
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 375

ISSN No. 0976-5697

Search-Personalizer: Adaptive dynamic document clustering based search results

personalization

T.Youva vyshnavi*

M.Tech Department of CSE,
ATRI, Parvathapur, Uppal,

 Hyderabad, India.

youvavyshnavi@gmail.com

T.Nagalakshmi
Sr,Asst.prof, Department of CSE,

ATRI, Parvathapur, Uppal,

Hyderabad, India.

nlakshmi.t@gmail.com

D.Sujatha
 Assoc.Prof and HOD Department of CSE

ATRI, Parvathapur, Uppal,
Hyderabad, India.

sujatha.dandu@gmail.com

Abstract: Current search engines present the user a ranked list given the submitted user query. Top ranked search results generally cover few aspects

.In many cases the users are interested in the main themes of search results besides the ranked list in order to have a global view. This is often
achieved through clustering approaches. Personalized search studies ranking or re-ranking them based on implicit feedback and it also infer user
information need based on user search engine interaction and re-rank the search results. Same as this, clustering’s of search results intuitively should
also be dynamically tuned according to user search system interaction. Thus it brings interesting clustering challenges in the personalized search
framework and the results should change dynamically to reflect the personalized ranking of search results. Traditional static clustering algorithms
based on document similarity cannot achieve this. This paper deals how to incrementally cluster the search results and dynamically update the cluster
representation based on user’s implicit feedback.

Keywords: search, personalization, clustering, hierarchical.

I. INTRODUCTION

Search engines rank most relevant search results at top.

Most of them achieved this by some well-known algorithms

like Page Rank [5] and HITS [4]. In many occasions users

want to have a global picture of the themes about search

results such as clustered result presentation. These will be

beneficial to the user search experience. Such functionality

is often achieved through clustering algorithm or supervised

learning such as regression [10] etc.

Personalization of the search results is considered as one

of major approaches to improve web search. Personalized

search ranks the search results or re-ranks the general ranked
search results based on the created user model, which

reflects user short-term or long-term interest. In the

personalization framework, new challenges for clustering

search results emerge since search results is interactively re-

ranked based on user’s feedback. So efficient clustering

algorithmic desired to perform online clustering of search

results. In addition, clustering results should dynamically

update to reflect the re-ranking based on user’s implicit

feedback. Traditional clustering algorithms based on

document similarity (for example, cosine similarity) are

regarded as “static” since the clustering result cannot reflect
the changes in the ranking of documents and user interaction

[8].

The third key issue is the result presentation strategy.

Organizing the clustering results in a clear and effective way

is very important to enhance user’s search experience. In

this paper, we study the clustering and result presentation

strategy in the personalization framework. Our goal is to

design an effective and efficient dynamically updating

clustering algorithm. We base our work on the assumption

that clustered results can augment top ranked result

representation, which has been proved by a lot previous
work such as [9] our work is based on the Search-

personalizer [6]. Just like query expansion and dynamic

result re-ranking of search result based on user implicit

feedback [3], the cluster presentations also personalized, i.e.

dynamically change based on user implicit feedback such as

submitted query and click through during user interaction

with the search-personalizer. For example, when the user

clicks a document, we can know more about the user’s

information need.

We can change the cluster structure and presentation

based on this implicit feedback. One simple strategy is that

if we do hierarchical clustering, we can show next-level
clusters of the cluster to which the document clicked

belongs and push down other top level clusters. Just like

when the user clicks one result and then clicks Back button,

the top ranked result will be re-ranked. We will reorganize

the cluster presentation after we get the user implicit

feedback. SEARCH-PERSONALIZER framework is

introduced in Section II in detail. The major contribution of

this project is as follows.

T.Youva vyshnavi et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,375-379

© 2010, IJARCS All Rights Reserved 376

We implemented efficient clustering algorithms and used

two different result presentation strategies at the client side.

An incremental clustering algorithm to incrementally

update the cluster structure was developed.

Design and implementation of Fisheye View algorithm

to dynamically change the cluster structure based on user’s

implicit feedback was developed.

The rest of the paper comprises of. Section II introduces

the Search-personalizer, which deals with the dynamic

clustering algorithm. Similarity measure, the clustering

algorithm and clustering presentation are detailed in Section
III. Sections IV and V describe the design and

implementation of incremental clustering (Inc-DC)

algorithm and dynamical clustering (Fisheye View)

algorithm. Related work is discussed in Section VI and

conclusion in Section VII.

II. PROPOSED FRAMEWORK

This framework provides a search results personalization

option at the client side, which can be referred as search-

personalizer. It provides the basic functionality that many

search engine toolbars such as Google toolbar provide. After

the user composes query, the search-personalizer

communicates with the search engine and retrieves the

search result web page so that the he does not need to visit

the search engine web sited search. Besides the basic

functionality, Search-personalizer does the query expansion
and result re-ranking to improve the retrieval quality.

For the query expansion, when the user submits a query,

say, “java”, the search-personalizer will look through the

user’s previous queries and decide whether the previous

queries are correlated with the current query or not. If so, the

search-personalizer will select meaningful query terms from

previous queries, e.g., “programming” for the query

expansion and submit the expanded query to the search

engine. Thus the representation of the user information need

is augmented and the possible search term ambiguity is

reduced. For the result re-ranking, if a user views the search
result web page and clicks one search result, when he clicks

Back button or Next button, the search result will be

automatically re-ranked according to the title and summary

of previously clicked web pages. The user clicks one search

result because the appealing summary of the search result,

instead of the whole content of clicked web page [7],

reflects the user information need. Originally relevant web

pages ranked lower by the search engine will be pushed up.

The user’s previous queries and previous click through

provide the implicit feedback [3] to the Search-personalizer.

Through the implicit feedback from the user, the web

search results are personalized and the user search
experience is improved. In [7], the user profile is

constructed to do adaptive web search. A lot of computation

such as profile construction and result re-ranking is involved

so that this method cannot be integrated with the search-

personalizer to provide online adaptive web search. In

Search-personalizer, the query expansion and result re-

ranking are done in a very efficient way. The user does not

feel apparently longer response delay compared with the

general search engine toolbars; he has the freedom to control

whether the query expansion and result re-ranking are

executed implicitly or not. Capture and model user

interactions are done in through this people. This thesis

focuses on the click through the user makes. Each click

through, the original clustering result presentation will be

dynamically changed.

III. CLUSTERING ALGORITHM

In this section, we discuss the clustering algorithms, the

document similarity measure and the cluster result

representation.

A. Clustering Algorithm:

a. K-Medoids:

K-Medoids (or PAM) [2] is a partition based clustering
algorithm.“Medoid” is the most centrally located object in a

cluster. K-Medoids starts with an initial set of medoids and

iteratively replaces one of the medoids by one of the non-

medoids if it reduces the total distance of the resulting

cluster’s-Medoids is more robust than K-Means in presence

of noise and outliers because a medoid is less influenced by

outliers than a mean. Algorithm 1 outlines the document

clustering process using a K-Medoids approach.

It takes O(k(n ¡ k)2) for each iteration for algorithm

referred in figure 1, where k is the number of clusters and n

is the number of documents. Multiple iterations are needed

before convergence. The output is k documents as
representatives of each cluster center.

b. Hierarchical Clustering:

We also tried hierarchical clustering algorithm. It merges

two most similar clusters at each level until there are only

clusters left or other user specified criterion satisfies.
Algorithm 2 outlines the document clustering process using

a hierarchical clustering algorithm.

The initial similarity computation takes
2()O n time. We

can maintain a sorted similarity list for each document in

O(nlogn). For n documents, the total cost is
2(log)O n n .Whenever two clusters are the initial

similarity computation takes
2()O n time we can maintain a

sorted similarity list for each document in (log)O n n . For

n documents, the total cost is
2(log)O n n .Whenever two

clusters are merged into a new cluster C, a new similarity list

is created and sorted in time (log)O n n . So the total time

complexity is
2 2(log)O n n n .

The output of Algorithm 2 is k term frequency vectors

representing the cluster centers. We implemented both K-
Medoid and Hierarchical clustering algorithm into the

Search-personalizer. We did a lot of testing. Their

effectiveness is both relatively good, in the sense that they

can really cluster some similar search results. The number of

clusters is hard to decide beforehand. On the efficiency side,

we find that K-Medoid clustering is not efficient at all. It is

T.Youva vyshnavi et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 375-379

© 2010, IJARCS All Rights Reserved 377

the bottleneck of Search-personalizer computation. For

example, it generally takes 3 seconds to cluster the top 50

search results while all other computation of search-

personalizer generally takes less than 1 second. On the other

hand, Hierarchical clustering is very efficient and the

computation time of hierarchical clustering can be neglected

comparing with other computation such as that of indexing

the search results. So when we do the study of incremental

clustering and dynamical clustering update, we all use

hierarchical clustering algorithm.

ALGORITHM 1: DOCUMENT CLUSTERING ALGORITHM

1 2

Input : Select set of documents to be clustered as input dataset { } and

 number of representatives as K

Output: A set of documents D , ,....

 , randomly

i

c c ck

D

D D

Select cluster centroids which are picked , centroids

 , emergedas in

documents total number of are K

foreach docuement D do

find similariy with all cluster centroids

add document to the cluster c which is nearer similarity check

verify and

adjust the centroids of documents

End of foreach

End of the function

ALGORITHM II: HIERARCHICAL DOCUMENT CLUSTERING ALGORITHM

:

: ,

j

tf tfk

Input D is a set of documents

Number of representatives K

Output TermfrequencyVectors V V

initializek nclusters suchthat eachcluster contains atleat onedocument

Compute pairwise similarity

(,)

 ; , arg max ;

 ;

;

s t

ij i j

st ij ij

s t

c c c

among clusters

sim similarity D D

until k K do

select sim here s t sim

mergeclustersc and c toa newcluster c

TF TF TF

continuethe similarity check betweenc and other cluste

1;

rs

k k

end of until

end of function

B. Document Similarity Measure:

We use the term frequency vector to represent a document.

Using this representation, we can measure the similarity

between two documents based on the similarity of their term

vectors. Several measures are available to fulfill this

requirement. Cosine similarity is a widely used one. It

measures the normalized similarity between the term vectors

of two documents.

.

1

2 2

1 1

(,)

.

jp

N

ip w

p

i j
N N

ip jp

p p

w

sim D D

w w

 (1)

Where
1(;;;;)N

i i iD w w is the term frequency vector

representation of document Di and N is the size of vocabulary.

C. Clustering Result Presentation:

Another important task in this paper is to study different

clustering result presentation strategies. Clustering process

organizes the whole collection of documents into different

groups. Clear and effective presentation format provides users

with good interpretability and understanding. In our project,

we present the ranked list of documents based on

personalization. In addition, we replace “Google Sponsored

Link” with the clustering results. We study the different
strategies to present clustering results. For K-Medoids

approach, we present the central document in each cluster. In

this case, the user will clearly see representative example of a

cluster.

 However, the user maybe still cannot see the main theme

of this cluster. For hierarchical clustering approach, we

present the central term frequency vector in each cluster. A

term vector usually has a very high dimension. For

effectiveness, we only present the top-K frequent (or

distinctive) terms. In this case, the user will not see a specific

search result.

IV. INCREMENTAL CLUSTERING

In the Search-personalizer, while the user navigates, the

search-personalizer will continue downloading search results.

T.Youva vyshnavi et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,375-379

© 2010, IJARCS All Rights Reserved 378

When we get some results and partition them into clusters

while new search results are downloaded at the same time,

how should we update the cluster? One solution is to do the

clustering from scratch (re-clustering) using all search results

downloaded. However, this solution is not efficient. In this

project, we proposed an incremental algorithm called

incremental document clustering algorithm also referred as

inc-DC to do incremental clustering. It works as follows.

Step 1. Partition the initial set of search results into clusters;

Step 2. As new results come, assign each of them to a cluster

where the similarity of the new document and the cluster
center is the highest.

Our assumption is, if the initial set of search results

(usually are top-ranked pages by Google) can relatively

represent the cluster partition well, the following results can

be assigned into the clusters with a greedy assignment. We

evaluate the Inc-DC algorithm against the re-clustering

algorithm in terms of time and cluster quality. The cluster

quality is defined as 12.
The higher Q is, the better the clustering quality. Figures 1

and 2 show the clustering time and cluster quality of Inc-DC
and re-clustering. It is shown that Inc-DC is much more
efficient than re-clustering from scratch but the quality is very
close. We compared the clustering time and cluster quality of
several queries, the conclusions are consistent.

Figure 1. Cluster Time of Inc-DC and Re clustering

V. ADAPTIVE CLUSTER MAINTENANCE

Most prevailing clustering algorithms of search results are
“static”, which means that the cluster structure and

presentation are stable. But in interactive data reclamation

such as web search, the search system cannot visibly infer the

user information need at first. However, through the user

search engine interaction, the user will provide more and more

hints about information needed. Moreover, user information

need sometimes is drifting during the information pursuing

process, which is especially true when the user himself is not

sure of what he is probing for. Thus both the search results (re-

ranking) and cluster results need to be personalized.

Figure 2. Cluster Quality of Inc-DC and Re clustering

We design and implement the Fish Eye View algorithm to

do the dynamic clustering. Fisheye View is a technique

recurrently used in information visualization [1], which

integrates details in the neighborhood smoothly in wider

framework. When we apply the Fisheye View in the

dynamical clustering, we show details about the results which

are similar with the most recently user click through while we

select and show other similar clusters as well, even though

they do not contain the search results the user just clicked. It

works as follows.

Step 1. Partition the initial set of search results into clusters
using traditional clustering algorithms such as hierarchical

clustering algorithm;
Step 2: As the user clicks a search result and then clicks
“Back” (maybe then “Next” button), an incremental clustering
to include more recently downloaded search results is done.

Step 3. Pick the cluster which encloses the search result the

user just clicked. First pick the most similar search results

belonging to same cluster as that containing the clicked search

result and show them in details. Then, we rank the added
clusters according to the similarity between the cluster and the

click through. We show them in context.

Here we can display as details, the summary and title of

each shown search results and show as perspective top

frequent terms.

We implemented the Fisheye View algorithm into the

Search-personalizer. The best evaluation strategy is to do

some analysis to measure whether the Fisheye View algorithm

can really help the user understand the search results.
Many existing works verified that, in many cases, Fisheye

View helps the user view and understand the information [1].

VI. RELATED WORK

There are studies of clustering web search results ([9] and
[10]). [10] Models the clustering problems as salient phrase
ranking problem. This work takes a supervised learning
approach by building a regression model based on human
labeled training documents. Given a query and ranked data as
search results, this method excerpts and ranks salient phrase as
candidate cluster name. The data collected are assigned to
relevant salient phrases to form candidate clusters. The final
clusters are generated by merging those candidate clusters.
However, our work has the following unique characteristics. ²
We emphasize the study on the efficiency of different web

T.Youva vyshnavi et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 375-379

© 2010, IJARCS All Rights Reserved 379

search result presentation as well as the effectiveness. Most, if
not all, previous work on web result clustering does not study
the efficiency issue. We try to find a very fast clustering
algorithm which is also effective. ² Search result presentation
will be personalized. For example, when we use clustering
strategy, clusters will dynamically change during the user
interaction with the search search-personalizer.

VII. CONCLUSION AND FUTURE WORK

In this project, we study how to provide the effective and

efficient clustering search results to the user at the client sides.

Moreover, we design and implement Inc-DC algorithm to do

incremental clustering and Fisheye View algorithm to do

dynamical clustering. We have done some quantitative

analysis about efficiency of clustering algorithm and

incremental clustering and quality of incremental clustering.

We will do a user study to evaluate the effectiveness of

clustering algorithm and dynamically update of clusters. There
are interesting works to explore. First, we will explore other

dynamically clustering algorithms. Currently, we just use the

most recent click through as the clue to update the clusters.

Actually there is more information on the search system we

can make use of. We will also reconnoiter other incremental

clustering algorithms. At present, the cluster structure of Inc-

DC algorithm will not change and only contents of single

cluster are updated. We will study how to change the cluster

structure when we do incremental clustering.

VIII. REFERENCES

[1]. G. W. Furnas. Generalized fisheye views. In Proceedings of

CHI,, Volume 17 Issue 4, April 1986, New York, NY, USA

©1986 ,pp. 16-23.

[2]. L. Kaufman and P. Rousseeuw. Finding groups in data: an

introduction to cluster analysis. John Wiley & Son, 1990.

[3]. D. Kelly and J. Teevan. Implicit feedback for inferring user

preference: A bibliography. SIGIR Forum 2003, Volume 37

Issue 2, 2003, New York, NY, USA, pp. 18 - 28

[4]. J. Kleinberg. Authoritative sources in a hyperlinked

environment. In Proceedings of the ACM-SIAM Symposium

on Discrete Algorithms, Volume 46 Issue 5, Sept. 1999, pp.

604 - 632.

[5]. L. Page, S. Brin, R. Motwani, and T.Winograd. The

PageRank Citation Ranking: Bringing Order to the Web,

1998.

[6]. X. Shen, B. Tan, and C. Zhai. Intelligent search using implicit

user model. Technical report, Department of Computer

Science, University of Illinois at Urbana-Champaign, 2005.

[7]. K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web

search based on user profile constructed without any effort

from users. In Proceedings of WWW 2004, 2004, New York,

NY, USA ©2004. pp. 675 - 684

[8]. Vivisimo. http://vivisimo.com.

[9]. O. Zamir and O. Etzioni. Grouper: A dynamic clustering

interface to web search results. In Proceeding of WWW 1999,

vol.31, 1999, pp. 11-16.

[10]. H.-J. Zeng, Q.-C. He, Z. Chen,W.-Y. Ma, and J. Ma.

Learning to cluster web search results. In Proceeding of

SIGIR 2004, New York, NY, USA ©2004, pp. 210-217.

Short Bio Data for the Author’s

T.Youva Vyshnavi completed B.Tech degree in cse from
Aizza College of eng & Tech, mancherial, India, Affiliated to
JNTU in 2009. Her date of birth is July 9th.She is pursuing
M.Tech with S.E as specialization at Aurora’s Technological
and research institute, Hyderabad, India Affiliated to JNTU.
Her expertise includes Knowledge Mining &Data Eng.

T.Nagalakshmi completed M.Tech degree from Aurora’s

Technological and research institute, Hyderabad, India

Affiliated to JNTU born on 25th August 1984. She is having 5
years of teaching experience. Presently she is working as

Asst.Professor in the Department of CSE at Aurora’s

Technological and Research Institute, Hyderabad.

