MATHEMATICAL MODEL OF COVID-19 TRANSMISSION DYNAMICS AND CONTROL STRATEGIES.
Abstract
Keywords
Full Text:
PDFReferences
Aguilar J.B., Faust G.S.M, Westafer L.M, Gutierrez J.B. Investigating the impact of
asymptomatic carriers on COVID-19 transmission. Preprint: 10.1101/2020.03.18.20037994
Brauer F , Castillo-Chavez C , Feng Z . Mathematical models in epidemiology. New York:
Springer-Verlag; 2019.
Chen T-M, Rui J, Wang Q-P, Cui J-A, Yin L. A mathematical model for simulating the phase
based transmissibility of a novel coronavirus. Infect Dis Poverty 2020;9(1):24. doi:
1186/s40249- 020- 00640- 3.
Chitnis N, Hyman JM, Cushing JM. Determining important parameters in the spread of
malaria through the sensitivity analysis of a mathematical model. Bull Math Biol
;70:1272–96. doi: 10.1007/s11538- 008- 9299- 0.
COVID-19 Coronavirus Pandemic. 2020. https://www.worldometers.info/ coronavirus/reprot
Accessed July 08, 2020.
Fang Y, Nie Y, Penny M. Transmission dynamics of the COVID-19 outbreak and
effectiveness of government interventions: a data-driven analysis. J Med Virol 2020. doi:
1002/jmv.25750.
Gantmacher FR . The theory of matrices, 1. Providence, RI: AMS Chelsea Pub- lishing; 1998 .
Kim Y, Lee S, Chu C, Choe S, Hong S, Shin Y. The characteristics of middle eastern
respiratory syndrome corona virus transmission dynamics in South Korea. Osong Public
Health Res Perspect 2016;7:49–55. doi: 10.1016/j.phrp.2016. 01.001.
Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, Eggo RM, Sun F, Jit
M, Munday JD, et al. Early dynamics of transmission and control of COVID-19: a
mathematical modelling study. Lancet Infectious Dis 2020. doi: 10.1016/S1473-
(20)30144-4.
Ndaïrou F, Area I, Nieto JJ, Silva CJ, Torres DFM. Mathematical modeling of Zika disease
in pregnant women and newborns with microcephaly in Brazil. Math Methods Appl Sci
;41:8929–41. doi: 10.1002/mma.4702.
O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts. (2009) The construction of next-
generation matrices for compartmental epidemic models. J. R. Soc. Interface,
(doi:10.1098/rsif.2009.0386).
Powell DR , Fair J , LeClaire RJ , Moore LM , Thompson D . Sensitivity analysis of an
infectious disease model. In: Boston M, editor. Proceedings of the international system
dynamics conference; 2005.
Rachah A, Torres DFM. Dynamics and optimal control of Ebola transmission. Math
Comput Sci 2016;10:331–42. doi: 10.1007/s11786- 016- 0268- y.
Rodrigues HS, Monteiro MTT, Torres DFM. Sensitivity analysis in a dengue epi-
demiological model. Conference papers in mathematics. Hindawi, editor; 2013. doi:
1155/2013/721406. Vol.2013,Art.ID721406.
Stephen Edward, Kitengeso Raymond E., Kiria Gabriel T., Felician Nestory, Mwema
Godfrey G., Mafarasa Arbogast P.A Mathematical Model for Control and Elimination of
The Transmission Dynamics of Measles, Applied and Computational Mathematics, 2015;
(6):396-408
Trilla A. One world, one health: the novel coronavirus COVID-19 epidemic. Med Clin
(Barc) 2020;154(5):175–7. doi: 10.1016/j.medcle.2020.02.001.
Wong G, Liu W, Liu Y, Zhou B, Bi Y, Gao GF. MERS, SARS, and Ebola: the role of
super-spreaders in infectious disease. Cell Host Microbe 2015;18(4):398–401. doi:
1016/j.chom.2015.09.013.
van den Driessche P. Reproduction numbers of infectious disease models. Infect Dis
Model 2017;2:288–303. doi: 10.1016/j.idm.2017.06.002.
Van Den Driessche, P and Watmough, J (2002). Reproduction numbers and Sub-threshold
endemic equilibria for compartmental models of disease transmission. Mathematical
Biosciences, Vol 180, pp. 29-48.
WHO. 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-
report
DOI: https://doi.org/10.26483/ijarcs.v11i5.6637
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 International Journal of Advanced Research in Computer Science

