NEW TECHNOLOGIES AND APPLICATIONS OF MOTION TRACKING IN VIRTUAL REALITY SYSTEMS

Shubhavi Arya

Abstract


 This article is centered around the sort of virtual reality (VR) – MoCap – motion capture. VR is utilized as a part of the planning and design procedure of the working environment. Firstly, the work environment is designed and before actual building the various conditions are simulated. Product of this simulation by VR is the working environment/ building. VR is utilized too in the medical treatments. This paper investigates a way to deal with physical rehabilitation using best in class advances in virtual reality and motion tracking. As of present, there has been a boom in the utilization of the Kalman channel in Virtual/ Augmented Reality. This paper presents a brief introduction to the Kalman filter and the development of the utilization of the filter in VR motion tracking.

 


Keywords


Motion, tracking, virtual reality, VR, Motion capture, MoCap

Full Text:

PDF

References


Tarr MJ, Warren WH. Virtual reality in behavioral neuroscience and beyond. Nature Neuroscience. 2002;5:1089-92.

G. C. Burdea, P. Coiffet, “Virtual Reality Technology”, Second Edition, New Jersey: John Wiley&Sons, Inc., 2003, p. 424, ISBN 0-471-36089-9.

Sanchez-Vives MV, Slater M. From presence to consciousness through virtual reality. Nature Rev Neuroscience. 2005;6:332-9.

V. Fečová, “Optical motion tracking used in the virtual reality systems”, CEURSIS 2010: the International Conference of the Carpathian Euro-region Specialists in Industrial Systems, Baia Mare, 2010, pp. 81-86, ISBN 978-606-536-094-5.

Baldominos, Alejandro, et al. “An Approach to Physical Rehabilitation Using State-of-the-Art Virtual Reality and Motion Tracking Technologies.” Procedia Computer Science, vol. 64, 2015.

Zweighaft AR, Slotness GL, Henderson AL, Osborne LB, Lightbody SM, Perhala LM, Brown PO, Haynes NH, Kern SM, Usgaonkar PN, Meese MD, Pierce S, Gerling GJ. A virtual reality ball grasp and sort task for the enhancement of phantom limb pain proprioception. In: SIEDS 2012. Proceedings of the 2012 Systems and Information Design Symposium; 2012 Apr 27; Charlottesville, VA, USA. P. 178-83.

Monge E, Molina F, Alguacil IM, Cano R, De Mauro A, Miangolarra JC. Use of virtual reality systems as proprioception method in cerebral palsy: clinical practice guideline. Neurología (Eng Ed). 2014;29(9):550-9.

Fečová, Veronika, et al. “Devices and Software Possibilities for Using of Motion Tracking Systems in the Virtual Reality System .” 2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI), 26 Jan. 2012.

I. Kuric, J. Novák-Marcinčin, R. Cotetiu, N. Ungureanu, “Development of Progressive Technologies – Computer Support for Progressive Technologies”. Vienna, 2007, p. 253, ISBN 3- 901509-28-3.

J. Novák-Marcinčin, “Theory and practice of virtual manufacturing”, Manufacturing Engineering, 2/2007, pp. 85-91, ISSN 1335-7972. http://web.tuke.sk/fvtpo/journal/index.htm

J. Novák-Marcinčin, P. Brázda, M. Kuzmiaková, V. Fečová, “Some aspects of manufacturing workplaces simulation by virtual reality”, IN-TECH 2010, International Conference on Innovative Technologies, Prague, Czech Republic, Praha: Jan Kudláček, 2010, pp. 177-179, ISBN 978-80-904502-2-6.

J. Novák-Marcinčin, V. Fečová, “The applications of virtual reality in the automotive industry”, New Ways in Manufacturing Technologies 2010: 10th international scientific conference, Prešov, Slovakia, Prešov: FVT TU, 2010, pp. 423-428, ISBN 978- 80-553-0441-0.

J. Novák-Marcinčin, V. Fečová, “The options of motion tracking in the virtual reality systems”, TMT 2010: 14th International Research/Expert Conference Trends in the Development of Machinery and Associated Technology, Mediterranean Cruise, Vol. 14, no. 1., 2010, pp. 361-364, ISSN 1840-4944.

Snow PW, Loureiro RCV, Comley R. Design of a robotic sensorimotor system for Phantom Limb Pain rehabilitation. In: BioRob 2014. Proc. of the 2014 5th IEEE RAS & EMBS Int. Conf. on Biomedical Robotics and Biomechatronics; 2014 Aug 12-15; Sao Paulo, Brazil. P. 120-5.

Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE, Denehy L, Bryant AL. Validity of the Microsoft Kinect for assessment of postural control. Gait & Posture. 2012;36(3):372-7.

Gray AD, Marks JM, Stone EE, Butler MC, Skubic M, Sherman SL. Validation of the Microsoft Kinect as a portable and inexpensive screening tool for identifying ACL injury risk. Orthopaedic J Sports Med. 2014;2(2).

Bohil CJ, Alicea B, Biocca FA. Virtual reality in neuroscience research and therapy. Nature Rev Neuroscience. 2011;12:752-62

Mentiplay B, Clark R, Bryant A, Bartold S, Paterson K. Evaluation of foot posture using the Microsoft Kinect. J Sci Med Sport. 2013;16(S1):e24-5.

“Virtools Dev User Guide Download.” Virtools Dev User Guide, manualzilla.com/doc/6922972/virtools-dev-user-guide?page=215.

Chang CY, Lange B, Zhang M, Koenig S, Requejo P, Somboon N, Sawchuk AA, Rizzo AA. Towards pervasive physical rehabilitation using Microsoft Kinect. In: PervasiveHealth 2012. Proceedings of the 2012 6th International Conference on Pervasive Computing Technologies for Healthcare; 2012 May 21-24; San Diego, CA, USA. P. 159-62

Cho S, Ku J, Cho YK, Kang YJ, Jang DP, Kim SI. Development of virtual reality proprioceptive rehabilitation system for stroke patients. Comp Methods Progr Biomed. 2014;113(1):258-65.

“Motion Capture.” Wikipedia, Wikimedia Foundation, 16 Oct. 2017, en.wikipedia.org/wiki/Motion_capture.

“Patriot™.” Polhemus Patriot, polhemus.com/motion-tracking/all-trackers/patriot.

deflektor.de. “ART Advanced Realtime Tracking.” ART Advanced Realtime Tracking, www.ar-tracking.de/.

www.worldviz.com/products/vizard4/index.htm.

Grewal GS, Sayeed R, Schwenk M, Bharara M, Menzies R, Talal TK, Armstrong DR, Najafi B. Balance rehabilitation. J American Podiatric Med Assoc. 2013;103(6):498-507.

“Virtools 3.0 Review.” Gamesgreggmancom, games.greggman.com/game/virtools_3_0_review/.

Klein M, Simmers C. Exergaming: virtual inspiration, real perspiration. Young Consumers. 2008;10(1):35-45.

Daley A. Can exergaming contribute to improving physical activity levels and health outcomes in children. Pediatrics. 2009;124(2):763-71.

Maddison R, Foley L, Mhurchu C, Jiang Y, Jull A, Prapavessis H, Hohepa M, Rodgers A. Effects of active video games on body composition: a randomized controlled trial. Am J Clin Nutr. 2011;94(1):156-63.

4. O’Loughlin E, Dugas E, Sabiston C, O’Loughlin J. Prevalence and correlates of exergaming in youth. Pediatrics. 2012;130(5):806-14.

Peng W, Crouse J, Lin J. Using active video games for physical activity promotion: a systematic review of the current state of research. Health Educ Behav. 2013;40(2):171-92.

Bochner R, Sorensen K, Belamarich P. The impact of active video gaming on weight in youth: a meta-analysis. Clin Pediatr. 2015;54(7):620-8.

Tate D, Lyons E, Valle C. High-tech tools for exercise motivation: use and role of technologies such as the Internet, mobile applications, social media, and video games. Diabetes Spectrum. 2015;28(1):45-54.

Steuer J. Defining virtual reality: dimensions determining telepresence. J Commun. 1992;42(4):73-93.

Coquillart S, Kiyokawa K, Swan JE, Bowman D, editors. Proceedings of the 2014 IEEE Virtual Reality (VR); 2014 Mar 29-Apr 2; Minneapolis, MN, USA. Danvers: IEEE; 2014.

Oculus Rift DK2 Virtual Reality Headset [Internet]. 2015 [cited 2015 Mar 15]. Available from: https://www.oculus.com/dk2/

Zhou H, Hu H. Human motion tracking for rehabilitation – a survey. Biomed Signal Proc Control. 2008;3(1):1-18.

Avila L, Bailey M. Virtual reality for the masses. IEEE Comp Graph Appl. 2014;34(5):103-4.

Hoffman HG, Meyer WJ, Ramirez M, Roberts L, Seibel EJ, Atzori B, Sharar SR, Patterson DR. Feasibility of articulated arm mounted Oculus Rift virtual reality goggles for Adjunctive Pain Control during occupational therapy in pediatric burn patients. Cyberpsych Behavior Soc Netw. 2014;17(6):397-401.

Tao G, Archambault PS, Levin MF. Evaluation of Kinect skeletal tracking in a virtual reality rehabilitation system for upper limb hemiparesis. In: ICVR 2013. Proc. of the 2013 Int. Conf. on Virtual Rehabilitation; 2013 Aug 26-29; Philadelphia, PA, USA. P. 164-5.

Gaukrodger S, Peruzzi A, Paolini G, Cereatti A, Cupit S, Hausdorff J, Mirelman A, Della Croce U. Gait tracking for virtual reality clinical applications: a low cost solution. Gait & Posture. 2013;37(S1):S31.

Charles D, Pedlow K, McDonough S, Shek K, Charles T. Close range depth sensing cameras for virtual reality based hand rehabilitation. J Assistive Tech. 2014;8(3):138-49.

Sivak M, Murray D, Dick L, Mavroidis C, Holden MK. Development of a low-cost virtual reality-based smart glove for rehabilitation. In: Sharkey P, Klinger E, editors. ICDVRAT 2012. Proc. of the 9th Int. Conf. on Disability, Virtual Reality and Associated Technologies; 2012 Sep 10-12; Laval, France. Reading: UK; 2012. P. 279-86.

Koenig S, Ardanza A, Cortes C, De Mauro A, Lange B. Introduction to low-cost motion-tracking for virtual rehabilitation. In: Pons JL, Torricelli D, editors. Emerging therapies in neurorehabilitation. Springer; 2014. P. 287-303. (Biosystems & biorobotics; vol. 4).

Anderson-Hanley C, Arciero P, Brickman A, Nimon J, Okuma N, Westen S, Merz M, Pence B, Woods J, Kramer A, Zimmerman E. Exergaming and older adult cognition: a cluster randomized clinical trial. Am J Preventive Med. 2012;42(2):109-19.

Lange B, Koenig S, Chang CY, McConnell E, Suma E, Bolas M, Rizzo A. Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disability and Rehabilitation. 2012;34(22):1863-70.

Rizzo A, Kim G. A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence. 2005;14(2):119-46.

J. Barna, V. Fečová, M. Janák, “Power tool for development environment for creation of 3D real-time applications”, Journal of Engineering and Technology for Young Scientists, Vol. 1, No. 1, 2010, pp. 5-10, ISSN 1338-2349.

V. Fečová, “The principle of the active and passive markers of optical motion tracking for the virtual reality systems”, New Ways in Manufacturing Technologies 2010: 10th international scientific conference, Prešov, Slovakia, Prešov: FVT TU, 2010, pp. 145- 152, ISBN 978-80-553-0441-0.

S. K. Ong, A. Y. C. Nee, “Virtual and Augmented Reality Applications in Manufacturing”, London: Springer, 2004, p. 388, ISBN 1-85233-796-6.

W. R. Sherman, A. B. Craig, “Understanding Virtual Reality. Interface, Application, and Design”, San Francisco: Elsevier Science, 2003, p. 583, ISBN 1-55860-353-0.

G. F. Welch, "HISTORY: The Use of the Kalman Filter for Human Motion Tracking in Virtual Reality," in Presence, vol. 18, no. 1, Feb. 1 2009 doi: 10.1162/pres.18.1.72 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6797722&isnumber=6797157

Sutherland, I. E. (1968). A head-mounted three dimensional display. Proceedings of the 1968 Fall Joint Computer Conference, AFIPS, Vol. 33, Part 1, 757–764

Holloway, R. L. (1995). Registration errors in augmented reality systems. Ph.D. thesis, University of North Carolina at Chapel Hill.




DOI: https://doi.org/10.26483/ijarcs.v11i5.6658

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 International Journal of Advanced Research in Computer Science