A COMPARATIVE ANALYSIS OF ASSORTED DEEP AND MACHINE LEARNING TECHNIQUES FOR AUTOMATED EARLY DIAGNOSIS OF DIABETIC RETINOPATHY
Abstract
Keywords
Full Text:
PDFReferences
Tan, J. H., Fujita, H., Sivaprasad, S., Bhandary, S. V., Rao, A. K., Chua, K. C., & Acharya, U. R. (2017). Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Information Sciences, 420, 66-76. DOI: 10.1016/j.ins.2017.08.050
van Grinsven, M. J., van Ginneken, B., Hoyng, C. B., Theelen, T., & Sánchez, C. I. (2016). Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images. IEEE transactions on medical imaging, 35(5), 1273-1284. DOI 10.1109/TMI.2016.2526689
Abbas, Q., Fondon, I., Sarmiento, A., Jiménez, S., & Alemany, P. (2017). Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Medical & Biological Engineering & Computing, 1-16. DOI 10.1007/s11517-017-1638-6
Doshi, D., Shenoy, A., Sidhpura, D., & Gharpure, P. (2016, December). Diabetic retinopathy detection using deep convolutional neural networks. In Computing, Analytics and Security Trends (CAST), International Conference on (pp. 261-266). IEEE. DOI: 10.1109/CAST.2016.7914977
Quellec, G., Charrière, K., Boudi, Y., Cochener, B., & Lamard, M. (2017). Deep image mining for diabetic retinopathy screening. Medical Image Analysis, 39, 178-193.DOI: 10.1016/j.media.2017.04.012
Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional neural networks for diabetic retinopathy. Procedia Computer Science, 90, 200-205. DOI: 10.1016/j.procs.2016.07.014
Gargeya, R., & Leng, T. (2017). Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology. DOI: 10.1016/j.ophtha.2017.02.008 ISSN
Colas, E., Besse, A., Orgogozo, A., Schmauch, B., Meric, N., & Besse, E. (2016). Deep learning approach for diabetic retinopathy screening. Acta Ophthalmologica, 94(S256). DOI: 10.1111/j.1755-3768.2016.0635
Roy, P., Tennakoon, R., Cao, K., Sedai, S., Mahapatra, D., Maetschke, S., & Garnavi, R. (2017, April). A novel hybrid approach for severity assessment of Diabetic Retinopathy in colour fundus images. In, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (pp. 1078-1082). IEEE. DOI: 10.1109/ISBI.2017.7950703
Paul, S., & Singh, L. (2016, December). Heterogeneous modular deep neural network for diabetic retinopathy detection. In Humanitarian Technology Conference (R10-HTC), 2016 IEEE Region 10 (pp. 1-6). IEEE. DOI: 10.1109/R10-HTC.2016.7906821
Takahashi, H., Tampo, H., Arai, Y., Inoue, Y., & Kawashima, H. (2017). Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy. PloS one, 12(6), e0179790. DOI: 10.1371/journal.pone.0179790
ElTanboly, A., Ismail, M., Shalaby, A., Switala, A., El‐Baz, A., Schaal, S., ... & El‐Azab, M. (2017). A computer‐aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images. Medical physics, 44(3), 914-923. DOI: 10.1002/mp.12071
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Kim, R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama, 316(22), 2402-2410. DOI: 10.1001/jama.2016.17216
Prentašić, P., & Lončarić, S. (2016). Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Computer methods and programs in biomedicine, 137, 281-292. DOI: 10.1016/j.cmpb.2016.09.018
Prentašić, P., & Lončarić, S. (2015, September). Detection of exudates in fundus photographs using convolutional neural networks. In Image and Signal Processing and Analysis (ISPA), 2015 9th International Symposium on (pp. 188-192). IEEE. DOI: 10.1109/ISPA.2015.7306056
Shan, J., & Li, L. (2016, June). A deep learning method for microaneurysm detection in fundus images. In Connected Health: Applications, Systems and Engineering Technologies (CHASE), 2016 IEEE First International Conference on (pp. 357-358). IEEE. DOI 10.1109/CHASE.2016.12
Costa, P., & Campilho, A. (2017). Convolutional bag of words for diabetic retinopathy detection from eye fundus images. IPSJ Transactions on Computer Vision and Applications, 9(1), 10. DOI: 10.1186/s41074-017-0023-6
Vo, H. H., & Verma, A. (2016, December). New Deep Neural Nets for Fine-Grained Diabetic Retinopathy Recognition on Hybrid Color Space. In Multimedia (ISM), 2016 IEEE International Symposium on (pp. 209-215). IEEE. DOI 10.1109/ISM.2016.99
Rahim, S. S., Palade, V., Shuttleworth, J., & Jayne, C. (2016). Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain informatics, 3(4), 249-267. DOI 10.1007/s00521-015-1929-5
Antal, B., & Hajdu, A. (2012). An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE transactions on biomedical engineering, 59(6), 1720-1726. DOI: 10.1109/TBME.2012.2193126
Purandare, M., & Noronha, K. (2016, November). Hybrid system for automatic classification of Diabetic Retinopathy using fundus images. In Green Engineering and Technologies (IC-GET), 2016 Online International Conference on (pp. 1-5). IEEE. DOI: 10.1109/GET.2016.7916623
Labhade, J. D., Chouthmol, L. K., & Deshmukh, S. (2016, September). Diabetic retinopathy detection using soft computing techniques. In Automatic Control and Dynamic Optimization Techniques (ICACDOT), International Conference on (pp. 175-178). IEEE. DOI: 10.1109/ICACDOT.2016.7877573
Sathananthavathi, V., Indumathi, G., & Rajalakshmi, R. (2017, March). Abnormalities detection in retinal fundus images. In Inventive Communication and Computational Technologies (ICICCT), 2017 International Conference on (pp. 89-93). IEEE. DOI: 10.1109/ICICCT.2017.7975165
Ganesan, K., Martis, R. J., Acharya, U. R., Chua, C. K., Min, L. C., Ng, E. Y. K., & Laude, A. (2014). Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images. Medical & biological engineering & computing, 52(8), 663-672. DOI 10.1007/s11517-014-1167-5
Kumar, P. S., Deepak, R. U., Sathar, A., Sahasranamam, V., & Kumar, R. R. (2016). Automated Detection System for Diabetic Retinopathy Using Two Field Fundus Photography. Procedia Computer Science, 93, 486-494. DOI : 10.1016/j.procs.2016.07.237
Lachure, J., Deorankar, A. V., Lachure, S., Gupta, S., & Jadhav, R. (2015, June). Diabetic Retinopathy using morphological operations and machine learning. In Advance Computing Conference (IACC), 2015 IEEE International (pp. 617-622). IEEE. DOI: 10.1109/IADCC.2015.7154781
Mamilla, R. T., Ede, V. K. R., & Bhima, P. R. (2017). Extraction of Microaneurysms and Hemorrhages from Digital Retinal Images. Journal of Medical and Biological Engineering, 37(3), 395-408. DOI 10.1007/s40846-017-0237-1
Pires, R., Jelinek, H. F., Wainer, J., Goldenstein, S., Valle, E., & Rocha, A. (2013). Assessing the need for referral in automatic diabetic retinopathy detection. IEEE Transactions on Biomedical Engineering, 60(12), 3391-3398. DOI: 10.1109/TBME.2013.2278845
Pires, R., Avila, S., Jelinek, H. F., Wainer, J., Valle, E., & Rocha, A. (2017). Beyond lesion-based diabetic retinopathy: a direct approach for referral. IEEE journal of biomedical and health informatics, 21(1), 193-200. DOI 10.1109/JBHI.2015.2498104
Rahim, S. S., Jayne, C., Palade, V., & Shuttleworth, J. (2016). Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening. Neural Computing and Applications, 27(5), 1149-1164, DOI 10.1007/s40708-016-0045-3.
Roychowdhury, S., Koozekanani, D. D., & Parhi, K. K. (2014). DREAM: diabetic retinopathy analysis using machine learning. IEEE journal of biomedical and health informatics, 18(5), 1717-1728. DOI 10.1109/JBHI.2013.2294635
Zhou, W., Wu, C., Chen, D., Yi, Y., & Du, W. (2017). Automatic Microaneurysm Detection Using the Sparse Principal Component Analysis-Based Unsupervised Classification Method. IEEE Access, 5, 2563-2572. DOI 10.1109/ACCESS.2017.267191
Harini, R., & Sheela, N. (2016, August). Feature extraction and classification of retinal images for automated detection of Diabetic Retinopathy. In Cognitive Computing and Information Processing (CCIP), 2016 Second International Conference on (pp. 1-4). IEEE. DOI: 10.1109/CCIP.2016.7802862
Mahendran, G., & Dhanasekaran, R. (2015). Investigation of the severity level of diabetic retinopathy using supervised classifier algorithms. Computers & Electrical Engineering, 45, 312-323. DOI: 10.1016/j.compeleceng.2015.01.013
Gegundez–Arias, M. E., Marin, D., Ponte, B., Alvarez, F., Garrido, J., Ortega, C., & Bravo, J. M. (2017). A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis. Computers in Biology and Medicine. DOI:10.1016/j.compbiomed.2017.07.007
Somfai, G. M., Tátrai, E., Laurik, L., Varga, B., Ölvedy, V., Jiang, H., & DeBuc, D. C. (2014). Automated classifiers for early detection and diagnosis of retinopathy in diabetic eyes. BMC bioinformatics, 15(1), 106. DOI: 10.1186/1471-2105-15-106
DOI: https://doi.org/10.26483/ijarcs.v9i1.5368
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 International Journal of Advanced Research in Computer Science

