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Abstract: Current search engines present the user a ranked list given the submitted user query. Top ranked search results generally cover few aspects 

.In many cases the users are interested in the main themes of search results besides the ranked list in order to have a global view. This is often 
achieved through clustering approaches. Personalized search studies ranking or re-ranking them based on implicit feedback and it also infer user 
information need based on user search engine interaction and re-rank the search results. Same as this, clustering’s of search results intuitively should 
also be dynamically tuned according to user search system interaction. Thus it brings interesting clustering challenges in the personalized search 
framework and the results should change dynamically to reflect the personalized ranking of search results. Traditional static clustering algorithms 
based on document similarity cannot achieve this. This paper deals how to incrementally cluster the search results and dynamically update the cluster 
representation based on user’s implicit feedback. 
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I. INTRODUCTION  

Search engines rank most relevant search results at top. 

Most of them achieved this by some well-known algorithms 

like Page Rank [5] and HITS [4]. In many occasions users 

want to have a global picture of the themes about search 

results such as clustered result presentation. These will be 

beneficial to the user search experience. Such functionality 

is often achieved through clustering algorithm or supervised 

learning such as regression [10] etc. 

Personalization of the search results is considered as one 

of major approaches to improve web search. Personalized 

search ranks the search results or re-ranks the general ranked 
search results based on the created user model, which 

reflects user short-term or long-term interest. In the 

personalization framework, new challenges for clustering 

search results emerge since search results is interactively re-

ranked based on user’s feedback. So efficient clustering 

algorithmic desired to perform online clustering of search 

results. In addition, clustering results should dynamically 

update to reflect the re-ranking based on user’s implicit 

feedback. Traditional clustering algorithms based on 

document similarity (for example, cosine similarity) are 

regarded as “static” since the clustering result cannot reflect 
the changes in the ranking of documents and user interaction 

[8]. 

The third key issue is the result presentation strategy. 

Organizing the clustering results in a clear and effective way  

 

is very important to enhance user’s search experience. In 

this paper, we study the clustering and result presentation 

strategy in the personalization framework. Our goal is to 

design an effective and efficient dynamically updating 

clustering algorithm. We base our work on the assumption 

that clustered results can augment top ranked result 

representation, which has been proved by a lot previous 
work such as [9] our work is based on the Search-

personalizer [6]. Just like query expansion and dynamic 

result re-ranking of search result based on user implicit 

feedback [3], the cluster presentations also personalized, i.e. 

dynamically change based on user implicit feedback such as 

submitted query and click through during user interaction 

with the search-personalizer. For example, when the user 

clicks a document, we can know more about the user’s 

information need.  

We can change the cluster structure and presentation 

based on this implicit feedback. One simple strategy is that 

if we do hierarchical clustering, we can show next-level 
clusters of the cluster to which the document clicked 

belongs and push down other top level clusters. Just like 

when the user clicks one result and then clicks Back button, 

the top ranked result will be re-ranked. We will reorganize 

the cluster presentation after we get the user implicit 

feedback. SEARCH-PERSONALIZER framework is 

introduced in Section II in detail. The major contribution of 

this project is as follows. 
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We implemented efficient clustering algorithms and used 

two different result presentation strategies at the client side. 

An incremental clustering algorithm to incrementally 

update the cluster structure was developed. 

Design and implementation of Fisheye View algorithm 

to dynamically change the cluster structure based on user’s 

implicit feedback was developed. 

The rest of the paper comprises of. Section II introduces 

the Search-personalizer, which deals with the dynamic 

clustering algorithm. Similarity measure, the clustering 

algorithm and clustering presentation are detailed in Section 
III. Sections IV and V describe the design and 

implementation of incremental clustering (Inc-DC) 

algorithm and dynamical clustering (Fisheye View) 

algorithm. Related work is discussed in Section VI and 

conclusion in Section VII. 

II. PROPOSED FRAMEWORK 

This framework provides a search results personalization 

option at the client side, which can be referred as search-

personalizer. It provides the basic functionality that many 

search engine toolbars such as Google toolbar provide. After 

the user composes query, the search-personalizer 

communicates with the search engine and retrieves the 

search result web page so that the he does not need to visit 

the search engine web sited search. Besides the basic 

functionality, Search-personalizer does the query expansion 
and result re-ranking to improve the retrieval quality. 

For the query expansion, when the user submits a query, 

say, “java”, the search-personalizer will look through the 

user’s previous queries and decide whether the previous 

queries are correlated with the current query or not. If so, the 

search-personalizer will select meaningful query terms from 

previous queries, e.g., “programming” for the query 

expansion and submit the expanded query to the search 

engine. Thus the representation of the user information need 

is augmented and the possible search term ambiguity is 

reduced. For the result re-ranking, if a user views the search 
result web page and clicks one search result, when he clicks 

Back button or Next button, the search result will be 

automatically re-ranked according to the title and summary 

of previously clicked web pages. The user clicks one search 

result because the appealing summary of the search result, 

instead of the whole content of clicked web page [7], 

reflects the user information need. Originally relevant web 

pages ranked lower by the search engine will be pushed up. 

The user’s previous queries and previous click through 

provide the implicit feedback [3] to the Search-personalizer. 

Through the implicit feedback from the user, the web 

search results are personalized and the user search 
experience is improved. In [7], the user profile is 

constructed to do adaptive web search. A lot of computation 

such as profile construction and result re-ranking is involved 

so that this method cannot be integrated with the search-

personalizer to provide online adaptive web search. In 

Search-personalizer, the query expansion and result re-

ranking are done in a very efficient way. The user does not 

feel apparently longer response delay compared with the 

general search engine toolbars; he has the freedom to control 

whether the query expansion and result re-ranking are 

executed implicitly or not. Capture and model user 

interactions are done in through this people. This thesis 

focuses on the click through the user makes. Each click 

through, the original clustering result presentation will be 

dynamically changed. 

III. CLUSTERING ALGORITHM 

In this section, we discuss the clustering algorithms, the 

document similarity measure and the cluster result 

representation. 

A. Clustering Algorithm: 

a. K-Medoids: 

K-Medoids (or PAM) [2] is a partition based clustering 
algorithm.“Medoid” is the most centrally located object in a 

cluster. K-Medoids starts with an initial set of medoids and 

iteratively replaces one of the medoids by one of the non-

medoids if it reduces the total distance of the resulting 

cluster’s-Medoids is more robust than K-Means in presence 

of noise and outliers because a medoid is less influenced by 

outliers than a mean. Algorithm 1 outlines the document 

clustering process using a K-Medoids approach. 

It takes O(k(n ¡ k)2) for each iteration for algorithm 

referred in figure 1,  where k is the number of clusters and n 

is the number of documents. Multiple iterations are needed 

before convergence. The output is k documents as 
representatives of each cluster center. 

b. Hierarchical Clustering: 

We also tried hierarchical clustering algorithm. It merges 

two most similar clusters at each level until there are only 

clusters left or other user specified criterion satisfies. 
Algorithm 2 outlines the document clustering process using 

a hierarchical clustering algorithm. 

The initial similarity computation takes
2( )O n time. We 

can maintain a sorted similarity list for each document in 

O(nlogn). For n documents, the total cost is 
2( log )O n n .Whenever two clusters are the initial 

similarity computation takes 
2( )O n time we can maintain a 

sorted similarity list for each document in ( log )O n n . For 

n documents, the total cost is 
2( log )O n n .Whenever two 

clusters are merged into a new cluster C, a new similarity list 

is created and sorted in time ( log )O n n . So the total time 

complexity is 
2 2( log )O n n n .  

The output of Algorithm 2 is k term frequency vectors 

representing the cluster centers. We implemented both K-
Medoid and Hierarchical clustering algorithm into the 

Search-personalizer. We did a lot of testing. Their 

effectiveness is both relatively good, in the sense that they 

can really cluster some similar search results. The number of 

clusters is hard to decide beforehand. On the efficiency side, 

we find that K-Medoid clustering is not efficient at all. It is 
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the bottleneck of Search-personalizer computation. For 

example, it generally takes 3 seconds to cluster the top 50 

search results while all other computation of search-

personalizer generally takes less than 1 second. On the other 

hand, Hierarchical clustering is very efficient and the 

computation time of hierarchical clustering can be neglected 

comparing with other computation such as that of indexing 

the search results. So when we do the study of incremental 

clustering and dynamical clustering update, we all use 

hierarchical clustering algorithm. 

 

 

ALGORITHM 1: DOCUMENT CLUSTERING ALGORITHM 

1 2

Input :  Select set of documents to be clustered as input dataset { } and

            number of representatives as K

Output: A set of documents D , ,....
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D D

Select cluster centroids which are  picked ,     centroids  

   

     

     ,    emergedas  in  

  

documents total number of are K

foreach docuement D do

find similariy with all cluster centroids

add document to the cluster c which is nearer similarity check

verify and     

  

   

adjust the centroids of documents

End of foreach

End of the function

 

 

ALGORITHM II: HIERARCHICAL DOCUMENT CLUSTERING ALGORITHM 
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B. Document Similarity Measure: 

We use the term frequency vector to represent a document. 

Using this representation, we can measure the similarity 

between two documents based on the similarity of their term 

vectors. Several measures are available to fulfill this 

requirement. Cosine similarity is a widely used one. It 

measures the normalized similarity between the term vectors 

of two documents. 
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Where 
1( ;;;; )N

i i iD w w is the term frequency vector 

representation of document Di and  N is the size of vocabulary. 

C. Clustering Result Presentation: 

Another important task in this paper is to study different 

clustering result presentation strategies. Clustering process 

organizes the whole collection of documents into different 

groups. Clear and effective presentation format provides users 

with good interpretability and understanding. In our project, 

we present the ranked list of documents based on 

personalization. In addition, we replace “Google Sponsored 

Link” with the clustering results. We study the different 
strategies to present clustering results. For K-Medoids 

approach, we present the central document in each cluster. In 

this case, the user will clearly see representative example of a 

cluster. 

      However, the user maybe still cannot see the main theme 

of this cluster. For hierarchical clustering approach, we 

present the central term frequency vector in each cluster. A 

term vector usually has a very high dimension. For 

effectiveness, we only present the top-K frequent (or 

distinctive) terms. In this case, the user will not see a specific 

search result. 

IV. INCREMENTAL CLUSTERING 

In the Search-personalizer, while the user navigates, the 

search-personalizer will continue downloading search results. 
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When we get some results and partition them into clusters 

while new search results are downloaded at the same time, 

how should we update the cluster? One solution is to do the 

clustering from scratch (re-clustering) using all search results 

downloaded. However, this solution is not efficient. In this 

project, we proposed an incremental algorithm called 

incremental document clustering algorithm also referred as 

inc-DC to do incremental clustering. It works as follows. 

Step 1. Partition the initial set of search results into clusters; 

Step 2. As new results come, assign each of them to a cluster 

where the similarity of the new document and the cluster 
center is the highest. 

Our assumption is, if the initial set of search results 

(usually are top-ranked pages by Google) can relatively 

represent the cluster partition well, the following results can 

be assigned into the clusters with a greedy assignment. We 

evaluate the Inc-DC algorithm against the re-clustering 

algorithm in terms of time and cluster quality. The cluster 

quality is defined as 12. 
The higher Q is, the better the clustering quality. Figures 1 

and 2 show the clustering time and cluster quality of Inc-DC 
and re-clustering. It is shown that Inc-DC is much more 
efficient than re-clustering from scratch but the quality is very 
close. We compared the clustering time and cluster quality of 
several queries, the conclusions are consistent. 
 

 

Figure 1. Cluster Time of Inc-DC and Re clustering 

V. ADAPTIVE CLUSTER MAINTENANCE 

Most prevailing clustering algorithms of search results are 
“static”, which means that the cluster structure and 

presentation are stable. But in interactive data reclamation 

such as web search, the search system cannot visibly infer the 

user information need at first. However, through the user 

search engine interaction, the user will provide more and more 

hints about information needed. Moreover, user information 

need sometimes is drifting during the information pursuing 

process, which is especially true when the user himself is not 

sure of what he is probing for. Thus both the search results (re-

ranking) and cluster results need to be personalized.  

 

Figure 2. Cluster Quality of Inc-DC and Re clustering 

We design and implement the Fish Eye View algorithm to 

do the dynamic clustering. Fisheye View is a technique 

recurrently used in information visualization [1], which 

integrates details in the neighborhood smoothly in wider 

framework. When we apply the Fisheye View in the 

dynamical clustering, we show details about the results which 

are similar with the most recently user click through while we 

select and show other similar clusters as well, even though 

they do not contain the search results the user just clicked. It 

works as follows. 

Step 1. Partition the initial set of search results into clusters 
using traditional clustering algorithms such as hierarchical 

clustering algorithm;  
Step 2: As the user clicks a search result and then clicks 
“Back” (maybe then “Next” button), an incremental clustering 
to include more recently downloaded search results is done.  

Step 3. Pick the cluster which encloses the search result the 

user just clicked. First pick the most similar search results 

belonging to same cluster as that containing the clicked search 

result and show them in details. Then, we rank the added 
clusters according to the similarity between the cluster and the 

click through. We show them in context. 

Here we can display as details, the summary and title of 

each shown search results and show as perspective top 

frequent terms. 

We implemented the Fisheye View algorithm into the 

Search-personalizer. The best evaluation strategy is to do 

some analysis to measure whether the Fisheye View algorithm 

can really help the user understand the search results. 
Many existing works verified that, in many cases, Fisheye 

View helps the user view and understand the information [1]. 

VI. RELATED WORK 

There are studies of clustering web search results ([9] and 
[10]). [10] Models the clustering problems as salient phrase 
ranking problem. This work takes a supervised learning 
approach by building a regression model based on human 
labeled training documents. Given a query and ranked data as 
search results, this method excerpts and ranks salient phrase as 
candidate cluster name. The data collected are assigned to 
relevant salient phrases to form candidate clusters. The final 
clusters are generated by merging those candidate clusters. 
However, our work has the following unique characteristics. ² 
We emphasize the study on the efficiency of different web 
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search result presentation as well as the effectiveness. Most, if 
not all, previous work on web result clustering does not study 
the efficiency issue. We try to find a very fast clustering 
algorithm which is also effective. ² Search result presentation 
will be personalized. For example, when we use clustering 
strategy, clusters will dynamically change during the user 
interaction with the search search-personalizer. 

VII. CONCLUSION AND FUTURE WORK 

In this project, we study how to provide the effective and 

efficient clustering search results to the user at the client sides. 

Moreover, we design and implement Inc-DC algorithm to do 

incremental clustering and Fisheye View algorithm to do 

dynamical clustering. We have done some quantitative 

analysis about efficiency of clustering algorithm and 

incremental clustering and quality of incremental clustering. 

We will do a user study to evaluate the effectiveness of 

clustering algorithm and dynamically update of clusters. There 
are interesting works to explore. First, we will explore other 

dynamically clustering algorithms. Currently, we just use the 

most recent click through as the clue to update the clusters. 

Actually there is more information on the search system we 

can make use of. We will also reconnoiter other incremental 

clustering algorithms. At present, the cluster structure of Inc-

DC algorithm will not change and only contents of single 

cluster are updated. We will study how to change the cluster 

structure when we do incremental clustering.  
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