
Volume 1, No. 3, Sept-Oct 2010

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

ISSN No. 0976-5697

Bloom Filters: A Review

Arulanand Natarajan*
Anna University

Coimbatore, India
line 2: name of organization, acronyms acceptable

arulnat@yahoo.com

K. Premalatha
Department of CSE

Bannari Amman Institute of Technology
Erode, India

kpl_barath@yahoo.co.in

S. Subramanian
Sri Krishna College of Engineering and Technology

Coimbatore, TN, India
dsraju49@gmail.com

Abstract: This paper presents different representations and applications of Bloom filter. A Bloom filter is a simple but powerful data structure
that can check membership to a static set. Bloom filters become more popular for networking system applications, spell-checkers, string match-
ing algorithms, network packet analysis tools and network/internet caches and database optimization. This paper will examine and analyze dif-
ferent types of bloom filter and its applications.

Keywords: Bloom Filter, Data Structure, Counting Bloom Filter, Dynamic Bloom Filter, Anomaly Detection

I. INTRODUCTION

Bloom filters are compact data structures for probabilistic
representation of a set to support membership queries. Its core
concept is associative containers. Given a string X the Bloom
filter computes k hash functions on it producing k hash values
ranging from 1 to m. It then sets k bits in an m-bit long vector
at the addresses corresponding to the k hash values. The same
procedure is repeated for all the members of the set. This
process is called programming of the filter. The query process
is similar to programming, where a string whose membership
is to be verified is input to the filter. The Bloom filter gene-
rates k hash values using the same hash functions it used to
program the filter. The bits in the m-bit long vector at the loca-
tions corresponding to the k hash values are looked up. If at
least one of these k bits is not found in the set then the string is
declared to be a nonmember of the set. If all the bits are found
to be set then the string is said to belong to the set with a cer-
tain probability. This uncertainty in the membership comes
from the fact that those k bits in the m-bit vector can be set by
any other n-1 members. Thus finding a bit set does not neces-
sarily imply that it was set by the particular string being que-
ried. However, finding a bit not set certainly implies that the
string does not belong to the set.

The cost of this compact representation is a small proba-
bility of false positives: the structure sometimes incorrectly
recognizes an element as member of the set, but often this is a
convenient trade-off. Bloom filters were developed in the
1970's [2] and have been used in database applications to store
large amounts of static data [20]. Bloom’s motivation was to
reduce the time it took to lookup data from a slow storage de-
vice to faster main memory and hence could dramatically im-
prove the performance.

A Bloom filter program consists of a set of hash functions,
a hash function buffer to store hash results temporarily, a look
up array to signify hash values and a decision component

made of an AND to test the membership of testing string as
shown in figure 1.

Figure 1. Bloom Filter for Membership Testing

The requirement of designing k different independent hash
functions may be prohibitive for large k. For a good hash func-
tion with a wide output, there should be little if any correlation
between different bit-fields of such a hash, so this type of hash
can be used to generate multiple different hash functions by
slicing its output into multiple bit fields. Alternatively, pass k
different initial values (such as 0, 1, ... ,k-1) to a hash function
that takes an initial value; or add these values to the key. For
larger m and/or k, independence among the hash functions can
be relaxed with negligible increase in false positive rate
[10][16]. Specifically, Ref. [11] shows the effectiveness of
using enhanced double hashing or triple hashing, variants of
double hashing, to derive the k indices using simple arithmetic
on two or three indices computed with independent hash func-
tions. The paper deals with the types of bloom filter and ap-
plications of bloom filter. Section II gives types of the Bloom
filter. The applications of bloom filter are explained in Section
III. Section IV provides the summary of Bloom Filter.

II. TYPES OF BLOOM FILTER

A. Standard Bloom Filter (SBF)

An empty Bloom filter is a bit array of m bits, all set to 0.
There must also be k different hash functions defined, each of
which maps or hashes some set element to one of the m array
positions with a uniform random distribution. To add an ele-
ment, each of the k hash functions is feed to get k array posi-
tions. The bits at all these positions are set to 1.

Arulanand Natarajan et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 248-254

© 2010, IJARCS All Rights Reserved 249

To query for an element, each of the k hash functions is
feed to get k array positions. If any of the bits at these posi-
tions are 0, the element is not in the set. Otherwise all the bits
would have been set to 1 when it was inserted. If all are 1, then
either the element is in the set, or the bits have been set to 1
during the insertion of other elements. Figure 2 shows the
SBF.

Figure 2 Standard Bloom Filter

Removing an element from this SBF is not possible. The
element maps to k bits, and although setting any one of these k
bits to zero suffices to remove it. This has the side effect of
removing any other elements that map onto that bit, and there
is no way of determining whether any such elements have
been added. Such removal may introduce a possibility for false
negatives, which are not allowed.

Removal of an element from a Bloom filter can be simu-
lated by having a second Bloom filter that contains items that
have been removed. However, false positives in the second
filter become false negatives in the composite filter, which are
not permitted. This approach also limits the semantics of re-
moval since re-adding a previously removed item is not possi-
ble. However, it is often the case that all the keys are available
but are cumbersome to enumerate. When the false positive rate
gets too high, the filter can be regenerated; this should be a
relatively rare event.

B. Counting Bloom Filter (CBF)

The set of elements is changing over time in that case
the insertions and deletions in the Bloom filter become impor-
tant. Inserting elements into a Bloom filter hash the element k
times and set the bits to 1. However, deletion process is hash-
ing the element to be deleted k times and set the corresponding
bits to 0, is not possible. This is because setting a location to 0
that is hashed to by some other element in the set, and the re-
sultant Bloom filter is no longer correctly reflects all elements
in the set. To avoid this problem, counting Bloom filter was
introduced as an extension to Bloom filters [7]. Here, each
entry in the Bloom filter is not a single bit but instead a small
counter. When an item is inserted, the corresponding counters
are incremented; and when an item is deleted, the correspond-
ing counters are decremented. Figure 3 shows an example
Counting Bloom Filter. Large counters can be used to avoid
counter overflow. The analysis from Ref. [12] brings out that 4
bits per counter should be sufficient for most applications.

Figure 3 Count Bloom Filter

C. Hierarchical Counting Bloom Filter (HCBF)

The data structure of HCBF (Yuan et al., 2008) is com-
posed of several sub CBFs. The number of these sub filters is
h. Each sub filter has different counter length and bit array
length. Each counter length is c0, c1… ch-1 and each bit array
length is m0, m1, …, mh-1 respectively. m0> m1 > … > mh-1. .
HCBF data structure is shown in Figure 4.

Figure 4 Hierarchical Counting Bloom Filter

The element frequency is represented by these multi-layer
sub filters. The bit array length of the high layer sub filter is
short and can only store a few elements; its false negative rate
might be a bit higher. If all sub filters must be queried in get-
ting the element frequency, error rate will be very high. There-
fore, the system adopts a Level Counter to store the element
maximal level. It query the filters whose level are less than the
maximal level, so that the query complexity and error rate can
be reduced

D. Spectral Bloom Filter

 The Spectral Bloom filter [6] is an extension of the SBF
to multi-sets, allowing the filtering of elements whose multip-
licities are below a threshold given at query time. The spectral
Bloom filter replaces the bit vector with a vector of m counters
C. the counters in C roughly represent multiplicities of items,
all the counter in C are initially set to 0. When inserting an
item, it increases the counters Ch1(s), Ch2(s), …, Chk(s) by 1 and it
stores the frequency of each item. It allows deletion by de-
creasing the same counters.

E. Split Bloom Filter

The one type of bloom filter is Split Bloom filters [24]. It
increases the capacity by allocating a fixed s×m bit matrix
instead of an m-bit vector as used by the SBF to represent a
set. A certain number of s filters each with m bits, are em-
ployed and uniformly selected when inserting an item of the
set. The false match probability increases as the set cardinality
grows. The basic idea is, in element addition operation, before
going to map element x into the standard bloom filter s, it first
checks the bloom filters from 1 to s-1 whether they have re-
sponse that element x is a member of set A. If the response is
false, it makes sure that there is no false positive probability in
first s-1 bloom filters, so it maps the element x into bloom fil-
ter s; otherwise, it just go ahead to the next element with no
any operation on element x.

The scheme is multi dimension dynamic Bloom filters to
support concise representation and approximate membership
queries of dynamic sets [13]. The basic idea is to add a new bit
array when all the previous arrays are full. It starts with one bit
array (i.e., one Bloom filter). Afterward, multiple bit arrays
form a bit matrix of Bloom filters.

Arulanand Natarajan et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 248-254

© 2010, IJARCS All Rights Reserved 250

F. Weighted Bloom Filter

Ref. [3] generalized the traditional Bloom filter to
Weighted Bloom Filter, which incorporates the information on
the query frequencies and the membership likelihood of the
elements into its optimal design. In many applications, some
popular elements are queried much more often than the others.
Weighted Bloom filter derives the optimal configuration of the
Bloom filter with query-frequency and membership likelihood
information.

In Weighted Bloom filter’s false positive probability is a
weighted sum of each individual element’s false positive
probability, where the weight corresponding to an individual
element is positively correlated with the element’s query fre-
quency and is negatively correlated with the element’s proba-
bility of being a member. So it needs to assign more hash
functions to an element with a higher query frequency or with
a lower probability of being a member, in order to reduce the
false-positive probability of an element with a higher weight.

G. Dynamic Bloom Filter (DBF)

The DBF can support concise representation and approx-
imate membership queries of dynamic set instead of static set.
The basic idea of DBF is to represent a dynamic set with a
dynamic s×m bit matrix that consists of s bloom filters. Here s
is initialized to 1, but it is not a constant as split bloom filter. It
can increase during the continuous increasing process of the
set size.

H. Improved Dynamic Bloom Filter (i-DBF)

The DBF has a disadvantage such as the addition opera-
tion which mapped element x into bloom filter s will become
no sense, if some of the first s-1 bloom filters have already
responded that element x is in set A with some false positive
probability. To check an element am is a member of set it
checks whether all the hi (am) are set to 1 for any one bloom
filter used by the DBF one by one where 1≤i≤k; If the re-
sponse is false then am is not a member of A; Otherwise, am is
in A with some false positive probability.

In i-DBF [22] in element addition operation, map element
x into the standard bloom filter s. It first checks the bloom fil-
ters from 1 to s-1 whether they have response that element x is
a member of set A. If the response is false then there is no
false positive probability in first s-1 bloom filters, so it maps
the element x into bloom filter s; otherwise, we just go ahead
to the next element with no any operation on element x.

I. Matrix Bloom Filter (MBF)

For representing dynamic set DBF and split bloom filter
Split Bloom Filter have been developed. Both DBF and Split
Bloom Filter can support representation and membership que-
ries of dynamic set instead of static set. Split Bloom Filter
declares that it uses an s×m bit matrix that consists of s bloom
filters to represent a dynamic set. Both the bloom filters are
not matrix representation method at all. They are just a set of s
bloom filters whose length is m. Ref. [23] introduced a matrix
representation method of bloom filter to represent a dynamic
set.

The MBF representation is a dynamic set A with an s×m
bit matrix which has s rows and m columns. Here s is a con-
stant and must be predefined according to the estimation of the
maximum value of set size, may be based on increasing histo-
ry record, or some other factors. For constructing a MBF, it
checks the value of m and the error rate of each row according

to the application needs and it calculates the number of hash
functions k and the max number of elements that each row can
contain. It confirms which row the element should be added. It
used the first hash function h1 to do this job. h1 is a special
hash function which differs from the others. Because there are
s rows in MBF, h1 is with the range {1,…,s} the row among 1
to s. It uses h1 to determine the row with the formula row =
h1(ele). In this row, the hash functions h2 to hk+1 to map the
elements. For 2 ≤ i ≤ k +1, set the bit hi(ele) to 1.

J. Scalable Bloom Filter

The Scalable Bloom filter [19] represents dynamic data
sets well and provides a way to effectively solve the scalability
problem of Bloom filters. It solves the scalability problem of
Bloom filters by adding Bloom filter vectors with double
length when necessary. Initially a SBF0 {n,m,k} is given, and
the tolerant false positive rate f0 is assumed. It calculates the
maximum number of elements n0 to keep f≤f0. The data set is
expanded, when n>n0, a new SBF1 is added to the SBF with
vector length m1=2×m. When n>3n0, another new SBF2 is
added to the SBF with vector length m2 = 4×m. When the SBF
extends i times, i.e., n> (2i-1)n0, a new SBFi is appended with
vector length mi = 2i×m. The scalable Bloom filter also is ex-
pected to find many new and widespread applications in the
future.

III. APPLICATIONS OF BLOOM FILTER

A. Compressed Bloom Filter for Message Passing

Compressing Bloom filter improves performance when
the Bloom filter is passed as a message between nodes, partic-
ularly when information must be transmitted repeatedly, and
its transmission size is a limiting factor. For example, Bloom
filters have been suggested as a means for sharing Web cache
information. In this setting, proxies do not share the exact con-
tents of their caches, but instead periodically broadcast Bloom
filters representing their cache. However, to choose an optimal
value for k to minimize the false probability the value of p =1/
2. Under this assumption of independent random hash func-
tions, the bit array is essentially a random string of 0's and 1's,
with each entry being 0 or 1 with probability 1/2. It would
therefore seem that no gain in compression when sending such
Bloom filters. On the other hand, large sparse Bloom Filters
can be greatly compressed [12]. An m-bit filter can be com-
pressed to mH(p) bits where p is the probability that a bit in
the filter is 0 and H(p) is the entropy function. Hence, by using
such compressed Bloom filters, proxies can reduce the number
of bits broadcast, the false positive rate, and/or the amount of
computation per lookup. The cost is the processing time for
compression and decompression, which usually uses simple
arithmetic coding, and more memory use at the proxies, which
utilizes the larger sparser array of uncompressed form of the
Bloom filter.

B. Multi-level Bloom Filter for XML

Traditional Bloom filters can be extended to be used on
hierarchical documents. Ref. [29] introduced extensions to
Bloom filters based on two alternative ways of hashing XML
trees to support path expressions. They are Breadth Bloom
Filter and Depth Bloom Filter.

The Breadth Bloom Filter (BBF) for an XML tree T with j
levels is a set of Bloom filters {BBF0, BBF1, BBF2, …, BBFi},
i ≤ j. There is one Bloom filter, denoted BBFi, for each level i

Arulanand Natarajan et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 248-254

© 2010, IJARCS All Rights Reserved 251

of the tree. In each BBFi, it inserts the elements of all nodes at
level i. To improve performance, it constructs an additional
Bloom filter denoted BBF0. In this Bloom filter, it inserts all
elements that appear in any node of the tree.

The procedure that checks whether a BBF matches a
query distinguishes between path queries starting from the root
and partial path queries. In both cases, it checks whether all
elements in the query appear in BBF0. Only if there is a match
for all elements, it proceeds by examining the structure of the
path. For a root query every level i from 1 to p of the filter is
checked for the corresponding ai. The algorithm succeeds, if it
has a match for all elements. For a partial path query, for every
level i of the filter, the first element of the path is checked. If
there is a match, the next level is checked for the next element
and the procedure continues until either the whole path is
matched or there is a miss. If there is a miss, the procedure
repeats for level i + 1. For paths with the ancestor descendant
axis, and the sub-paths are processed. All matches are stored
and compared to determine whether there is a match for the
whole path.

In Depth Bloom Filter (DBF) different Bloom filters are
used to hash paths of different lengths. The Depth Bloom Fil-
ter (DBF) for an XML tree T with j levels is a set of Bloom
filters {DBF0, DBF1, DBF2, …, DBFi-1}, There is one Bloom
filter, denoted DBFi, for each path of the tree with length i
(i.e., a path of i + 1 nodes), it inserts all paths of length i. Re-
garding the size of the filters, as opposed to BBF, all DBF is
have the same size, since the number of paths of different
lengths is of the same order. The procedure, that checks
whether a DBF matches a path query, first checks whether all
elements in the path expression appear in DBF0. If this is the
case, it continues treating both root and partial paths queries
the same. For a query of length p, every sub-path of the query
from length 2 to p is checked at the corresponding level. If any
of the sub-paths does not exist, the algorithm returns a miss.
For paths that include the ancestor descendant axis and the
resulting sub-paths are checked. If we have a match for all
sub-paths the algorithm succeeds, else we have a miss.

C. Time-Decaying Bloom Filters (TBF) for Data Streams
with Skewed Distributions

To enable queries for multiplicities of multi-sets, the bit-
map in a Bloom Filter as replaced by an array of counters
whose values increment on each occurrence. In a data stream
model, however, data items arrive at varying rates and recent
occurrences are regarded as more significant than past ones. In
most data stream applications, it is critical to handle time-
sensitivity. In addition, data streams with skewed distributions
are common in many emerging applications, engineering and
billing, intrusion detection, trudging surveillance and outlier
detection. For applications, it is to allocate counters of uniform
size to all buckets. In TBF [5], it maintains the frequency
count for each item in a data stream, and the value of each
counter decays with time. For data streams with highly skewed
distributions, it allows dynamically allocating free counters to
the large items.

D. Bloom Filter for Network Anomaly Detection

Ref. [9] presented a hardware-based technique using
Bloom filters, which can detect strings in streaming data with-
out degrading network throughput. They group signatures ac-
cording to their length (in bytes) and store each group of string
in a unique Bloom filter. An analyzer is employed to resolve

false positives. They have also proposed a technique for reduc-
ing packet inspection time by using parallel Bloom filters.

Ref. [1] proposed a space-efficient method to follow and
detect signatures that are fragmented over multiple packets.
They used a data structure called prefix Bloom filters and a
heuristic, chain heuristic to make the filters space-efficient. A
fault in Bloom filters, however, may cause false negatives to
occur. For a string already programmed in a Bloom filter, a
faulty hashing unit might generate an incorrect location (i.e., a
hash value) at which 0 is stored instead of 1, resulting in a
false negative. For a given fault, the probability that false neg-
atives will occur is high unless some provisions are made to
detect and eliminate them.

Ref. [12] proposed Bloom Filter array for Network Ano-
maly Detection. It applied 2D matching feature to network
anomaly detection. A counter is introduced for insertion-
removal pair vector to support counting and removal operation
in a Bloom filter. A sliding window is designed to reduce the
false alarm probability caused by the boundary effect due to
discrete-time sampling. A random-keyed hash functions are
designed, which provide both security and convenient exten-
sion of Bloom filter. It is applied for network anomaly detec-
tion, more specifically, feature extraction for network anomaly
detection.

Ref. [30] presented a hardware-based fault-tolerant Bloom
filter which detects and eliminates false-negatives during nor-
mal operation. It is based on property checking of a Bloom
filter with some extra hardware circuits. The design is simple
to implement with negligible overhead. As a result, packets
may proceed at line speed, regardless of the added circuits.

E. Longest Prefix Matching (LPM) using Bloom Filter

Due to the growth of the Internet, Classless Inter-Domain
Routing (CIDR) was widely adopted to prolong the life of
Internet Protocol Version 4 (IPv4). CIDR requires Internet
routers to search variable-length address prefixes in order to
find the longest matching prefix of the IP destination address
and retrieve the corresponding forwarding information for
each packet traversing the router. This computationally inten-
sive task, commonly referred to as IP Lookup, is often the per-
formance bottleneck in high-performance Internet routers.

Ref. [8] proposed LPM using Bloom filter by sorting the
forwarding table entries by prefix length, associating a Bloom
filter with each unique prefix length, and programming each
Bloom filter with prefixes of its associated length. A search
begins by performing parallel membership queries to the
Bloom filters by using the appropriate segments of the input IP
address. The result of this step is a vector of matching prefix
lengths, some of which may be false matches. Hash tables
corresponding to each prefix length are probed in the order of
longest match in the vector to shortest match in the vector,
terminating when a match is found or all of the lengths
represented in the vector are searched. The performance is
determined by the number of dependent memory accesses per
lookup, can be held constant for longer address lengths or ad-
ditional unique address prefix lengths in the forwarding table
given that memory resources scale linearly with the number of
prefixes in the forwarding table.

F. Mining frequent Items using Bloom Filter based on
Damped model (MIBFD)

Ref. [22] presented for finding the frequent items in the
data stream based on Damped window model. The Damped
model, also called the Time-Fading model, mines frequent

Arulanand Natarajan et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 248-254

© 2010, IJARCS All Rights Reserved 252

items in stream data in which each transaction has a weight
and this weight decreases with age. Older transactions contri-
bute less weight toward items frequencies. This model is suit-
able for applications in which old data has an effect on the
mining results, but the effect decreases as time goes on.
MIBDF used Extensible and Scalable Bloom Fitler (ESBF).
ESBF is made up of a series of EBFs (Extensible Bloom Fil-
ter). EBF is Counting Bloom Filter whose counters can be
extended to larger ones and the number of the filters in it is
scalable. EBF is made up of following three parts: two kinds
of counters, Basic Counters (BC) with length of x bits and
Large Counters (LC) with length of 2x bits, and a bit vector
(OF) indicating whether a BC counter has become overflow,
the length of the OF is equal to the number of the BC counters.
Initially, there are only BC counters and OF in the EBF, and
the values of BC counters and all bits of OF are set to 0. When
any of the BC counters become overflow, a LC counter is
created, and the value of the overflow counter is turned into a
pointer pointing to the newly created LC counter, which is
used for counting the corresponding item, which means, the
filter is extensible when the current EBF in the ESBF gets full
due to the limit on its capacity, a new EBF is created and is
added to the ESBF for the newly monitored items arriving in
the stream. The size of newly added filter is M0s

i, where M0 is
the size of the first filter, i is the current number of the filters.
MIBFD is efficient both in processing time and in memory
usage and does not require the priori knowledge about the data
stream to be processed.

G. Bloom Filter for Time-Dependent Multi Bit-Strings for
Incremental Set

Ref. [25] proposed a Time-dependent Multiple bit-strings
Bloom Filter (TMBF) which roots in the DBF and targets on
dynamic incremental set. TMBF uses multiple bit-strings in
time order to present a dynamic increasing set and uses back-
ward searching to test whether an element is in a set.

TMBF uses a set of fixed size bloom filter bit-string to
represent S(t). Each bit-string binds with a time stamp. The
search algorithm tests whether the element is in the bit strings
one by one with backward time order. During adding an ele-
ment x, if the number of element reaches the upper bound of a
bit string (n0), a new bit string will be created. All bits in the
new bit string set to 0. And all the bits at those position calcu-
lated by k hash functions set to 1. The false positive rate of

TMBF is
sk/Lskn))e(1(11 0 . Where L is the length of

the Bit String, n0 is the number of maximum elements
represented by a bit string, k is the number of hash functions
and s is the number of bit strings. TMBF reduces the storage
space and network communication cost.

H. Dynamic Bloom Filter (DBF) for Membership Queries
of Dynamic Set

The SBF just focus on how to represent a static set and
decrease the false positive probability to a sufficiently low
level and CBF focus to avoid false negative. By investigating
mainstream applications based on the Bloom filter, the dynam-
ic data sets are more common and important than static sets.
The existing variants of the Bloom filter cannot support dy-
namic data sets well. To address this issue, Guo et al (2010)
proposed dynamic Bloom filters to represent dynamic sets, as
well as static sets and design necessary item insertion, mem-
bership query, item deletion, and filter union algorithms. The
dynamic Bloom filter can control the false positive probability

at a low level by expanding its capacity as the set cardinality
increases. A Dynamic Bloom Filter consists of s homogeneous
SBFs. The initial value of s is one, and the initial SBF is ac-
tive. The DBF only inserts items of a set into the active SBF,
and appends a new SBF as an active SBF when the previous
active SBF becomes full. The first step to implement a DBF is
initializing the following parameters: the upper bound on false
match probability of the DBF, the largest value of s, the upper
bound on false match probability of the SBF, the filter size m
of the SBF, the capacity c of the SBF, and number of hash
functions k of the SBF.

I. Aging Bloom Filter with two Active Buffers

To support dynamic sets, Bloom filters need delete opera-
tion to make space for new incoming data. For this purpose,
the simplest scheme would be cold cache [4]. Once the Bloom
filter is full, all data are removed. Then, the next arriving data
are programmed. The problem is that no data remain in the
memory whenever delete occurs. This causes a load spike that
is not tolerable in certain applications like real-time systems.
The alternative choice would be the CBF. Using counters ra-
ther than bits, the CBF can delete a previously inserted data.
However, this cannot delete stale data selectively unless the
list of old data to delete is maintained in a separate space. In
CBF each cell is of multiple bits, which ranges from 0 to a
certain maximum value. When a new element is programmed,
the corresponding cells are set to the maximum value. Like a
Bloom filter, the false positive ratio is related to the ratio of
zero bits. To keep the false positive ratio below the threshold,
some cells are selected and their values are decreased to keep
the number of zero bits larger than a certain value. However,
this approach has some limitations. First, if the maximum val-
ue of a cell is large, the memory space is wasted. Note that
two-bit cells decrease the number of cells by half. We stress
that the number of zero cells should be large enough to keep
the false positive ratio below the threshold. Second, if a cell is
randomly selected and decreased to zero, this may fail the
membership checking of more than one element. Yoon (2010)
proposed a double buffering scheme to support the selective
deletion of old data from Bloom filters in first-in-first-out. In
this scheme, the memory space is divided into two indepen-
dent groups: active cache and warm-up cache. The size of

each cache is 2
m

and the allowed false positive ratio of one

cache should equal to f. The active cache stores all the recent
data and the warm-up cache is always a subset of the active
cache.

Some network applications require high-speed processing
of packets. For this purpose, Bloom filters should reside in a
fast and small memory, SRAM. In this case, due to the limited
memory size, stale data in the Bloom filter should be deleted
to make space for new data. Namely the Bloom filter needs
aging like LRU caching. The new aging scheme for Bloom
filters is, active-active buffering. They assumed that m, the
total memory size, and f, the allowed false positive ratio, are
already fixed.

They proposed A2 buffering to make Bloom filters age
smoothly for dynamic sets. With this scheme, it is possible to
update Bloom filters with recently used data. Consequently,
Bloom filters can be useful for dynamic sets as well as static
sets.

Arulanand Natarajan et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 248-254

© 2010, IJARCS All Rights Reserved 253

J. Two-level Bloom Filter (TBF) for Object-based Storage
Network

Ref. [15] proposed TBF for meta data server in Ob-
ject-based Storage Network. TBF is composed of attribute
and object Bloom filters to support the efficient representation
and query of objects. The attribute Bloom filter is a series of
counter-based arrays. Each array can store one attribute of an
object. The object Bloom filter captures a verification value of
an object, which can reflect the inherent dependency of all
attributes for the object. When a query request arrives, it first
checks whether the attributes of an object exist in the first lev-
el. If the attributes are in the attribute BFs, it checks whether
the valid attributes belong to one object based on the verifica-
tion values, which have been stored in the object BF. When
the queries in the two-level architecture receive answers True,
it determines that the queried object exists in the metadata
server.

IV. SUMMARY

The benefit of Bloom filters is that they provide a tradeoff
between the memory requirement and the false positive ratio.
Bloom filter based solution is used to protect the list of mem-
bers or to defend to publish a directory of everyone, because it
doesn’t contain the list of keys in a discoverable format. The
formulas also don't rely on the size of the keys that is storing
in the filter. Whether it is a short user names, absolute URIs to
the feeds, or even the text of entire books into the bloom filter
and the calculations would remain the same. Bloom Filters pay
for this is in the amount of time spend calculating the hash of a
key, which would be much longer for a book over a username.
This review shows the numerous applications where such a
data structure is required. Particularly when space is a concern,
a Bloom filter may be an excellent alternative for keeping an
explicit list. The main drawback of using a Bloom filter is that
it allows false positives. Their consequence must be carefully
considered for each specific application to determine whether
the impact of false positives is acceptable. Bloom filter is
space saving and easily parallelizable. Bloom filters are ap-
plied in Collaborating in overlay and peer-peer networks, Re-
source routing, Packet routing, IP traceback, Proxy cache, Dic-
tionaries, Databases and Rule mining.

V. REFERENCES

[1] Artan N S and Chao H J., “Multi-packet signature
detection using prefix bloom filters”, Proceedings of IEEE
Conference on Global Telecommunications, vol.3, 2005,
p.6.

[2] Bloom B, “Space/time tradeoffs in hash coding with
allowable errors”, Communications of the ACM, Vol.13,
No.7, pp. 422–426, 1970.

[3] Bruck J., Gao J and Jiang A., “Weighted Bloom Filter”,
IEEE International Symposium on Information Theory,
pp.2304-2308, 2006,.

[4] Chang F., Feng W and Li K., “Approximate caches for
packet classification”, Proceedings of Twenty-third
AnnualJoint Conference of the IEEE Computer and
Communications Societies, vol.4, pp.2196-2207, 2004.

[5] Cheng K., Xiang L., Iwaihara M and Sangyo K., “Time-
decaying Bloom Filters for data streams with skewed

distributions”, 15th International Workshop on Research
Issues in Data Engineering: Stream Data Mining and
Applications, pp.63-69, 2005.

[6] Cohen S and Matias Y, “Spectral bloom filters”,
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pp. 241-252, 2003.

[7] Czerwinski S., Zhao B. Y., Hodes T., Joseph A. D, and
R. Katz, An “Architecture for a secure service discovery
service” In Proceedings of the Fifth Annual ACM/IEEE
International Conference on Mobile Computing and
Networking(MobiCom ’99), pp. 24—35. New York:
ACM Press, 1999.

[8] Dharmapurikar S., Krishnamurthy P and Taylor D E.,
“Longest prefix matching using bloom filters”,
IEEE/ACM Transactions on Networking, vol.14, no.2,
pp.397-409, 2006.

[9] Dharmapurikar S., Lockwood T S and J.W., “Deep packet
inspection using parallel bloom filters”, IEEE Computer
Society, vol.24, no.1, pp.52-61, 2004.

[10] Dillinger, Peter C. Manolios, Panagiotis "Fast and
accurate bitstate verification for SPIN", Proceedings of
the 11th International Spin Workshop on Model
Checking Software, Springer-Verlag, Lecture Notes in
Computer Science 2989 , 2004a

[11] Dillinger, Peter C. Manolios, Panagiotis, “Bloom Filters
in probabilistic verification”, Proceedings of the 5th
International Conference on Formal Methods in
Computer-Aided Design, Springer-Verlag, Lecture Notes
in Computer Science 3312, 2004b

[12] Fan J., Wu D., Lu k and Nucci A., NIS04-3: Design of
Bloom Filter Array for Network Anomaly Detection,
Proceedings of IEEE Conference on Global
Telecommunications, pp.1-5, 2006.

[13] Guo D., Wu J., Chen H and Luo X., “Theory and network
applications of dynamic bloom filters”, Proceedings of
25th IEEE International Conference on Computer
Communications, pp.1-12, 2006.

[14] Guo D., Wu J., Chen H., Yuan Y and Luo X., “The
Dynamic Bloom Filters”, IEEE Transactions on
Knowledge and Data Engineering, vol.22, no. 1, pp.120-
133, 2010.

[15] Hua U., Feng D and Xiao B., “TBF: an efficient data
architecture for metadata server in the object-based
storage network”, Proceedings of 14th IEEE International
Conference on Networks, vol.1, pp.1-6, 2006.

[16] Kirsch, Adam, Mitzenmacher, Michael, “Less hashing,
same performance: building a better bloom filter,
algorithms”, 14th Annual European Symposium,
Springer-Verlag, Lecture Notes in Computer Science
4168, pp. 456–467, 2006.

[17] Lee M H and Choi Y H., “A fault-tolerant bloom filter for
deep packet inspection”, 13th Pacific Rim International
Symposium on Dependable Computing, pp.389-396,
2007.

[18] Mitzenmacher M., “Compressed Bloom filters”,
IEEE/ACM Transactions on Networking, vol.5, no.5,
pp.604-612, 2002.

[19] Kun Xie, Yinghua Min, Dafang Zhang, Jigang Wen and
Gaogang Xie. "scalable bloom filter for membership

Arulanand Natarajan et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 248-254

© 2010, IJARCS All Rights Reserved 254

queries". Proceedings of the 50th Annual IEEE Globe
Communications Conference (IEEE Globecom 2007) .
Washington DC, USA, 2007.

[20] Mullin j.k., and Margoliash D. J, “A tale of three spelling
checkers”, Software — Practice and Experience Vol. 20,
no. 6, pp. 625—630, 1990.

[21] Wang J., Xiao M and Dai Y., “MBF: a real matrix bloom
filter representation method on dynamic set”, Proceedings
of IFIP International Conference on Network and Parallel
Computing Workshops, Liaoning , pp. 733 – 736, 2007.

[22] Wang J., Xiao M., Jiang J and Min B., “i-DBF: an
improved bloom filter representation method on dynamic
set”, Proceedings of Fifth International Conference on
Grid and Cooperative Computing Workshops, Hunan,
2006.

[23] Wang S., Hao X., Xu H and Hu Y., “Mining frequent
items based on bloom filter”, Proceedings of Fourth
International Conference on Fuzzy Systems and
Knowledge Discovery, vol.4, pp.679-683, 2007.

[24] Xiao M., Dai Y and Li X., “Split Bloom Filter”, Chinese
Journal of Electronic, vol.32, no.2, pp.241-245, 2004.

[25] Xiao M., Kong X., Liu J and Ning J., “TMBF: Bloom
filter algorithms of time-dependent multi bit-strings for

incremental set”, Proceedings of International Conference
on Ultra Modern Telecommunications & Workshops,
pp.1-4, 2009.

[26] Xie K., Min Y., Zhang D., Wen J and Xie G., “A
Scalable bloom filter for membership queries”,
Proceedings of IEEE Conference on Global
Telecommunications, Washington, DC, pp. 543 – 547,
2007.

[27] Yoon M., “Aging bloom filter with two active buffers for
dynamic sets”, IEEE Transactions on Knowledge and
Data Engineering, vol.22, no.1, pp.1134-138, 2010.

[28] Yuan Z., Chen Y., Jia Y and Yang S., “Counting evolving
data stream based on hierarchical counting bloom filter”,
Proceedings of International Conference on
Computational Intelligence and Security, 2008.

[29] Koloniari G and Pitoura E, “Filters for XML-based
service discovery in pervasive computing”, Computer
Journal: Special Issue on Mobile and Pervasive
Computing, vol.47, pp.16-27, 2004.

[30] Myeong-Hyeon Lee, Yoon-Hwa Choi, "A fault-tolerant
bloom filter for deep packet inspection" 13th Pacific Rim
International Symposium on Dependable Computing
pp.389-396, 2007.

