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Abstract: Frequent itemsets play an essential role in association rule mining, The closed frequent itemset mining is an advancement to frequent 

itemset mining for association rules, which become an interesting topic for researchers. In this paper, we present an empirical study to evaluate 
the performance compatibility of the Frequent closed itemset mining algorithms that are in current state of the art for mining association rules. 
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I. INTRODUCTION 

In the operation of association rule mining, frequent 

itemset mining is an important stage that has been aimed at 

and in which remarkable improvements have been made. 

The research varies from efficient and scalable algorithms to 

most research frontiers; including sequential, structured, 

correlative mining, associative classification and frequent 

itemset based clustering. Let us discuss present status of this 

step including the analyzed challenges.  

Frequent itemsets are item sets or substructures which 

occur in a dataset more than specified minimum no. of 

times. A substructure can be a sub-graph or sub-tree. If such 
substructure occurs more than specified threshold, it is 

called a frequent structural itemset. Identifying frequent 

itemsets is important in mining associations and 

correlations. It contributed in data indexing, classification 

and clustering. It is proposed by Agrawal et al. [1] for 

market basket analysis which explores customer 

characteristics from the associations between objects in the 

basket. There are several proposed algorithms [2,3,4] for 

generating frequent item sets which vary in the way of 

traversing item set lattice, use of anti-monotone property 

and the way to handle database. Based on these variations, 

representative set of algorithms is explained. 
Problem Definition: The task of discovering all frequent 

itemsets is quite challenging. The search space is 

exponential in the number of items occurring in the 

database. The support threshold limits the output to a 

hopefully reasonable subspace. Also, such databases could 

be massive, containing millions of transactions, making 

support counting a tough problem. The search space of all 

itemsets 2i
contains different itemsets. If ‘ i ’ is large 

enough, then the naive approach to generate and count the 

supports of all itemsets over the database can’t be achieved 

within a reasonable period of time. To compute the supports 
of a collection of itemsets, we need to access the database. 

Since such databases tend to be very large, it is not always 

possible to store them into main memory. Hence the 

frequent itemset mining algorithm performance will be 

analyzed based on its ability of search and memory usage. 

 

In section II explored the frequent closed itemset mining 

algorithms that are targeted to evaluate the performance. In 

section III the Dataset adoption explained. In section IV, 

results gained from a comparative study briefed and 

fallowed by conclusion of the study. 

II. EXPLORATION OF THE ALGORITHMS 

OPTED FOR PERFORMANCE EVALUATION 

A. CHARM [5]: 

CHARM simultaneously explores both the itemset space 

and tidset space using the IT-tree, unlike previous methods 

which typically exploit only the itemset space. CHARM 

uses a novel search method, based on the IT-pair properties, 

that skips many levels in the IT-tree to quickly converge on 

the itemset closures, rather than having to enumerate many 

possible subsets. The pseudo-code for CHARM appears in 

Figure 5. The algorithm starts by initializing the prefix class 

[P], of nodes to be examined, to the frequent single items 
and their tidsets. We assume that the elements in [P] are 

ordered according to a suitable total order f. The main 

computation is performed in CHARM-Extend which returns 

the set of closed frequent itemsets C. CHARM-Extend is 

responsible for considering each combination of IT-pairs 

appearing in the prefix class [P]. For each IT-pair Xi × t(Xi) 

it combines with the IT-pairs Xj × t(Xj) . Each Xi generates 

a new prefix class [Pi] which is initially empty. The two IT-

pairs are combined to produce a new pair X × Y, where X = 

Xi U Xj and Y = t(Xi) ∩ t(Xj ). Then tests which of the four 

IT-pair properties can be applied by calling CHARM-

Property. Note that this routine may modify the current class 
[P] by deleting IT-pairs that are already subsumed by other 

pairs. It also inserts the newly generated IT-pairs in the new 

class [Pi]. Once all Xj have been processed, then recursively 

explore the new class [Pi] in a depth-first manner. Then 

insert the itemset X, an extension of Xi, in the set of closed 

itemsets C , provided that X is not subsumed by a previously 

found closed set. At this stage any closed itemset containing 

Xi has already been generated. And then continues to 

process the next IT-pair in [P]. 
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Charm Algorithm pseudo representation 
 

CHARM (D, min sup): 

1. [P] = {Xi × t(Xi) : Xi ∈ I ∧ σ(Xi) ≥ min sup} 

2. CHARM-Extend ([P], C = ∅) 

3. return C //all closed sets 

CHARM-Extend ([P], C): 

4. for each Xi × t(Xi) in [P] 

5. [Pi] = ∅ and X = Xi 

6. for each Xj × t(Xj) in [P], with Xj ≥f Xi 

7. X = X ∪  Xj and Y = t(Xi) ∩ t(Xj) 

8. CHARM-Property([P], [Pi]) 

9. if ([Pi] = ∅) then CHARM-Extend ([Pi], C) 

10. delete [Pi] 

11. C = C ∪  X //if X is not subsumed CHARM-Property 

([P], [Pi]): 

12. if (σ(X) ≥ minsup) then 

13. if t(Xi) = t(Xj) then //Property 1 
14. Remove Xj from [P] 

15. Replace all Xi with X 

16. else if t(Xi) ⊂ t(Xj) then //Property 2 

17. Replace all Xi with X 

18. else if t(Xi) ⊃ t(Xj) then //Property 3 

19. Remove Xj from [P] 

20. Add X × Y to [Pi] //use ordering f 

21. else if t(Xi) = t(Xj) then //Property 4 

22. Add X × Y to [Pi] //use orderin 

B. CLOSET+ [6]: 

CLOSET+ follows the popular divide-and-conquer 

paradigm and the depth-first search strategy which has been 

verified a winner for mining long patterns by several 

efficient frequent pattern mining algorithms. It uses FP-tree 

as the compression technique. A depth-first search and 

horizontal format-based method like CLOSET+ will 

compute the local frequent items of a certain prefix by 
building and scanning its projected database. Therefore, a 

hybrid tree-projection method will be introduced to improve 

the space efficiency. Unlike frequent itemset mining, during 

the closed itemset mining process there may exist some 

prefix itemsets that are unpromising to be used to grow 

closed itemsets. We should detect and remove such 

unpromising prefix itemsets as quickly as possible. Besides 

adopting the above mentioned item merging and sub-itemset 

pruning methods, CLOSET+ also having the item skipping 

technique to further prune search space and speed up 

mining. 
a. Bottom up Physical Tree Projection: For dense 

datasets, their FP-trees can be hundreds (or even 

thousands) times smaller than their corresponding 

original datasets due to compression. Its conditional 

projected FP-trees are usually very compact as well. 

Each projected FP-tree is much smaller than the 

original FP-tree, and mining on such a compact 

structure will also be efficient. As a result, for dense 

datasets CLOSET+ still physically builds projected FP-

trees and it is done recursively in a bottom-up manner. 

b. Top Down Pseudo Tree Projection: Physically 

projecting FP-trees will introduce some over- head 
both in space usage and runtime (due to allocating and 

freeing memory for projected FP-trees), especially if 

the dataset is sparse, the projected FP-tree will not be 

very compact and does not shrink quickly. Instead of 

physically building projected FP-trees, a new method 

is developed for sparse datasets: top-down pseudo 

projection of FP-tree. Un- like bottom-up physical 

projection of FP-trees, the pseudo projection is done in 

the f list order (i.e., in support descending order). 

Similar to bottom-up physical projection, a header 

table is also used to record enough information such as 

local frequent items, their counts and side-link pointers 

to FP-tree nodes in order to locate the sub trees for a 

certain prefix item- set. 

C. BIDE: 

BIDE, an algorithm for discovering the complete set of 

frequent closed sequences. The contributions of this 

algorithm include: (1) A new paradigm for mining closed 

sequences without candidate maintenance, called 

Bidirectional Extension. The forward directional extension 

is used to grow the prefix patterns and also check the closure 
of prefix patterns, while the backward directional extension 

can be used to both check closure of a prefix pattern and 

prune the search space. (2) Under the BI-Directional 

Extension paradigm, opted to frequent closed sequence 

mining algorithm, BIDE. The BI-Directional Extension 

pattern closure checking scheme, the BackScan pruning 

method, and the ScanSkip optimization technique are 

proposed to speed up the mining and also assure the 

correctness of the algorithm. 

D. PEPP [7]: 

The algorithm PEPP [7] opt to Sequence Graph 

protruding that based on edge projection and pruning, an 

asymmetric parallel algorithm for finding the set of frequent 

closed sequences. The giving of this PEPP [7] is: (A) an 
improved sequence graph based idea is generated for mining 

closed sequences without candidate maintenance, termed as 

Parallel Edge Projection and pruning (PEPP) based 

Sequence Graph Protruding for closed itemset mining. The 

Edge Projection is a forward approach grows till edge with 

required support is possible during that time the edges will 

be pruned. During this pruning process vertices of the edge 

that differs in support with next edge projected will be 

considered as closed itemset, also the sequence of vertices 

that connected by edges with similar support and no 

projection possible also be considered as closed itemset (B) 
in the Edge Projection and pruning based Sequence Graph 

Protruding for closed itemset mining, PEPP contains 

Forward edge projection and back edge pruning algorithms. 

As a first stage PEPP performs dataset preprocessing and 

itemsets Database initialization, which finds itemsets with 

single element, in parallel prunes itemsets with single 

element those contains total support less than required 

support. 

E. Forward Edge Projection: 

In this phase, PEPP selects all itemsets from given 

itemset database as input in parallel, then starts projecting 

edges from each selected itemset to all possible elements. 

The first iteration includes the pruning process in parallel, 

from second iteration onwards this pruning is not required, 

which we claimed as an efficient process compared to other 

similar techniques like BIDE. 
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III. COMPARATIVE STUDY 

This section explores the performance compatibility of 

CHARM [5], CLOSET+ [6], BIDE [7] and PEPP [8]. All 

the experiments were performed on CPU: Intel E6850 with 
MOTHERBOARD: nvidia 680i chipset based with SLi, 

RAM: 4GB(2 x 2GB running in dual channel mode ) 

800Mhz DDR2 and HARDDRIVE: maxtor raptor 74GB 

10,000RPM + 500GB western digital. We ran the four 

algorithms on the same environment. Because our 

performance study showed that other reputed algorithms 

such as OP [9] and CLOSET [10] cannot compete in high 

memory usage with algorithms [5, 6, 7, 8] those we opted, 

hence we compared only CHARM [5], CLOSET+ [6], 

BIDE [7] and PEPP [8] on peak memory usage. 

IV. EXPERIMENTAL SETUP 

Our performance study includes both synthetic and real 

datasets. We used couple of synthetic datasets that are 
generated using IBM-DG[11] and a real dataset Gazelle 

contains click stream. In Gazelle, we consider different 

products as different items and the page views as events. 

The characteristics of these datasets are shown in table 1. 

Table1: Structure of datasets opted for performance check 

Dataset 

Name 
No. Seq 

No. 

Items 

avg. Seq. 

Len 

Max. Seq. 

Len 

SD1 150000 6532 42 61 

SD2 150000 5092 71 114 

GAZELLE 2,937 1,423 29 1,443 

V. RESULTS ANALYSIS 

To verify the performance on dense dataset we opt to 

synthetic dataset SD1 Figure1, table 2, Figure 2 and table 3 

explores the performance of the mining algorithms [5,6,7,8] 

opted. Fig. 2 shows PEPP can be orders of magnitude faster 

than BIDE and other two algorithms CHARM and 
CLOSET+. When the support is not too low, CHARM, 

CLOSET+, BIDE and PEPP performed in similar way. 

When support threshold 10% and lower CHARM cannot run 

by reporting memory issues. The rest three algorithms 

CLOSET+, BIDE and PEPP performance is scalable up to 

the support value 4% , At the support lower than 4% PEPP 

and BIDE maintains their scalability, but the CLOSET+ 

took huge execution time for support value 4% and lower. 

The PEPP elevated as best in time taken for execution. In 

terms of memory usage CHARM is very poor. From Fig. 1 

we can observe that BIDE and PEPP uses less memory than 

CLOSET+ For example, at support 85%, CLOSET+ 

consumes about 190MB  while BIDE and PEPP consumes 
about 18MB. 

Table 2: Memory used by algorithms on SD1 for various support values in 

% 

Memory usage on SD1 

Support in 

% 
0.1 0.08 0.06 0.04 0.03 0.02 0.01 

CHARM 101 136 169 201 232 - - 

CLOSET

+ 
74 81 99 126 155 181 201 

BIDE 5.4 5.9 6.7 7.1 7.9 8.3 9.8 

PEPP 5.6 6.1 6.9 7.7 8.3 9.1 10.4 

 

 

Figure 1: Graph representation of Memory used by algorithms on SD1 for 

various support values in % 

 

 

 

Table 3: Time in seconds taken by algorithms to execute on SD1 

Execution Time on SD1 

Support in % 0.1 0.08 0.06 0.04 0.03 0.02 0.01 

CHARM 5 9 21 - - - - 

CLOSET+ 5.9 9.4 23 32 79 92 341 

BIDE 5.4 6.1 14 24 39 43 106 

PEPP 2.3 3.2 8.6 11 18 21 49 
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Figure 2: Graph representation of Time in seconds taken by algorithms to execute on SD1 

 

 

 

To verify the performance on sparse dataset we opt to 

real time dataset GAZELLE. Figure3, table 4, Figure 4 and 

table 5 explores the performance in execution time and 

memory usage of the mining algorithms[5,6,7,8] opted. Fig. 

3 shows PEPP can be orders of magnitude faster than BIDE 
and other two algorithms CHARM and CLOSET+. When 

the support is not too low, CHARM, CLOSET+, BIDE and 

PEPP performed in similar way. When support threshold 

10% and lower CHARM cannot run by reporting memory 

issues. The rest three algorithms CLOSET+, BIDE and 

PEPP performance is scalable up to the support value 4% , 

At the support lower than 4% PEPP and BIDE maintains 

their scalability, but the CLOSET+ took huge execution 

time for support value 4% and lower. The PEPP elevated as 

best in time taken for execution. In terms of memory usage 

CHARM is very poor. From Fig. 4 we can observe that 
BIDE and PEPP uses less memory than CLOSET+. 

 

 

 

Table 4: Time in seconds taken by algorithms to execute on 
GAZELLE 

Execution Time on gazelle 

Support in 

% 
0.1 0.08 0.06 0.04 0.03 0.02 0.01 

CHARM 0.5 0.9 3 40 298 
  

CLOSET+ 0.6 1 8 110 401 640 980 

BIDE 0.4 0.8 1.9 31 201 452 621 

PEPP 0.4 0.75 0.87 24 189 326 441 

 

 

Figure 3: Graph representation of time in seconds taken by algorithms to 

execute on GAZELLE 

 

 

 

Table 5: Memory used by algorithms on GAZELLE for various support 

values in % 

MEMORY USAGE on GAZELLE 

SUPPORT 

in % 
0.1 0.08 0.06 0.04 0.03 0.02 0.01 

CHARM 21 32 98 115 120 - - 

CLOSET+ 11.2 13.4 14.1 18.4 19.3 21.1 24.9 

BIDE 4.4 4.9 5.9 6.4 7.1 9.3 10.8 

PEPP 3.3 3.8 4.2 4.8 5.1 5.7 6.1 
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Figure 4: Graph representation of Memory used by algorithms on 

GAZELLE for various support values in % 

We used the synthetic datasets SD1 and SD2 those 
generated by IBM-DG to  test the scalability of CLOSET+ 

and compared it with both  CHARM and CLOSET. We first 

tested the scalability in terms of database size using the 

dataset series SD1 with base size from 2000 tuple to 15000 

tuple and support threshold set at 0.008%. From Figure 5 

and table 6,  we can see that,  CHARM has the poorest 

scalability, and it even become worsen when the dataset 

contains more than 600K tuple. In comparison between 

CLOSET+, BIDE and PEPP, PEPP runs much faster and it 

also has much better scalability in terms of base size:  the 

slope ratio for CHARM is much higher than other three and 

PEPP and BIDE are much scalable that compared to 

CLOSET+. 

The scalability in terms of number of distinct items using 
SD2 series with  number of distinct items set at 5092, 

15845, 27550 and  31169, respectively, and minimum 

support set at 0.005%.  From Figure 6 and table 7. , we can 

see that initially all algorithms have very similar 

performance when the number of  distinct items is small, but 

once the number of distinct items  increases, the runtime of 

CHARM has much bigger jump than CLOSET+, BIDE and 

PEPP. Out of CLOSET+, BIDE and PEPP, the PEPP run 

time is much scalable, which means PEPP  also has better 

scalability than CHARM, CLOSET+ and BIDE in terms of 

the number of distinct items. 

 

 

Table 6:  Time taken by algorithms on SD1 for various tuple sizes 

Scalability on SD1 

Base size in tuples(*10) 200 400 600 800 1000 1200 1500 

CHARM 101 198 267 352 432 521 701 

CLOSET+ 94 118 123 144 156 164 181 

BIDE 34 39 45 59 64 73 79 

PEPP 18 23 28 32 41 59 71 

 

 

Figure 5: graph representation of Time taken by algorithms on SD1 for various tuple sizes 

Table 7: Time taken by algorithms on SD2 for various count of distinct elements 

Scalability on SD2 

Unique item count 1000 5000 10000 15000 20000 25000 30000 

CHARM 18.2 23.2 40.1 56.4 67.3 79.1 91.2 

CLOSET+ 16.1 16.3 16.9 17.5 18.1 18.9 19.7 

BIDE 14.3 14.7 15.1 15.7 16.2 16.8 17.1 

PEPP 14.1 14.2 14.8 15.1 15.7 16.1 16.4 
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Figure 6: Graph representation of time taken by algorithms on SD2 for various count of distinct elements 

 

VI. CONCLUSION 

Frequent pattern mining has been studied extensively in 

data mining research. In this study, we have re-examined 

some previously proposed methodologies, and mainly 

focused on the new technique  PEPP[8] developed for 

frequent closed itemset mining, a highly scalable and both 

runtime and space efficient algorithm for dense and sparse 

datasets, on different data distributions and support 

thresholds. In this paper we conducted empirical analysis of 

the performance differences between CHARM[5], 

CLOSET+[6], BIDE[7] and PEPP[8]. The aim of this 

comparative is to prove the performance in speed, memory 

usage and scalability of PEPP over CHARM, CLOSET+ 
and BIDE. 
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