SURVEY AND ANALYSIS ON PHISHING DETECTION TECHNIQUES
Abstract
Keywords
Full Text:
PDFReferences
M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection: a literature survey”, IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 2091-2121, 2013, doi: 10.1109/SURV.2013.032213.00009.
R. Basnet, S. Mukkamala, and A. H. Sung, “Detection of Phishing Attacks: A Machine Learning Approach”, Soft Computing Applications in Industry, vol. 226, pp. 373-383, 2008, doi: 10.1007/978-3-540-77465-5_19.
S. Palka, and D. McCoy, “Dynamic phishing content using generative grammars”, Software Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth International Conference on IEEE, pp. 1-8, 2015, doi:10.1109/ICSTW.2015.7107458.
S. B. Rathod, and T. M. Pattewar, “Content based spam detection in email using Bayesian classifier”, Communications and Signal Processing (ICCSP), 2015 International Conference on IEEE, pp. 1257-1261, 2015, doi:10.1109/ICCSP.2015.7322709.
W. Zhuang, Q. Jiang, and T. Xiong, “An intelligent anti-phishing strategy model for phishing website detection”, Distributed Computing Systems Workshops (ICDCSW), 2012 32nd International Conference on IEEE, pp. 51-56, 2012, doi: 10.1109/ICDCSW.2012.66.
Y. Joshi, D. Das, and S. Saha, “Mitigating man in the middle attack over secure sockets layer”, Internet Multimedia Services Architecture and Applications (IMSAA), 2009 IEEE International Conference on IEEE, pp. 1-5, 2009, doi: 10.1109/IMSAA.2009.5439461.
H. Y. Abutair, and A. Belghith, “Using Case-Based Reasoning for Phishing Detection”, Procedia Computer Science, vol. 109, pp. 281-288, 2017, doi: 10.1016/j.procs.2017.05.352.
G. Sonowal, and K. S. Kuppusamy, “PhiDMA–A phishing detection model with multi-filter approach”, Journal of King Saud University-Computer and Information Sciences, 2017, doi: 10.1016/j.jksuci.2017.07.005.
M. Moghimi, and A. Y. Varjani, “New rule-based phishing detection method”, Expert systems with applications, vol. 53, pp. 231-242, 2016, doi: 10.1016/j.eswa.2016.01.028.
N. Abdelhamid, A. Ayesh, and F. Thabtah, “Phishing detection based associative classification data mining”, Expert Systems with Applications, vol. 41, no. 13, pp. 5948-5959, 2014, doi: 10.1016/j.eswa.2014.03.019.
C. L. Tan, K. L. Chiew, and K. Wong, “PhishWHO: Phishing webpage detection via identity keywords extraction and target domain name finder”, Decision Support Systems, vol. 88, pp. 18-27, 2016, doi: 10.1016/j.dss.2016.05.005.
G. Ramesh, J. Gupta, and P. G. Gamya, “Identification of phishing webpages and its target domains by analyzing the feign relationship”, Journal of Information Security and Applications, vol. 35, pp. 75-84, 2017, doi: 10.1016/j.jisa.2017.06.001.
R. Islam, and J. Abawajy, “A multi-tier phishing detection and filtering approach”, Journal of Network and Computer Applications, vol. 36, no. 1, pp. 324-335, 2013, doi: 10.1016/j.jnca.2012.05.009.
Y. Li, R. Xiao, J. Feng, and L. Zhao, “A semi-supervised learning approach for detection of phishing webpages”, Optik-International Journal for Light and Electron Optics, vol. 124, no. 23, pp. 6027-6033, 2013, doi: 10.1016/j.ijleo.2013.04.078.
Y. Li, L. Yang, and J. Ding, “A minimum enclosing ball-based support vector machine approach for detection of phishing websites”, Optik-International Journal for Light and Electron Optics, vol. 127, no. 1, pp. 345-351, 2016, doi: 10.1016/j.ijleo.2015.10.078.
G. Ramesh, I. Krishnamurthi, and K. S. S. Kumar, “An efficacious method for detecting phishing webpages through target domain identification”, Decision Support Systems, vol. 61, pp. 12-22, 2014.
J. Mao, W. Tian, P. Li, T. Wei, and Z. Liang,. “Phishing-Alarm: Robust and Efficient Phishing Detection via Page Component Similarity”, IEEE Access, vol. 5, pp. 17020-17030, 2017, doi: 10.1109/ACCESS.2017.2743528.
DOI: https://doi.org/10.26483/ijarcs.v9i1.5200
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 International Journal of Advanced Research in Computer Science

