
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 317

ISSN No. 0976-5697

An Exact Algorithm for Travelling Salesman Problem

Dr. K.Sobhan Babu*
Assistant Professor in Mathematics

U C E K, J N T U Kakinada

KAKINADA, A.P., India

sobhanjntu@gmail.com

Dr. Keshava Reddi.E
Associate Professor in Mathematics

College of Engineering, J N T U Anantapur

Anantapur, A.P., India

eddualakr@yahoo.co.in

Prof.Sundara Murthy.M
Senior Professor in Mathematics

SRI Venkateswara University, Tirupati

Chittor, A.P., India
profmurthy@gmail.com

Abstract: A well known example of a Combinatorial Optimization Problem is the Travelling Salesman Problem. The Combinatorial Programming

Problems share the following properties: They are Optimization Problems, are easy to state, and have a finite but usually ver y large number of
feasible solutions. Lexi-Search is by far the mostly used tool for solving large scale NP-hard Combinatorial Optimization problems. Lexi-Search is,
however, an algorithm paradigm, which has to be filled out for each specific problem type, and numerous choices for each of the components exist.
Even then, principles for the design of efficient Lexi-Search algorithms have emerged over the years. Although Lexi-Search methods are among the
most widely used techniques for solving hard problems, it is still a challenge to make these methods smarter. The motivation of the calculation of the
lower bounds is based on ideas frequently used in solving problems. Computationally, the algorithm extended the size of problem and find better
solution.

Keywords: Travelling Salesman Problem, Tour, Lexi-Search, Word, Pattern

I. INTRODUCTION

The Travelling Salesman Problem (TSP) is a classical

problem of combinatorial optimization of operations

research area. The purpose is to find a shortest tour through

a given no. of locations such that every location is visited

exactly once. The cost of travelling from location i to

location j is denoted by Cij. These costs are symmetric if Cij

= Cji for each of pair of cities i and j, and asymmetric

otherwise. There are several practical uses for this problem,

such as vehicle routing with the additional constraints of

vehicle’s route, such as capacity of vehicles [1], drilling
problems [2], minimize waste [3], clustering data arrays [4],

X-ray crystallography [5], shot sequence generation for scan

lithography [6] and many others.

This problem has also been used during the last years as

comparison basis for improving several optimizations

techniques, such as genetic algorithms [7], simulated

annealing [8], tabu search [9], local search [10], ant colony

[11] and Branch and Bound (B&B). The principal types of

B&B used to solve the TSP are: The best known exact

algorithms are based on either the B&B method for the

Asymmetric TSP (ATSP) [12] or the Branch and Cut (B&C)
method for the Symmetric TSP (STSP) using the double

index formulation of the problem [13]. Currently, most

algorithms for the TSP ignore high cost arcs or edges and

save the low cost ones. A drawback of this strategy is that

costs of arcs and edges are not accurate indicators whether

those arcs or edges are saved in an optimal TSP solution.

State-of-the-art B&B algorithms for the ATSP can be

found in [14]&[15], [16]&[17] and later [18]. The

algorithms by Miller and Carpaneto apply patching to obtain

upper bounds, use AP lower bounds, and branch on a

smallest cycle in the current AP solution, i.e., a cycle of

smallest cardinality. The search strategy of both algorithms
is BFS. This means that for many ATSP instances, solutions

are obtained in very short time. On the other hand, a list of

sub problems should be maintained in order to determine the

most promising one. As a consequence, BFS algorithms

tend to run out of memory when the search trees grow large.

Upper bounds of B&B algorithm for the ATSP was

improved by [18] with iterative patching which is a

procedure for constructing good feasible solutions of the

ATSP. Iterative patching procedures reduce the number of

sub problems in the spanning B&B tree, so that smaller

computation times are needed. This method only considers

the time consuming problems.
In this paper, while claiming that our algorithm is faster

than that of Branch and Bound for most of the problems,

fresh computational results which are obtained after refining

the arrangement of the alphabet table for the Truncated

Time Dependent Travelling Salesman Problem (TTDTSP) is

being presented in this paper. In Section 2, a Lexi-Search
method was developed for the TTDTSP and mathematical

formulation is shown in Section 3. The algorithm is

presented in Section 4. The computational results are

provided in Section 5 and the concluding remarks are given

in Section 6.

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 317-321

© 2010, IJARCS All Rights Reserved 318

II. AN ALGORITHM FOR TTDTSP

The name Lexicographic-search or Lexi-search method

implies that the search is made for an optimal solution in a

systematic way, just as one search for meaning of a word in

a dictionary. When the process of feasibility checking of a

partial word becomes difficult, though lower bound

computation is easy, Pattern Recognition Technique [19]
can be used. Lexi-Search algorithms, in general, require less

memory, due to the existence of Lexicographic order of

partial words. If Pattern Recognition Technique is used, the

dimension requirement of the problem can be reduced, since

it reduces to the two-dimensional cost array into a linear and

the problem can be reduced to a linear form of finding an

optimal word of length n [19] and hence reduces

computational work in getting an optimal solution.

III. MATHEMATICAL FORMULATION

Where =1 indicates that the salesman started from city

i, otherwise 0. =1 indicates that the salesman visited from

city j, otherwise 0. =1 indicates the time/facility for the

tour form city i to city j, otherwise 0. In addition to the

above constraints X will be a feasible solution as follows. If

it gives a tour for the salesman who visits any of the m0

cities in m0 times/facilities with the condition that a point of
time in his tour he will not visit more than one pair of cities.

The problem is to find a tour for set of m0 cities out of n

cities such that the total cost of the tour of m0 cities is

minimum.

IV. THE ALGORITHM

The name Lexicographic-search or Lexi-search method

implies that the search is made for an optimal solution in a

systematic way, just as one search for meaning of a word in

a dictionary. When the process of feasibility checking of a

partial word becomes difficult, though lower bound

computation is easy, Pattern Recognition Technique [19]

can be used. Lexi-Search algorithms, in general, require less

memory, due to the existence of Lexicographic order of

partial words. If Pattern Recognition Technique is used, the

dimension requirement of the problem can be reduced, since
it reduces to the two-dimensional cost array into a linear and

the problem can be reduced to a linear form of finding an

optimal word of length n [19] and hence reduces

computational work in getting an optimal solution. The

concepts and notations involved in the Lexi-Search are

briefly described below.

A. Pattern Recognition Technique:

The search efficiency of a Lexi-Search algorithm is
based on the choice of an appropriate Alphabet-Table. In

this case two conflicting characteristics of the search list

have to be taken into account: one is the difficulty in setting

bounds to the values of the partial words (that defines partial

solutions representing subsets of solutions). The other

difficulty is in checking the feasibility of a partial word.

Thus two cases arises in the choice of Alphabet Table

[19][20].

(i). The process of checking the feasibility of a partial word

is easy, while the calculations of a lower bound is bulky and

(ii). Computation of lower bound is easy, while the
feasibility checking is difficult.

When the process of feasibility checking of a partial

word becomes difficult and the lower bound computation is

easy, a modified Lexi-Search i.e. Lexi-Search with

recognizing the Pattern of the solution known as Pattern

Recognition Technique [19][20] can be adopted. In this

method, in order to improve the efficiency of the algorithm,

first the bounds are calculated and then the partial word, for

which the value is less than the initial (trial) value are

checked for the feasibility.

B. Pattern:

An indicator matrix X, associated with an appropriate

assignment of tasks to the agents is defined as a Pattern. A

Pattern is said to be feasible, if X is feasible. Each pattern X

can also be represented by the set of all ordered triples {(i, j,

k)}, for which X (i, j, k) =1. In general, there will be m*n*k

ordered pairs in a matrix X (m, n, k).

C. Alphabet Table & Word:

Let SN = (1,2, . . . ,n3) be the set of indices, BD be an

array of corresponding costs of the ordered pairs and DD be

the array of cumulative sums of elements in BD. Let arrays

R, C and T be respectively row, column and time/facility

indices of the ordered triples. Let Lk = (a1,a2. . .ak). aiε SN be
a ordered sequence of k indices from S. The pattern

represented by the ordered triples indices are given by Lk is

independent of the order of ai in the sequence. For

uniqueness, the indices in Lk are arranged in increasing

order, such that ai < ai+1, i = 1,2, . . .,k-1. The set S is defined

as Alphabet-Table with alphabetic order as (1,2, . . .,n3) and

the ordered sequence Lk is defined as a word of length k. A

word Lk is said to be sensible word if ai < ai+1, i = 1, 2. . . k-1;

non sensible otherwise. It is said to be feasible, if it

represents a feasible pattern. Any of the letters in S can

occupy the first place in a word Lk. Our interest is only in

set of words of length atmost equal to n, since the words of
length greater than n are necessarily infeasible, as any

feasible pattern can have only n unit entries in it. If k < n, Lk

is called a Partial word and if K = n, it is a full length word

or simply a word. A partial word Lk represents a block of

words with Lk as a leader i.e. as its first k letters. A leader is

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 317-321

© 2010, IJARCS All Rights Reserved 319

said to be feasible, if the block of words defined by it has at

least one feasible word.

D. Value of the Word:

The value of the (partial) word Lk, V(Lk) is recursively
defined as V(Lk) = V(Lk-1) + BD (ak) with V(L0) =0, where
BD is the cost array arranged such that, BD(ak) < BD(ak+1). V
(Lk) and the value of the pattern X, will be the same, since X
is the (partial) pattern represented by Lk.

E. Lowerbound of a Partial Word:

A lower bound LB (Lk), for the values of the blocks of

words represented by Lk = (a1, a2. . . ak) can be defined as
follows:

It can be seen that LB (Lk) is the value of the complete

word, which is obtained by concatenating the first m0 –k

letters to the partial word Lk.

F. Feasibility criterion of a Partial Word:

A feasibility criterion is developed, in order to check the

feasibility of a partial word Lk+1 = (a1, a2. . .ak, ak+1) given

that, Lk is a partial word. Let IR be an array, IR (i) =1, i ε N

represents that the salesman is visiting some city from city i

otherwise 0. IC be an array where IC (i) =1, i ε N represents

that the salesman is coming to city i from some city,

otherwise 0. IT be an array where IT (i) =1, ii ε N represents

that the salesman at time i travels one pair of cities. SW be

an array where SW (i) is the city that the salesman visiting

from city i and SW (i) = 0 indicates that the salesman is not

visiting any city from city i. ISC be an array where ISC (i) is

the number of times the index i as a city or time involved the
word Lk. Then for a given partial word Lk = (a1, a2. . .ak, ak)

the values of the arrays IR,IC,IT,SW,ISC are as follows.

IR(R(ai)) =1, i = 1,2,…,k and IR(j) = 0 for other

elements of j.

IC(C(ai))=1, i=1,2,…,k and IC(j) = 0 for other elements of j.

IT(T(ai))=1, i=1,2,…,k and IT(j) = 0 for other elements of j.

SW(R (ai) =C (ai), i=1, 2…, k and SW (j) for other values of

j.

ISC(R (ai)) = ISC(R (ai)) + 1

ISC(C (ai)) = ISC(C (ai)) + 1 i = 1, 2… k

ISC (T (ai)) = ISC (T (ai)) + 1

The recursive algorithm for checking the feasibility of a

partial word is as follows. In the algorithm first we equate

IX=0.

TR = R (ap+1); TC = C (ap+1); TT = T (ap+1);

STEP 1: IX=0; TCX=TC; IDXT=IDX; GOTO

2.

STEP 2: IS (IR (TR) =1) IF YES GOTO 12; IF NO

GOTO 3.

STEP 3: IS(IC (TC) =1) IF YES GOTO 12; IF NO

GOTO 4.

STEP 4: IS (IT (TT) =1) IF YES GOTO 12; IF NO

GOTO 5.

STEP 5: IS (ISC (TR).EQ.0) IF YES IDXT = IDXT +

1 GOTO 6; IF NO GOTO 6.

STEP 6: IS (ISC (TC).EQ.0) IF YES IDXT = IDXT

+ 1 GOTO 7; IF NO GOTO 7.

STEP 7: IS (ISC (TT).EQ.0) IF YES IDXT = IDXT +

1 GOTO 8; IF NO GOTO 8.

STEP 8: IS (IDXT.GT.M) IF YES GOTO 12; IF
NO GOTO 9.

STEP 9: IS (SW (TCX) =0) IF YES IX=1 GOTO 12;

IF NO IK=SW (TCX) GOTO 10.

STEP 10: IS (IK=TR) IF YES GOTO 11; IF

NO TCX=IK GOTO 9.

STEP 11: IS (I=N) IF YES IX=1 GOTO 12;

GOTO 12.

STEP 12: STOP.

At the end if IX=1 then the partial word is feasible,

otherwise it is infeasible. This recursive algorithm is used as

a subroutine in the Lexi-Search algorithm(vide 4.6), to
check the feasibility of a partial word. Search starts with a

very large value (= 9999999) as the trail value of VT. If the

value of a feasible word is known, it can as well be taken as

the value of VT. During the search VT is improved (in fact,

it gets decreased). At the end of the search, the current value

VT gives value of the optimal feasible word. A partial word

Lk, is constructed as Lk = Lk-1*(ak). (Where * indicates

concatenation) and V (Lk) and LB (Lk) are calculated. Then

two situations arise: one for branching and the other for

continuing search.

(i) LB(Lk) ≥ VT: if it is the case, we reject the partial word,

i.e., the block of words with Lk as leader is rejected for

not having an optimal word and we also reject all the

partial words of order K the succeed Lk.

(ii) LB (Lk) < VT: if it is so, we check whether Lk is feasible.

If it is feasible, we proceed to consider a partial word a

order which represents a sub-block of words represented

by Lk. If Lk is not feasible, we consider the next partial

word of order k, by considering another letter in kth

position which succeeds ak. If all the partial words of
order k are exhausted, then we consider the next partial

word of order (k-1).

V. COMPUTATIONAL RESULTS

A Computer program for the proposed algorithm is
written in C language and is tested on the COMPAQ system.
We tried a set of problems for different sizes. Random
numbers are used to construct the Time matrix. The
following table gives the list of the problems tried along with
the average CPU time in seconds required for solving them.

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 317-321

© 2010, IJARCS All Rights Reserved 320

Table: 1(CPU run time in seconds for Lexi-Search Algorithm)

Sr.

No.

Problem Dimensions AT Type-I Type-II Type-III

 m n l Min Max Avg Min Max Avg Min Max Avg

1 5 6 2 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 8 10 3 0.0004 0.001 0.004 0.0025 0.004 0.005 0.0045 0.003 0.001 0.002

3 10 10 3 0.04 0.0041 0.0006 0.0047 0.0059 0.0214 0.0136 0.0047 0.0153 0.0100

4 10 25 3 0.09 0.660 0.943 0.8016 0.893 0.941 0.917 0.968 0.1 0.534

5 30 50 3 2.146 2.141 2.562 2.3515 2.468 2.9 2.684 2.61 2.8 2.705

VI. CONCLUSIONS

The Lexi - Search algorithm presented in this chapter,
incorporating Pattern Recognition Technique is tested. The
same problem sets have been tested with using C language
and successfully applied to many real problems. The findings
of the model-testing and a wide range of sensitivity analyses
using an artificially generated data set are presented. Both
solution procedures prove to be efficient and effective in
providing close to optimal solutions and proven with a
surprisingly small number of patterns. Lexi-search
algorithms are proved to be more efficient in many
combinatorial problems. Lexi Search strategy stands as a
good candidate for being an AI (Artificial Intelligence)
search mechanism. Apart from the minimal requirement of
memory, the Lexi Search helps to obtain optimality, faster
than Branch and Bound in many cases. Further, Lexi Search
clearly specifies Simpler rules for Branching, Bounding and
Termination. Even with the restrictions imposed, the Lexi –
Search takes reasonably less time. Its efficiency over the
Bounding Procedures (like Lagrangean Relaxation) in
Branch & Bound method is also significant. Further it is
observed that with the modification of the sort procedure
while arranging the alphabet table, the Lexi Search algorithm
is becoming more efficient. On the whole, it is felt that Lexi
Search algorithm is faster than the Branch and Bound
algorithm.

VII. REFERENCES

[1]. Laporte, G.,” The vehicle rotting problem: an overview of
exact and approximate algorithms”, Eur. J. Oper. Res. 59
(2), (1992) 345–358.

[2]. Onwubolu, G.C. and Clerc, M.,” Optimal path for automated
drilling operations by a new heuristic approach using particle
swarm optimization”, Int.J. Prod. Res. 42 (3), (2004) 473–
491.

[3]. Grafinkel, R. S “Minimizing wallpaper waste, part I: a class of
Traveling Salesman Problems”, Oper Res 25, (1977) 741-
751.

[4]. McCormick, W. T., Schweitaer, P. J. and White, T.
W.”Problem decomposition and data reorganization by a
Clustering technique”, Oper Res 20, (1972) 993-1009.

[5]. Bland, R. G.and Shallcross, D.F., “Large Traveling Salesman
Problem arising experiment in x-ray

[6]. Crystallography: A Preliminary reported on computation”,
Oper Res 8, (1989) 125-128.

[7]. Shinano, Y.,Inui, N., Fukagawa, Y. and Takakura, N., ”An
Application of Traveling- Salesman Models to Shot Sequence
Generation for Scan Lithography”, 5th European Congress on
Computational Methods in Applied Sciences and Engineering,
(2008) 30 –Julys 5, Venice, Italy.

[8]. Affenzeller, M., Wanger, S., “A self-adaptive model for
selective pressure handling within the theory of genetic
algorithms”, EUROCAST 2003, Las Palmas de Gran Canaria,
Spain, Lect. Notes Comp. Sci. 2809 (1),(2003) 384–393.

[9]. Budinich, M., 1996,” A self-organizing neural network for the
traveling salesman problem that is competitive with simulated
annealing”, Neural Comput. 8, pp. 416–424.

[10]. Liu, G., He, Y., Fang, Y., Oiu, Y.,” A novel adaptive search
strategy of intensification and diversification in tabu search”,
in: Proceedings of Neural Networks and Signal Processing,
Nanjing, China.(2003)

[11]. Bianchi, L., Knowles, J., Bowler, J.,” Local search for the
probabilistic traveling salesman problem: Correction to the 2-
p-opt and 1-shift algorithms”, Eur. J. of Oper. Res. 162(1),
(2005) 206–219.

[12]. Chu, S.C., Roddick, J.F., Pan, J.S.,” Ant colony system with
communication strategies”, Inform. Sci. 167 (1–4), (2004),
63– 76.

[13]. Fischetti, M., Lodi, A., Toth, P., Exact Methods for the
Asymmetric Traveling Salesman Problem. In: Gutin, G.,
Punnen, A.P. (Eds.), The Traveling Salesman Problem and its
Variations. Kluwer, Dordrecht, (2002). 169–194 (Chapter 9).

[14]. Naddef, D., 2002, Polyhedral Theory and Branch-and-Cut
Algorithms for the Symmetric TSP.In: Gutin, G., Punnen,
A.P. (Eds.), The Traveling Salesman Problem and its
Variations. Kluwer Dordrecht, (1991) 29–116 (Chapter 2).

[15]. Miller, D. and Pekny, J.,”Exact Solution of Large
Asymmetric Traveling Salesman Problems”, Science, 251:
754–761.

[16]. Pekney, J.F., Miller, D.L.,”Exact solution of the no-wait
flow shop scheduling problem with a comparison to heuristic
methods”, Computers & Chemical Engineering (1991)
15:741-748.

[17]. Carpaneto, G., Dell’Amico, M. and Toth, P., “Exact Solution
of Large-scale Asymmetric Traveling Salesman Problems”,
ACM Transactions on Mathematical Software, 21,(1995)
394–409.

[18]. Carpaneto, G., Toth, P.,” Some new branching and
bounding criteria for the asymmetric traveling salesman
problem”, Management Science 21, (1980) 736–743.

[19]. Turkensteen, M., Ghosh, D., Goldengorin, B., Sierksma,
G., “Tolerance-based Branch and Bound algorithms for the
ATSP”, European Journal of Operational Research 189:
(2007) 775–788, Available online at www.sciencedirect.com.

[20]. Sundara Murthy, M. “Combinatorial Programming: A Pattern
Recognition Approach”, A Ph.D., Thesis, REC, Warangal.
(1979).

[21]. Sobhan Babu,K & Sundara Murthy.M, “An efficient
algorithm for Variant Bulk Transportation Problem”,
International Journal of Engineering Science and Technology,
2010, Vol.2(7), pp.2595-2600.

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 317-321

© 2010, IJARCS All Rights Reserved 321

Short Bio Data for the Authors

Dr.K.SOBHAN BABU is presently working a
Assistant Professor in the department of Mathematics,

UCEK, JNTUK and Additional Controller of Examinations

in JNTUKAKINADA.

 Dr.E.KESHAVA REDDI is presently working a

Associate Professor in the department of Mathematics,

College of Engineering, Anantapur and Controller of

Examinations in JNTU Anantapur. His Research area

includes Optimization, Data Mining etc.

 Dr.M.SUNDARA MURTHY is a senior Professor

in the Department of Mathematics, Sri Venkateswara

University, Tirupati. He has so many publications in

National and International reputed Journals.

