
Volume 3, No. 1, Jan-Feb 2012 

International Journal of Advanced Research in Computer Science 

REVIEW ARTICLE 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved                    226 

ISSN No. 0976-5697 

A Survey- Review on Load balancing Algorithms  

Nitin R. Chopde* 
Department of Computer Science & Engg and IT 

Sipana College of Engg & Technology 

Amravati, India 

nitin.rchopde@gmail.com 

Prof. Pritish A. Tijare 
Department of Computer Science & Engg and IT 

   Sipna College of Engg & Technology 

 Amravati, India 

pritishtijare@rediffmail.com

Abstract: Load balancing in distributed computer systems is the process of redistributing the work load among processors in the system to improve 
system performance. Trying to accomplish this, however, is not an easy task. In recent research and literature, various approaches have been 
proposed to achieve this goal. Due to the outstanding progress in computer technology and an ever-rising demand for high-speed processing able to 

support the distributed mode there is an increasing trend towards the use of parallel and distributed systems. In addition, one of the important stages 
of any system utilizing parallel computing is the load balancing stage in which the balance of workload among all of the system’s processors is 
aimed. In this paper various techniques of load balancing algorithm are discussed, analyzed and compared. Also new load balancing algorithm which 
has new capabilities to provide optimum load balancing in system is discussed. 

 
Keywords: Parallel computing; load balancing; processors;  

 

I. INTRODUCTION 

Load balancing is an important and pervasive problem in 
all distributed systems. Network Load Balancing provides 
scalability and high availability. Load balancing, the process of 
distributing the work fairly among participating processors, is a 
sub-problem of a bigger dilemma: distributed scheduling. 
Distributed scheduling is composed of two parts: local 
scheduling, which takes care of assigning processing resources 
to jobs within one node, and global scheduling, which 
determines which jobs are processed by which processor. Load 
balancing is a vital ingredient in any acceptable global 
scheduling policy.  

The aim of load balancing is to improve system 
performance by preventing some processors from being 
overwhelmed with work while others find no work to do. 
Network Load Balancing servers (also called hosts) provide 
key benefits, including: 
a. Scalability- Network Load Balancing scales the 

performance of a server-based program, such as a Web 
server, by distributing its client requests across multiple 
servers within the cluster.  

b. High availability-Network Load Balancing provides high 
availability by among the remaining servers within ten 
seconds, while providing users with continuous service. 

The presence of a number of processors in these kinds of 
systems, shows, from one perspective, the necessity of the 
uniform distribution of workload among these processors, 
since, studies have shown that in these systems the probability 
of a processor being idle in the system and other processors 
having a queue of tasks at hand is very high.  

The issue can, in fact, be thus presented that the use of 
parallel and distributed systems, due to the speed which they 
add to the processing tasks, is an important factor, but the 
capital needed to elevate systems to the parallel system type 
seems logical only on condition that the workload of the 
system be distributed suitably among the processors. Such an 
aim becomes practical in parallel and distributed systems by 

the implementation of a certain type of algorithm called “load 
balancing algorithm”.  

The purpose of this algorithm is that a processor may 
neither be idle nor overloaded but have both idle and 
overloaded processors neighboring it and can therefore serve to 
relate them. In other words the relater processor can send the 
message that it is not idle itself but does have an idle neighbor 
processor to its neighboring processor. 

Load balancing is a technique used to distribute load on 
server to increase performance and speed of work designated to 
particular server. There are various techniques that can be used 
to accomplish load balancing task with the help of different 
types of computer hardware and software components. 
Application of load balancing is used by different companies 
that conduct huge business transactions using internet. 

Even companies who are maintaining large number of 
computer network for single user use load balancing to ensure 
that each computer is performing well and has the correct 
amount of power to be able to perform functions that are 
intended for particular work. Benefit of load balancing is, if 
one of your server goes off then you have other the option of 
alternate server to work upon. 

Load balancing improves the performance of server due to 
distributed load and is used for busy and large networks 
.Without balancing load in busy networks it is very difficult to 
satisfy the entire request issued to server. Organization into the 
web services or online business normally makes use of load 
balancing technique and engages two web servers ( or more 
servers accordingly ) . 

If one of the web server gets overloaded or goes off, in that 
case alternate server activates and access the requested load. 
Load balancing is done by assigning particular service time for 
each process in order to ensure that several requests are 
handled without causing traffic. In other words, specific time is 
assigned to each process in the server for its execution and the 
process no more stay in the server once service time extends. 
Once load balancer works actively, service time reduces for 
each process reduces. 



Nitin R. Chopde et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,226-230 

© 2010, IJARCS All Rights Reserved                    227 

Dynamic load balancing strategies for minimizing the 
execution time of single applications running in parallel on 
multicomputer systems are discussed. Dynamic load balancing 
(DLB) is essential for the efficient use of highly parallel 
systems when solving non-uniform problems with 
unpredictable load estimates. 

II. LITRATURE REVIEW AND RELATED WORK 

Load balancing algorithms are divided in to two major 
groups: static and dynamic load balancing algorithms. In the 
former type, based on an estimation of the time needed to 
complete any given task, tasks are assigned to processors 
during the compile time and their relation is determined and 
there is no decision at this type regarding a shift of task from 
one processor to another during the execution time [1]. 
Dynamic balancing schemes are able to identify load changes, 
but they can be misled by differences in resource capacity and 
dynamic load changes. But in dynamic load balancing 
algorithms (DLB), the load status at any given moment is used 
to decide on task shifts between processors [1].Also, load 
balancing algorithms can be compared with respect to 
parameters of quality of which nature and overhead-associated 
can be mentioned [2]. A mathematical model of load balancing 
was improved and an adaptive load balancing optimization 
scheduling based on genetic algorithm was proposed, analyzed 
and simulated. Empirical results show that the algorithm can 
reduce effectively the average execution time of all requests 
and speed up the average response time. Meanwhile, with the 
increment of the cluster size, the algorithm running time is not 
increased significantly while maintain good performance [2]. 

Principally, processors in parallel and distributed systems in 
relation to load balancing algorithms are divided into three 
groups based the workload level: 
a. Processors which have a large number of tasks in waiting 

to be done called heavily loaded processors or sometimes 
overloaded processors. 

b. Processors which have a small number of tasks in waiting 
to be done referred to as lightly loaded processors and 
also under loaded processors. 

c. Processors named idle processors which have no tasks to 
be done [1]. 

An algorithm has been proposed for load balancing in 
dynamic, heterogeneous peer-to-peer systems. This algorithm 
may be applied to balance one of several different types of 
resources, including storage, bandwidth, and processor cycles. 
It make possible to achieve the load balancing without having 
the need to maintain tables for the process migration at each 
node as a result lot of processing efforts are saved[3]. The 
algorithm is designed to handle heterogeneity in the form of (1) 
varying object loads and (2) varying node capacity, and it can 
handle dynamism in the form of (1) continuous insertion and 
deletion of objects, (2) skewed object arrival patterns, and (3) 
continuous arrival and departure of nodes[4]. A mathematical 
model of load balancing was improved and an adaptive load 
balancing optimization scheduling based on genetic algorithm 
was proposed, analyzed and simulated. Empirical results show 
that the algorithm can reduce effectively the average execution 
time of all requests and speed up the average response time. 
Meanwhile, with the increment of the cluster size, the 
algorithm running time is not increased significantly while 
maintain good performance [5]. 

Basically, the proposed solutions aim to speed up 
simulation processing pace by minimizing communication 
delays or improving utilization of resources. However, these 
schemes present drawbacks that motivated the design of a self-
adaptive balancing scheme. Some balancing schemes observe 
look-ahead or the communication rate in simulations to 
decrease their communication delays. The dynamic approach 
looks at the load balancing problem more realistically by 
assuming little information is available before any assignment 
is made. It does not presume any knowledge of where a certain 
task will finally execute or in what environment [6]. The 
analysis of look-ahead evidences the simulation dependencies 
that might be slowing down the simulation. The study of 
communication rate indicates the delays they introduce in the 
simulation, which can be performed statically. The overheads 
normally incurred from implementing any load balancing 
policy are always subject to strategies aiming at reducing such 
overhead, also to reduce the overheads stem from the 
communication problem and location problem [7]. 

The growing autonomy of servers may significantly 
deteriorate the performance of traditional load-balancing 
strategies. Indeed, the authoritative decision belongs to the 
load-balancer, but the autonomous servers may reject the 
requests on their own convenience. The load-balancing strategy 
for transferring authority from the load-balancer to the 
autonomous servers [8].The use of a central scheduler was also 
effective as it can handle all load-balancing decisions with 
minimal inter-processor communication. The threshold policy 
provided better performance in comparison to the first fit 
algorithm that does not have such a mechanism [9]. 

The idea of previous load balancing algorithm stemmed 
from the perspective that a processor may neither be idle nor 
overloaded but have both idle and overloaded processors 
neighboring it and can therefore serve to relate them; in other 
words the relater processor can send the message that it is not 
idle itself but does have an idle neighbor processor to its 
neighboring processors [1]. This algorithm working with 
defined parameter to implement load balancing technique. 

Load balancing is to ensure that every processor in the 
system does approximately the same amount of work at any 
point of time. Processes may migrate from one node to another 
even in the middle of execution to ensure equal workload. 
Algorithms for load balancing have to rely on the assumption 
that the on hand information at each node is accurate to prevent 
processes from being continuously circulated about the system 
without any progress. Load balancing is one of prerequisites to 
utilize the full resources of parallel and distributed systems. 
Load balancing may be centralized in a single processor or 
distributed among all the processing elements that participate 
in the load balancing process. Several tasks are scheduled for 
separate processors, based on the current load on each CPU. 
Many researchers have been carried out on load balancing for 
many years with the aim is to find the load balancing schemes 
with overhead as low as possible [10]. 

In earlier researchers had examined methods for load 
balancing in pipelined term-distributed architectures, and 
propose a suite of techniques for reducing net querying costs. 
In particular, they explored the load distribution behavior that 
pipelining displays and show that the imbalances can be 
addressed by techniques that include predictive index list 
assignments to nodes, and selective index list replication 
[11].The algorithm has been proposed for load balancing 



Nitin R. Chopde et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,226-230 

© 2010, IJARCS All Rights Reserved                    228 

strategy always converges, and tends to be in a steady state in a 
negligible processing time. This include, the load status and the 
locations of the nodes regarding the system’s topology are 
irrelevant to load balancing process [12]. 

III. STATIC LOAD BALANCING 

In this technique the performance of the processors is 

determined at the beginning of execution. Then depending 

upon their performance the work load is distributed in the start 
by the master processor. The slave processors calculate their 

allocated work and submit their result to the master. A task is 

always executed on the processor to which it is assigned that 

is static load balancing methods are non-preemptive. 

A. Round Robin and Randomized Algorithms: 

In the round robin [13] processes are divided evenly 
between all processors. Each new process is assigned to new 
processor in round robin order. The process allocation order is 
maintained on each processor locally independent of 
allocations from remote processors. With equal workload 
round robin algorithm is expected to work well. Round Robin 
and Randomized schemes [14] work well with number of 
processes larger than number of processors. Advantage of 
Round Robin algorithm is that it does not require inter-process 
communication. Round Robin and Randomized algorithm both 
can attain the best performance among all load balancing 
algorithms for particular special purpose applications. 

B.  Central Manager Algorithm: 

In this algorithm load manager selects hosts for new 
processes so that the processor load confirms to same level as 
much as possible. On other hand information on the system 
load state central load manager makes the load balancing 
judgment. This information is updated by remote processors, 
which send a message each time the load on them changes. 
This information can depend on waiting of parent’s process of 
completion of its children’s process, end of parallel execution. 
The load manager makes load balancing decisions based on the 
system load information, allowing the best decision when of 
the process created. High degree of inter-process 
communication could make the bottleneck state. This algorithm 
is expected to perform better than the parallel applications, 
especially when dynamic activities are created by different 
hosts. 

C. Threshold Algorithm: 

According to this algorithm, the processes are assigned 
immediately upon creation to hosts. Hosts for new processes 
are selected locally without sending remote messages. Each 
processor keeps a private copy of the system’s load. The load 
of a processor can characterize by one of the three levels: 
underloaded, medium and overloaded. Two threshold 
parameters tunder and tupper can be used to describe these 
levels. 

Under loaded - load < tunder 
Medium - tunder ≤ load ≤ tupper 
Overloaded - load > tupper 
Initially, all the processors are considered to be under 

loaded. When the load state of a processor exceeds a load level 
limit, then it sends messages regarding the new load state to all 

remote processors, regularly updating them as to the actual 
load state of the entire system. 

If the local state is not overloaded then the process is 
allocated locally. Otherwise, a remote under loaded processor 
is selected, and if no such host exists, the process is also 
allocated locally. Thresholds algorithm have low inter process 
communication and a large number of local process 
allocations. The later decreases the overhead of remote process 
allocations and the overhead of remote memory accesses, 
which leads to improvement in performance. A disadvantage of 
the algorithm is that all processes are allocated locally when all 
remote processors are overloaded. A load on one overloaded 
processor can be much higher than on other overloaded 
processors, causing significant disturbance in load balancing, 
and increasing the execution time of an application. 

IV. DYNAMIC LOAD BALANCING 

It differs from static algorithms in that the work load is 
distributed among the processors at runtime. The master 
assigns new processes to the slaves based on the new 
information collected [15] [16]. Unlike static algorithms, 
dynamic algorithms allocate processes dynamically when one 
of the processors becomes under loaded. Instead, they are 
buffered in the queue on the main host and allocated 
dynamically upon requests from remote hosts. 

A. Central Queue Algorithm: 

Central Queue Algorithm [17] works on the principle of 
dynamic distribution. It stores new activities and unfulfilled 
requests as a cyclic FIFO queue on the main host. Each new 
activity arriving at the queue manager is inserted into the 
queue. Then, whenever a request for an activity is received by 
the queue manager, it removes the first activity from the queue 
and sends it to the requester. If there are no ready activities in 
the queue, the request is buffered, until a new activity is 
available. If a new activity arrives at the queue manager while 
there are unanswered requests in the queue, the first such 
request is removed from the queue and the new activity is 
assigned to it. 

When a processor load falls under the threshold, the local 
load manager sends a request for a new activity to the central 
load manager. The central load manager answers the request 
immediately if a ready activity is found in the process-request 
queue, or queues the request until a new activity arrives. 

B. Local Queue Algorithm: 

Main feature of this algorithm [17] is dynamic process 
migration support. The basic idea of the local queue algorithm 
is static allocation of all new processes with process migration 
initiated by a host when its load falls under threshold limit, is a 
user-defined parameter of the algorithm. The parameter defines 
the minimal number of ready processes the load manager 
attempts to provide on each processor. Initially, new processes 
created on the main host are allocated on all under loaded 
hosts. The number of parallel activities created by the first 
parallel construct on the main host is usually sufficient for 
allocation on all remote hosts. From then on, all the processes 
created on the main host and all other hosts are allocated 
locally. When the host gets under loaded, the local load 
manager attempts to get several processes from remote hosts. It 
randomly sends requests with the number of local ready 
processes to remote load managers. When a load manager 



Nitin R. Chopde et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,226-230 

© 2010, IJARCS All Rights Reserved                    229 

receives such a request, it compares the local number of ready 
processes with the received number. If the former is greater 
than the latter, then some of the running processes are 
transferred to the requester and an affirmative confirmation 
with the number of processes transferred is returned. 

The overheads stem from message passing and the 
scalability issues are among the main objectives of any load 
balancing system. To this aim, two methods of grouping the 
nodes were introduced, devised and tested. The first is to group 
the nodes in couples while the second one is to group the nodes 
into triples. The numerical results show that the overhead stem 
from computations is reduced dramatically in both methods. 
On the other hand, the number of messages is not any more an 
important issue, since it turns to be fixed with small number of 
messages as well as the utilization of the system is maximized. 
The proposed policies guaranteed the distributed system to be 
scalable. 

The earlier study has been try to solve problem of load 
balancing in peer to peer networking systems. Based on the 
LBVR algorithm we have extended the features of the RRAVR 
AND QCHAVR algorithms and they have been  proposed one 
algorithm for Dynamic Load Balancing among the peers, hence 
the computation over heads are small [20]. Dynamic Load 
Balancing scalability determines how its performance improves 
as hosts are added to the cluster. Scalable performance requires 
that CPU overhead and latency not grow faster than the number 
of hosts. If the number of servers and operations of a scheduler 
increases, eventually overhead on the proxy to manage the 
request also increases. So, in future also need to maintain more 
number of proxies in order to perform more number of tasks. In 
our paper we are not primarily concerned with the security 
issues. 

In current research proposed a fault-tolerant and reliable 
load balancing CBAE algorithm that works by assigning one 
node as a coordinator and another node as a backup. They 
compare the CBAE with a well known random election 
algorithm. Results show that all nodes are balanced by using 
CBAE, whereas by using a random approach they are 
obviously imbalanced. So we conclude that CBAE produces a 
balanced load among nodes as well as low freezing time. The 
random approach is better in relation to the number of 
communication messages needed [18]. Some attributes cannot 
be measured by simulation, e.g. the network traffic and the 
actual freezing time that is affected by the network delay. As a 
future work in this context, therefore, we plan to verify our 
simulation by experiments in a real environment. 

V. PARAMETERS AFFECT ON  LOAD BALANCING 

The performance of various load balancing algorithms is 
measured by the following parameters. 

A.     Performance of LBA: 

If Load Balancing is not possible additional overload 
rejection measures are needed. When the overload situation 
ends   then first the overload rejection measures are stopped. 
After a short guard period Load Balancing is also closed down. 

B.   Fault Tolerant capacity of   LBA: 

This parameter gives that algorithm is able to tolerate 
tortuous faults or not. It enables an algorithm to continue 
operating properly in the event of some failure. If the 
performance of algorithm decreases, the decrease is 

proportional to the seriousness of the failure, even a small 
failure can cause total failure in load balancing. 

C.     Forecasting Accuracy in LBA: 

Forecasting is the degree of conformity of calculated results 
to its actual value that will be generated after execution. The 
static algorithms provide more accuracy than of dynamic 
algorithms as in former most assumptions are made during 
compile time and in later this is done during execution. 

D.  Stability: 

Stability can be characterized in terms of the delays in the 
transfer of information between processors and the gains in the 
load balancing algorithm by obtaining faster performance by a 
specified amount of time. 

E. Centralized or Decentralized 

Centralized schemes store global information at a 
designated node. All sender or receiver nodes access the 
designated node to calculate the amount of load-transfers and 
also to check that tasks are to be sent to or received from. In a 
distributed load balancing, every node executes balancing 
separately. The idle nodes can obtain load during runtime from 
a shared global queue of processes. 

F. Nature of Load Balancing Algorithms: 

Static load balancing assigns load to nodes probabilistically 
or deterministically without consideration of runtime events. It 
is generally impossible to make predictions of arrival times of 
loads and processing times required for future loads. On the 
other hand, in a dynamic load balancing the load distribution is 
made during run-time based on current processing rates and 
network condition. A DLB policy can use either local or global 
information. 

G. Cooperative behavior: 

This parameter gives that whether processors share 
information between them in making the process allocation 
decision other are not during execution. What this parameter 
defines is the extent of independence that each processor has in 
concluding that how should it can use its own resources. In the 
cooperative situation all processors have the accountability to 
carry out its own portion of the scheduling task, but all 
processors work together to achieve a goal of better efficiency. 
In the non-cooperative individual processors act as independent 
entities and arrive at decisions about the use of their resources 
without any effect of their decision on the rest of the system. 

H. Process Migration statergy in LBA: 

Process migration parameter provides when does a system 
decide to export a process? It decides whether to create it 
locally or create it on a remote processing element. The 
algorithm is capable to decide that it should make changes of 
load distribution during execution of process or not. 

I. Resource Utilization: 

Resource utilization include automatic load balancing A 
distributed system may have unexpected number of processes 
that demand more processing power. If the algorithm is capable 
to utilize resources, they can be moved to under loaded 
processors more efficiently. 



Nitin R. Chopde et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,226-230 

© 2010, IJARCS All Rights Reserved                    230 

VI. ACKNOWLDGEMENT 

The above reviews, discussion and analysis shows that 
static load balancing algorithms are more stable in compare to 
dynamic and it is also ease to predict the behavior of static, but 
at a same time dynamic distributed algorithms are always 
considered better than static algorithms.  

VII. REFERENCES 

[1] Kamran Zamanifar, Naser Nematbakhsh, Razieh Sadat Sadjady, 
”A New Load Balancing   Algorithm in Parallel Computing,” 
proceeding in Conference on Communication Software and 
Networks, 26-28 Feb 2010,  pp. 449-453. 

[2] J. A. Chhabra, G. Singh, E. Waraich, B. Sidhu, G. Kumar, 
“Qualitative parametric comparison of load balancing 
algorithms in parallel and distributed computing environment,” 
Proc. World Academy of Science, Engineering and Technology 
(PWASET), vol. 16, November 2006. 

[3] Kashif Bilal, Tassawar Iqbal, Asad Ali Safi and Nadeem 
Daudpota, “Dynamic Load Balancing in PVM Using Intelligent 
Application,” Proc. World Academy of Science, Engineering 
and Technology May 2005.  

[4] Brighten Godfrey,Karthik Lakshminarayanan, Sonesh Surana , 
Richard Karp Ion Stoica, “Load Balancing in Dynamic 
Structured P2P Systems,” IEEE INFOCOM, 2004. 

[5] Juanjuan Min,Huazhong Liu, Anyuan Deng, Jihong Ding, 
“Adaptive load balancing optimization scheduling based on 
genetic algorithm”, Proc. ICCSIT, vol. 8, July 2010, pp. 81- 
85.K. Elissa, “Title of paper if known,” unpublished. 

[6] Ali M. Alakeel, “Load Balancing in Distributed Computer 
Systems,” IJCSIS, International Journal of Computer Science 
and Information Security, vol.8, April 2010.  

[7] Hakoan Bryhni, ”A Dynamic Sliding Load Balancing Strategy 
in Distributed Systems,” The International Arab Journal of 
Information Technology, Vol. 3, No. 2, April 2006. 

[8] Badonnel, R. Burgess, M. Oslo Univ. Coll., Oslo, ”Dynamic 
pull-based load balancing for autonomic servers”, Network 

Operations and Management Symposium, April 2008, pp. 751 – 
754.Electronic Publication: Digital Object Identifiers (DOIs): 

[9] Albert Y. Zomaya, “Observations on Using Genetic Algorithms 
for Dynamic Load Balancing,”  Transactions on Parallel and 
Distributed Systems, Vol. 12, No. 9, Sept 2001. 

[10] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma, 
“Performance Analysis of Load Balancing Algorithms,” World 
Academy of Science, Engineering and Technology, 2008, pp. 
269.  

[11] Alistair Moffat William Webber Justin Zobel, “Load Balancing 
for Term Distributed Parallel Retrieval,” ACM SIGIR, 2006. 

[12] Ahmad Dalal’ah, “A Dynamic Sliding Load Balancing Strategy 
in Distributed Systems,” The International Arab Journal of 
Information Technology, Vol. 3, No. 2, April 2006. 

[13]  Zhong Xu, Rong Huang, "Performance Study of Load 
Balancing Algorithms in Distributed Web Server Systems", 
CS213 Parallel and Distributed Processing Project Report. 

[14] R. Motwani and P. Raghavan, “Randomized algorithms”, ACM 
Computing Surveys (CSUR), 28(1):33-37, 1996. 

[15] S. Malik, “Dynamic Load Balancing in a Network of 
Workstation”,95.515 Research Report, 19 November, 2000. 

[16] Y.Wang and R. Morris, "Load balancing in distributed systems," 
IEEE Trans. Computing. C-34, no. 3, pp. 204-217,Mar.1985. 

[17] William Leinberger, George Karypis, Vipin Kumar, "Load 
Balancing Across Near-Homogeneous Multi-Resource Servers", 
0-7695-0556-2/00, 2000 IEEE. 

[18] Tarek Helmy* Fahd S. Al-Otaibi, “Dynamic Load-Balancing 
Based on a Coordinator and Backup Automatic Election in 
Distributed Systems, “International Journal of Computing & 
Information Sciences Vol. 9, No. 1, April 2011. 

[19] Pavankumar Kolla, Kola Haripriyanka , “Efficient Dynamic 
Load Balancing Algorithms for Multiclass Jobs in Peer to Peer 
Networks, “ International Journal of Computer Science and 
Network Security, Vol.11 No.3, March 2011. 

[20] Zeng Zeng, and Bharadwaj Veeravalli, “Design andPerformance 
Evaluation of Queue-and-Rate-AdjustmentDynamic Load 
Balancing Policies for Distributed Networks”IEEE TRANS. ON 
COMPUTERS, Vol. 55, No. 11, November 2006. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

   

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5550976
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4567164
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4567164
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4567164

