to be more efficient in many 
combinatorial problems. Lexi Search strategy stands as a 
good candidate for being an AI (Artificial Intelligence) 
search mechanism. Apart from the minimal requirement of 
memory, the Lexi Search helps to obtain optimality, faster 
than Branch and Bound in many cases. Further, Lexi Search 
clearly specifies Simpler rules for Branching, Bounding and 
Termination. Even with the restrictions imposed, the Lexi –
Search takes reasonably less time.  Its efficiency over the 
Bounding Procedures (like Lagrangean Relaxation) in 
Branch & Bound method is also significant. Further it is 
observed that with the modification of the sort procedure 
while arranging the alphabet table, the Lexi Search algorithm 
is becoming more efficient. On the whole, it is felt that Lexi 
Search algorithm is faster than the Branch and Bound 
algorithm. 
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