
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 280

ISSN No. 0976-5697

Empirical Evaluation of Software Quality Using Object-Oriented Software Metrics

Satyavan Nain*
M.Tech., Computer Science & Engineerig

Haryana College of Tech. & Management,

Kaithal Haryana, India

itssatyavan@gmail.com

Anshu Parashar
Associate Prof. & HOD, Department of C.S.E.,

Haryana College of Tech. & Management,

Kaithal, Haryana, India

parashar_anshul@yahoo.com

Sunita Parashar
Associate Prof., Department of C.S.E.,

Haryana College of Tech. & Management,

Kaithal, Haryana, India
sunita.tu@gmail.com

Abstract: Object-Oriented software development requires different metrics to evaluate the quality of the software due to newly implemented

constructs/concepts. A large number of metrics have been developed to measure these constructs by software practitioners and academicians.
Managers are particularly interested in measuring external attributes such as maintainability, reliability and reusability. In this paper we provide
empirical evaluation supporting the role of quality metrics to measure the quality attributes understandability, maintainability, reusability and
complexity. We believe that these results have significant implications for designing high quality software product using object-oriented approach.

Keywords: object-oriented concepts, software quality, software metrics, quality attributes

I. INTRODUCTION

The importance of quality software is no longer an
advantage but a necessary factor as software error can have
in terms of life, financial loss, or time delays. Software
quality can make or break a company. Unfortunately, most
companies not only fail to deliver a quality product to their
customers, but also fail to understand the attributes of a
quality product [1]. Tom DeMarco summarizes the essence
of measurements by stating, “You cannot control what you
cannot measure” [2]. Measuring software product and the
development process is essential for improving software
productivity and quality [3]. Analyzing the object-oriented
software to evaluate its quality is becoming increasingly
important as the paradigm continues to increasing popularity
[4]. Managers are particularly interested in measuring
external attributes such as maintainability, reliability and
reusability. In object-oriented environment, certain integral
design concepts i.e. inheritance, coupling and cohesion have
been argued to significantly affect complexity [5].
Nowadays, a quality engineer can choose from a large
number of object oriented metrics. The question posed is not
the lack of metrics but the selection of those metrics which
meet the specific needs of each software project. A quality
engineer has to face the problem of selecting the appropriate
set of metrics for his software measurement [6].

II. PRIOR LITERATURE

Chidamber and Kemerer [1994] developed and
analytically evaluated six design metrics extending the Wand
and Weber work. They have proposed a well-supported,
domain independent modelling framework based on Bunge‟s
ontology for a clear understanding of an information system.

In this framework they define a set of core concepts that

represent a view of world as composed of objects and
properties which describe the structure and behaviour of an
information system. CK metric suit contains WMC, RFC,
CBO, LCOM, DIT, NOC [7][8]. Basili and Briand validated
that object-oriented design metrics are predicators of fault-
prone classes and can be used as early quality indicators [9].
SATC (Software Assurance Technology Centre) [1995]
applied a model for evaluating software quality that has four
goals: Stability of Requirements and Design, Product
Quality, Testing Effectively and Implementation Effectively.
They investigated the object oriented metrics with respect to
these goals. They selected three traditional metrics to
measure the methods and six object-oriented metrics to
evaluate the efficiency, complexity, understandability,
reusability and testability of software. Traditional metrics
were CC, LOC and CP. Object-Oriented metrics were WMC,
LCOM-CK, CBO, RFC, NOC and DIT. They justify some
thresholds suggested by COTS developers. [10].

Subramanyam, Ramanath et al. [2003] indicated that to
produce high quality object-oriented applications, a strong
emphasis on design aspects, especially during the early
phases of software development is necessary. Design metrics
play an important role in helping developers understand
design aspects of software and hence improve software
quality and developer productivity [5]. Khan, R.A., Mustafa,
K. and Ahson, S.I. [2007] proposed a single class based
metric called Weighted Class Complexity (WCC) for object
oriented design. The metric was intended to measure
encapsulation, inheritance, coupling and polymorphism and
the quality factors efficiency, complexity, understandability,
reusability and maintainability. The metric may be used to
indicate the software quality in the early stage of SDLC to
monitor the cost impact of modification and improvement

Satyavan Nain et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,280-286

© 2010, IJARCS All Rights Reserved 281

[1]. V.Krishnapriya and K. Ramar present a collection of
traditional and object-oriented metrics which are useful for
software quality engineers in selecting the proper set of
metrics for their projects [11].

III. RELATIONSHIP BETWEEN OBJECT-ORIENTED

CONCEPTS AND QUALITY ATTRIBUTES

In order to establish a relationship between design
constructs and attributes of quality, the influence of design
constructs and quality attributes are being examined with
respect to SATC‟s attributes [1][10]. Quality of the object
oriented application depends on how well the object oriented
concepts or constructs are used or applied. A good design
will improve the quality because a good design will be easy
to understand, reuse, maintain and test. It was observed that
each design construct affects certain quality attributes. This
is being depicted in Fig.1. As the figure shows efficiency of
an object oriented product is affected by encapsulation and
inheritance, complexity depends on encapsulation,
inheritance and coupling, reusability is affected by
encapsulation, inheritance, coupling and cohesion,
understandability is affected by encapsulation, coupling and
cohesion. Testability and maintainability is mainly affected
by the encapsulation, inheritance and coupling. To measure
the quality of an object oriented design these constructs are
measured.

Figure 1: Relationship between Object-oriented Constructs &

Quality Attributes [1]

IV. QUALITY METRICS

A. Cyclomatic Complexity(CC):

Cyclomatic Complexity [McCabe, 1976] is used to
indicate the complexity of a program. It measures the number
of linearly independent paths through a program‟s source
code. Given a control flow graph G of a program, the
cyclomatic complexity V(G) can be computed as:

Cyclomatic complexity V(G) = E - N +2
 E = number of edges in the graph.
 N = number of nodes in the graph.

The Cyclomatic Complexity metric is a graphical means
of evaluating the complexity of a function and also
determining the completeness of coverage of tests for that
function. Cyclomatic Complexity should be below 10.

B. Comment Percentage (CP):

The comment percentage is calculated by the total
number of comments divided by the total lines of code less
the number of blank lines. Since comments help developers
and maintainers, this metric is used to evaluate the attributes
of Understandability, Reusability and Maintainability.
Comments are another point of contention. There is a school
of thought that says that code can be written to be self-
documenting.

A comment percentage between 20 and 30 is considered

good [10].

C. Maintainability Index (MI):

The maintainability index (MI) is a compound metric
designed at the University of Idaho in 1991 by Oman and
Hagemeister. The primary aim of the metric is to determine
how easy it will be to maintain a particular body of code. The
Maintainability index was originally defined as –

MI = 171 - 3.42ln(aveE) - 0.23aveV(g') - 16.2ln(aveLOC)

Where aveE is the average Halstead Effort per module,
aveV(g') is the average extended cyclomatic complexity per
module and aveLOC is the average numbers of lines of code
per module. This metric is used to find out which parts of the
system are contributing most to its low maintainability.

MI = 171 - 3.42ln(aveE) - 0.23aveV(g') - 16.2ln(aveLOC) + (50 *
sin(sqrt(2.46*aveCM))

This formula is believed to give a better measure of the
contribution of comment lines to maintainability. However as
it is a sin function there are a number of situations where the
addition of comment lines can actually cause a reduction in
the maintainability figure. MI more than 85 is good, between
65 and 85 is moderately good and below 65 is difficult to
maintain with really bad pieces of code if comments are
included (big, uncommented, and unstructured).

D. Weighted Methods per Class (WMC):

Weighted Methods per Class (WMC) was originally
proposed by C&K as the sum of all the complexities of the
methods in the class. Rather than use Cyclomatic Complexity
they assigned each method a complexity of one making
WMC equal to the number of methods in the class

Consider a Class C1, with methods M1,..., Mn that are
defined in the class. Let c1,..., cn be the complexity of the
methods. Then:

If all method complexities are considered to be unity,

then WMC = n, the number of methods.

E. Depth of Inheritance Tree (DIT):

Depth of inheritance of the class is the DIT metric for the

class. In cases involving multiple inheritance, the DIT will be
the maximum length from the node to the root of the tree.

Satyavan Nain et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 280-286

© 2010, IJARCS All Rights Reserved 282

F. Coupling between object classes (CBO):

CBO for a class is a count of the number of other classes
to which it is coupled. It can be measured by counting the
number of distinct non-inheritance related class hierarchies
on which a class depends. If two subsystems are loosely
coupled, they are relatively independent, so modifications to
one of the subsystems will have little impact on the other. If
two subsystems are strongly coupled, modifications to one
subsystem are likely to have impact on the other. A desirable
property of the subsystem decomposition is that subsystems
are as loosely coupled as reasonable. Coupling affects
external quality attributes of the software e.g.
understandability, maintainability, reusability etc.

G. Response For a Class (RFC):

The RFC is the cardinality of set of all methods that can
be invoked in response to a message sent to an object of the
class or by some method in the class. This includes all
methods accessible within the class hierarchy. The larger the
number of methods that can be invoked from a class through
messages, the greater the complexity of the class.

H. Lack of Cohesion in Methods (LCOM):

This metric uses the notion of degree of similarity of
methods. LCOM measures the amount of cohesiveness
present, how well a system has been designed and how
complex a class is.

V. METHODOLOGY

We used the three traditional and five out of six object
oriented metrics proposed by CK . From traditional metrics
we choose Cyclomatic Complexity (CC) to measure the
complexity of the systems, Comment Percentage (CP) to

measure the understandability and Maintainability Index
(MI) to measure the Maintainability of the systems. From
object oriented specific metrics we used Weighted Method
per Class (WMC), Reference For Class objects (RFC),
Coupling Between Object (CBO), Lack of Cohesion in
Method (LCOM) and Depth of Inheritance Tree (DIT). We
measure the design and code quality of the six java projects.
Three of them are student level projects and other three are
taken from the PlanetSourceCode website. The results are
used to measure the mainly four quality attributes of software
quality from the developer‟s point of view. These four
quality attributes are understandability, maintainability,
reusability and complexity. We used two java metric tools
Ckjm1.9 Chidamber & Kemerer Java Metric tool and
JHawk Demo Java metric tool [12]. Ckjm is an open source
command-line tool. It calculates the C&K object-oriented
metrics by processing the byte-code of compiled Java files
[13].

LOC – Lines of Code, AVCC- Average Cyclomatic
Complexity, CP - Comment Percentage, WMC – Weighted
Method per Class, RFC – Response for a Class, LCOM –
Lack of Cohesion in Methods, CBO – Coupling
Between Objects, DIT – Depth of Inheritance Tree, MI –
Maintainability Index

VI. RESULTS AND DISCUSSIONS

Table 1 shows the results after applying the mean,
median, min, max, standard deviation and skewness on all
the class level metric results. Results are shown separately
for individual metrics and projects. These results are picked
from both of the tools and then entered in the excel
worksheet.

Table I. Metric wise result of all the applications

Metrics and Projects Mean Median Min Max Std Dev. Skewness

WMC

Financial Management System 2.8571 2 2 7 1.8645 2.4466

Payroll System 3.8333 3.5 2 8 2.2286 1.6111

Library Management System 3.0667 2 1 11 2.3745 3.0117

A Voting System 2 2 2 2 0 0

Catalogue 5.59 2 2 30 7.2634 2.8147

Airways Reservation System 1.91 2 1 3 0.5393 0.2085

DIT

Financial Management System 2.4286 1 1 6 2.4398 1.2296

Payroll System 3.1667 3.5 1 5 2.0412 -0.1214

Library Management System 2.6667 2 1 6 2.1269 1.0183

A Voting System 1.4 1 1 5 1.2649 3.1623

Catalogue 1.24 1 1 5 0.9701 4.1231

Airways Reservation System 3.27 2 1 5 1.6787 0.9877

CBO

Financial Management System 2.5714 3 1 4 1.1339 -0.7251

Payroll System 1.3333 1.5 0 2 0.8165 -0.85732

Library Management System 4.3333 4 0 10 3.5389 0.4298

A Voting System 1.8 1 1 9 2.5298 3.1623

Catalogue 2.71 2 0 15 3.4958 2.9347

Airways Reservation System 1 1 1 1 0 -2.2361

RFC

Financial Management System 20.8571 19 4 42 15.0602 0.4123

Payroll System 35.6667 45.5 6 54 21.5654 -0.8227

Library Management System 17.7333 17 4 35 11.0548 0.1861

Satyavan Nain et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,280-286

© 2010, IJARCS All Rights Reserved 283

A Voting System 7.2 4 4 32 8.804 3.0511

Catalogue 13.41 9 2 78 17.1102 3.7515

Airways Reservation System 11.45 5 4 36 12.4448 1.7816

LCOM

Financial Management System 0.4671 0.17 0 3.27 0.5422 0.463

Payroll System 4.8333 0 0 28 11.3564 2.4428

Library Management System 4.53 0 0 55 14.1061 3.747

A Voting System 0.1 0 0 1 0.3162 3.1623

Catalogue 0.08 0 0 0.44 0.1281 1.7596

Airways Reservation System 0.27 0 0 3 0.9045 1.8104

A. Quantitative Analysis:

This section compares the metric results of both software
project categories based on a particular metric. First three
projects are student projects and the last three are the planet
source code projects in all the bar charts in this section.

a. Comment Percentage:

As shown in Figure 2 Comment percentage of the student

projects is very low. It is considered 20 to 30 percent as good.
If it is below 10 then it is a serious matter. It is below 10 in

two projects and just above the 10 in third project. On the

other hand these values are above 20 in two of planet source

code projects and above 14 in the third project. These have

better CP.

Figure 2: Bar chart of Comment Percentage (CP) of all projects

So, comment percentage is indicating that planet source
code projects are more understandable than student projects. So
planet source code projects are developed keeping the
understandability factor in mind.

b. Depth of Inheritance Tree:

As shown in Figure 3 values of the DIT in projects are
good. DIT up to 3 is considered good.

Figure 3: Bar chart of DIT

It is 3.17 in Payroll System which is not much bad. On the
other hand the DIT values of planet source code projects are
much better than student projects except Airways Reservation
which is 3.27. So it indicates that all the projects are easy to
understand, reuse, test and have less complexity. If DIT values
are high it shows the deep hierarchy which will difficult to
understand and more testing will be required. It will also
difficult to capture the behaviour of the system.

c. Maintainability Index:

Values of maintainability index are considered good above
85, moderately good between 65 and 85, but bad below 65. MI
values of two student projects are good and that of Payroll
System is moderately good. MI values of planet source code
projects are good in two projects and moderately good in
catalogue. It indicates that all the projects are maintainable.

Figure 4: Bar chart of Maintainability Index

Satyavan Nain et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 280-286

© 2010, IJARCS All Rights Reserved 284

d. Response for a Class:

Figure shows that RFC values of student projects are much

more than planet source code projects.

Figure 5: Bar chart of RFC

High RFC values indicate that classes are more complex
and it is difficult to predict or capture the behavior of the

system. These classes are difficult to maintain. RFC values of

planet source code projects are comparatively low than student

projects. It indicates that planet source code projects are less

complex, easy to understand and maintain as shown in fig. 5.

e. Coupling and Cohesion:

Figure 6 shows that CBO values of student projects are
more comparatively to planet source code projects. High CBO
values indicate that classes have more dependencies. So, these
classes cannot be easily maintained and reused. In order to
improve the maintainability and reusability classes should be
independent or may have less coupling between them. It can be
achieved by splitting the classes. It indicates that planet source
code projects are more maintainable and reusable.

Figure 6: Bar chart of CBO

Figure 7 show that student projects have high values of
LCOM. It indicates the student projects are less cohesive than
planet source code projects. LCOM values should be less or
high cohesion is a desired property so that it will increase the
reusability. It will be helpful in reusing only desired modules.
It will improve the encapsulation. This property is satisfied by
all the planet source code projects.

Figure 7: Bar chart of LCOM

A low value of LCOM means high cohesion. So, it

indicates that planet source code projects are more reusable

and maintainable.

f. Average Cyclomatic Complexity:

Figure 8 shows that AVCC values of all the projects are
less than 10. This indicates that all the projects are easy to
maintain and test because less number of paths are to be
followed during maintenance and testing. It should be below
10.

Figure 8: Bar chart of AVCC

g. Weighted Methods per Class:

Figure 9 shows that weighted complexity of methods are
less than six. It is not bad at all. So these projects are easy to
understand and maintain because as the WMC increases,
systems become more complex and difficult to understand and
maintain. So, value of WMC indicates that all the projects are
understandable.

Satyavan Nain et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,280-286

© 2010, IJARCS All Rights Reserved 285

Figure 9: Bar chart of WMC

B. Attribute wise Evaluation:

Specified metric indications for various quality attributes
i.e. understandability, maintainability, reusability and
complexity comparing both types of projects (student projects
and downloaded projects from planet source code)

Indicators G – Good P – Poor

S – Satisfactory C – Complex

Good – when all the metric results are good (), Poor – when

at least one metric result from related metric is bad (),

Satisfactory – when maximum one result from the related

metric is satisfactory ()/(), Complex – when more than

one complexity indicators are bad.

a. Understandability Indicators:

Table 2: Understandability indicators

Project Name
Understandability

Overall
AVCC CP WMC RFC

Financial Management

System
    P

Payroll System     P

Library Management

System
    P

A Voting System     P

Catalogue     G

Airways Reservation

System
    G

Understandability of all the student projects and first from

downloaded projects is poor due to less CP that is good of two

planet source projects.

b. Maintainability Indicators:

Table 3 shows that maintainability of all the student

projects is poor and that of „A Voting System‟ from planet
source code projects is also poor. Catalogue is satisfactorily

maintainable but „Airways Reservation System‟ is good at

maintainability.

Table 3: Maintainability indicators

Project Name
Maintainability

Overall
MI CP RFC LOC

Financial Management

System
    P

Payroll System     P

Library Management

System
    P

A Voting System     P

Catalogue     S

Airways Reservation

System
    G

c. Reusability Indicators:

Table 4 shows that „Financial Management System‟ is good
„Payroll System‟ and „Library Management System‟ are poor
at reusability. While two of the downloaded projects are good
and one is satisfactory at reusability

Table 4: Reusability indicators

Project Name
Reusability

Overall
LCOM CBO DIT

Financial Management System    G

Payroll System    P

Library Management System    P

A Voting System    G

Catalogue    G

Airways Reservation System    S

d. Complexity Indicators:

Table 5 shows that two of student projects are slight
complex and one is complex while „A Voting System‟ and
„Catalogue‟ are good they have no complexity and „Airways
Reservation System‟ is slight complex.

Table 5: Complexity indicators

Project Name
Complexity

Overall
AVCC RFC DIT

Financial Management System    G

Payroll System    S

Library Management System    G

A Voting System    G

Catalogue    G

Airways Reservation System    S

C. Overall Indications:

Finally collecting the results affecting the considered
quality attributes we came to the following quality indicators.

Table 6 shows that all the student projects and „A Voting
System‟ from planet source code projects are poor at
understandability and maintainability weather other planet

Satyavan Nain et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 280-286

© 2010, IJARCS All Rights Reserved 286

source code projects are either good or satisfactory under these
quality attributes. From Student projects „Financial
Management System‟ is good at reusability and has less
complexity, „Payroll System‟ is bad at reusability and a little
complex, „Library Management System‟ is poor at reusability
but less complexity.

Table 6: Overall Indications

Project Name U M R C

Financial Management

System
P P G G

Payroll System P P P S

Library Management System P P P G

A Voting System P P G G

Catalogue G S G G

Airways Reservation

System
G G S S

U- Understandability, M- Maintainability, R- Reusability, C - Complexity

G

Good P

Poor

 S

Satisfactory C

Complex

Planet source code projects more reusable and have less

complexity than student projects.

VII. CONCLUSION

Managers are particularly interested in measuring external
attributes such as maintainability, reliability and reusability
etc.. Our evaluation based on eight quality metrics to measure
the said quality attributes (understandability, maintainability,
reusability and complexity) shows that the student projects are
lacking the desired properties in terms of metric values and in
planet source code projects these values are better. These
results finally tell us where we are lacking in the development
process. These will help us improve and control the process
and will improve the quality of product also, because a quality
process delivers a quality product. These metrics values should
be kept in mind from early development stages to improve the
quality of the software. There may be some other factors which
will affect these quality attributes. To improve the quality of
development process continuously measurement of all the
intermediate products is very necessary at all the stages which
tell a developer the deviations of actual results from expected
results. As early a limitation is detected it will save a lot of
efforts and valuable resources. These indications are treated as
checkpoints in the future.

VIII. ACKNOWLEDGMENT

The authors would like to thank Department of CSE,
Haryana College of Technology & Management, Kaithal,
Haryana, India for providing a research environment and
“Open Source'' programming community for providing
numerous tools and projects for facilitating the research work.

IX. REFERENCES

[1] Khan, R.A., “ An Empirical Validation of Object Oriented
Design Quality Metrics”, Comp. & Info Sci., Vol. 19,
December 2006, pp 1-16

[2] Tahvildari, L., Singh, A. “Categorization of Object-Oriented
Software Metrics”, Electrical and Computer Engineering,
2000 Canadian Conference Vol. 1, pp 235-239

[3] Kim, E.M., Chang, O.B., Kusumoto, S. and Kikuno, T.,
“Analysis of Metrics for Object-Oriented Program
Complexity”, IEEE 1994, pp 201-207.

[4] Harrison, Counsell and Nithi, "An Evaluation of MOOD Set
for Object Oriented Software Metrics", IEEE Transaction on
Software Engineering, Vol. SE-24, No. 6, June 1998, pp 491-
496

[5] Subramanyam, R. and Krishnan, M.S., "Empirical Analysis
of C.K. Metrics for Object Oriented Desing Complexity:
Implications for Software Defects", IEEE Transactions on
software engineering, vol. 29, no 4 April 2003, pp 297-310.

[6] Neelamegam, C., Punithavalli, M. “A Survey – Object
Oriented Quality Metrics”, Global Journal of Computer
Science and Technology, pp 183-186.

[7] S.R. Chidamber and C.F. Kemerer, "Towards a Metrics Suit
for Object Oriented Design," Vol. 26, No. 11, Nov. 1991, pp
197-211.

[8] S.R. Chidamber, C.F. Kemerer, " A Metric Suit for Object-
Oriented Design," IEEE Transactions on Software
Engineering ”, Vol. 20, No 6, June 1994, pp 476-493.

[9] Basili, V.R., Briand, L.C., Melo W.L., " A Validation of
Object Oriented Design Metrics as Quality Indicators" IEEE
Transaction on Software Engineering, Vol. 22, no 10, Oct.
1996 pp 751-761.

[10] SATC, Software Quality Metrics for Object Oriented System
Environments, June 1995, SATC-TR-95-1001.

[11] Krishnapriya, V., Ramar, K. “The Growth and Development
of Object Oriented Metrics: A Study”, International Journal
of Computer Science and Knowledge Engineering, 4 (1),
Jan.-June 2010, pp 75-84.

[12] Paramvir Singh and Hardeep Singh, “ DynaMetrics: A
Runtime Metric Based Analysis Tool for Object Oriented
Software Systems”, SIGSOFT Software Engineering Notes,
Vol. 33, No. 6, November 2008

[13] Rudiger Lincke, Jonas Lundberg and Welf Löwe,
“Comparing Software Metrics Tools”, Software Technology
Group, School of Mathematics and Systems Engineering,
Vaxjo University, Sweden

