
Volume 2, No. 6, Nov-Dec 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2011, IJARCS All Rights Reserved 432

ISSN No. 0976-5697

Optimized Query Processing for Virtual and Distributed Xml Databases

M.Sai Kumar* C.Balarengadurai J.Srikanth
 M.Tech Student Associate Professor HOD & Associate Professor

 Aurora’s Engineering College

Affiliated to JNTU,Hyderabad

Bhuvanagiri, Nalgonda-508116
*mugalasaikumar@gmail.com

balamtech@yahoo.co.in

jsrikanth@aurora.ac.in

Abstract: This paper examines the optimization convention for XQuery queries, which is basically used for querying XML documents, such
queries exploit type information of the preimage XML document provided in the XML schema. The optimization convention discussed in this
paper are widely applicable for nearly every type of the XQuery expression and is found to be extremely useful, specifically in the context of
XQuery queries on XQuery views. The concept behind the work of this paper is transformation of the XML Schema definition into a graph,
which is further extended to a graph displaying the XQuery expression. The later extended part of the graph is further utilized to delete the sub

expressions of the XQuery expression that are found to be unused for reaching the final set of result. Further the experimental result of our work
demonstrates the improvement of our optimization.

Keywords: indexing, labelling scheme, query optimization, XML storage.

I. INTRODUCTION

Initially the XML (extensible Mark-up Language) was

used as a human consumable exchange format. However,

with the fast developments in the web world, the usage of

XML data grew exponentially. The requirement of advanced

tools by the various applications on the web like search
engine, ecommerce, e-learning portals the usage of XML

became even more intense. The search engines were not just

used for retrieve the full text queries but also request for

more specific data (structure queries) by the communities.

This need resulted in the requirement for storing querying

large scale XML data with higher efficiency and reliability.

In the past many XML query languages have been proposed

like Lorel [1], Quilt [2], XML-GL [3], XPath [4], XQuery

[5], XOM [6], XAL [7] and YATL [8]. All these query

languages used regular path expression, thus using the

conventional approach such as tree traversal may have

performance degrade especially on concurrent access.
The structure of the paper is as follows. The coherent

past work discussed in Section 2, section 3 describes our

general approach for optimizing XQuery queries. Section 4

presents a performance analysis and we end up with the

summary and conclusions in Section 6.

II. RELATED WORK

The past works [8], [10] and [20] used algebra for
XQuery. The work of this paper is advanced from the
previous works due to the incorporation of the optimization
approach, the previous works just listed out the
transformation and optimization rules based on the
introduced algebra. [2] Discusses the extension of language
XQuery to support views but does not provide any
information on how to optimize. [17] Turns the XML
document to a sufficient XML fragment before processing
the XQuery queries, it incorporates a static path analysis of

the XQuery queries which results into a set of projection
paths formulated in XPath. The approach followed by us
optimizes the XQuery expression instead of projecting as a
XML document, [9] examines the complexities of XPath
query evaluation on XML documents. The complexity as
considered by us for our XPath query evaluation algorithm
on an XQuery graph is a part of our proposed optimization
steps for XQuery queries. In the contrast of [7] which uses a
graph schemas to optimize regular path expressions within
queries for semi structured data, our methodology does not
optimize a path expression according to a schema, but avoid
unnecessary transformation steps by eliminating query code
for the generation of output, which is not used further.
Furthermore, we introduce an Structured Schema Graph (and
an XQuery graph as extended version for XQuery
expressions), which contain additional information in
comparison to graph schemas like a sibling relationship, and
we deal with XPath as path language. [14] Deals with the
problem of compatibility of XPath expressions without
respect to schema information as e.g. by an XML schema
definition. In comparison, we introduce a fast (but
incomplete) test that checks whether or not a given XPath
expression is valid according to a given schema and
according to a given XQuery expression.

In comparison to all other approaches, we focus on the
optimization of XQuery queries based on the schema of the
input XML document in order to eliminate unnecessary
query code, which computes not used intermediate results.

III. THE GENERAL OPTIMIZATION APPROACH

Our approach is the design of an optimization step for the
reduction XQuery query independently pursuant to the
current XML document. The main advantage of this
approach is that this method can optimize the XQuery query
without any requirement of connection with the database.
Since the outcome of XQuery expressions often includes
complete sub-trees of the input XML document, the schema

mailto:balamtech@yahoo.co.in
mailto:jsrikanth@aurora.ac.in

M.sai kumar et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 432-437

© 2011, IJARCS All Rights Reserved 433

information can be used by us as the of input XML document
for the motive optimizing queries. The motive is fulfilled by
us by the introduction of Structured Schema Graph, which is
derived from the schema of the input XML document. We
use this Structured Schema Graph for search algorithms,
which are outlined in Section 3.2 and Section 3.4.

<xsd:schema xmlns:xsd='http://www.w3.org/2001/XMLSchema'>

<xsd:element name='conference'>

<xsd:complexType>

<xsd:choice minOccurs=1 maxOccurs='unbounded'>

<xsd:element name='tutorial'>

<xsd:complexType>

<xsd:element ref='author' minOccurs=0 maxOccurs='unbounded'/>

</xsd:complexType>

<xsd:attributeGroup ref='name'/>

</xsd:element>

<xsd:element name='paper'>

<xsd:complexType>

<xsd:sequence>

<xsd:element ref='author' minOccurs=0 maxOccurs="unbounded"/>

<xsd:element name='references' minOccurs=0 maxOccurs=1>

<xsd:complexType>

<xsd:element ref='conference' minOccurs=0

maxOccurs='unbounded'/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:attributeGroup ref='name'/>

</xsd:element>

</xsd:choice>

</xsd:complexType>

<xsd:attributeGroup ref='name'/>

</xsd:element>

<xsd:element name='author'>

<complexType mixed='true'/>

</xsd:element>

<xsd:attributeGroup name='name'>

<xsd:attribute name='name' use='required'/>

</xsd:attributeGroup>
</xsd:schema>

Figure. 1A. Schema of input XML document p.xml

Figure. 1B. Structured Schema Graph of the schema defined in Fig. 1A

A. Structured Schema Graph:

The Structured Schema Graph is generated from an XML
Schema definition. As an example, see the XML Schema
definition.

Every individual node of an Structured Schema Graph
represents an element of the node, which is termed as

document node or else a dummy node (called: EMPTY
node). Father the: EMPTY node represents a whole choice
expression or a whole sequence expression. The edges are
classified into three kinds as: parent-child edges, which
represent the relation between element node, the document
node and/or: EMPTY nodes, as that of a relation a parent and
child. Between element nodes, a sibling edge represents a
directed sibling relationship between element nodes, the
document node and/or: EMPTY nodes. As a final point, an
expression edge represents a relationship to a whole choice
expression or a whole sequence expression between element
nodes, the document node and: EMPTY nodes.

The generation of an Structured Schema Graph from an
XML Schema definition can be done easily by following
some general rules. The creation of a start node of type:
Document-Node, for which the node representing that node
is a child of the document node, which is also the root node
of the XML document. From the example of Fig. 1A and
Fig. 1B, N1 represents the document node and N2 represents
the root element node.

B. Rules:

a. The addition of all (required, implied and fixed)
attributes of any type of the corresponding XML
element E to the nodes representing E is the second
general rule. In the example of Fig. 1A and Fig. 1B,
we add the attribute name to the node N2.

b. Further the transformation of the right-hand side of
an element declaration is committed by the following
rules:

c. The nodes of the Structured Schema Graph which
represents the element are the parents of the
representation of the right-hand sides of their
element declarations. In the example of Fig. 1A and
Fig. 1B, N1 is the parent of N2.

d. Whenever an element E1 can be a following sibling
node of another element E2, we insert a sibling edge
from E2 to E1. This is the case for repetitions of
elements (see right-hand sides of element
declarations of conference, tutorial, paper and
references in Fig. 1A and Fig. 1B) and for sequences
of elements.

Whenever the XML Schema defines an element to be a

complexType defined by a choice (see right-hand side of

conference) or a sequence (see right-hand side of paper), then

we create an extra: EMPTY node for easy access to the

whole choice expression or the whole sequence expression,

respectively. As an example, see node N3 in Fig. 1

representing the xsd: choice element in Fig. 1A and node N7

representing the xsd: sequence element in Fig. 1A.

C. Compatibility of an XPath Expression According

to a Schema

Definition: The compatibility of an XPath expression XP
pursuant to a schema is correct, if and only if there exists at
least one document, which is valid according to the schema,
where XP is evaluated to a non-empty result.

The issue of compatibility of some subclasses of XPath
expressions (without respect to a schema) is in NP [14]. A
fast compatibility test is presented by us as an alternative for
checking the compatibility of an XPath expression pursuant
to a schema. Even though the test is fast but it is incomplete
in the following ways. If we are pretty sure about the
compatibility of an XPath that it is not compatible for a
schema, the test results as NOT compatible, else the test may
result as compatible.

M.sai kumar et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 432-437

© 2011, IJARCS All Rights Reserved 434

Figure 2. Structured Schema Graph with marked nodes according to the

query (conference/paper/references/conference/paper)

The issue of uncertain results from the alternative test
presented by us is addressed by us, by using a modified
XPath expression evaluator to test the compatibility of XPath
expression XP pursuant to the schema. The modified XPath
evaluator test takes the schema and XP as the input. The First
step is the creation of the Structured Schema Graph
according to the schema by using the rules mentioned in
Section 3.1. Next is the execution of the, modified XPath
evaluator, which performs the job of verifying the
hierarchical position of all the elements and attributes of path
within XP. The modified XPath evaluator starts initiate the
process of evaluation at the node of type: Document Node
which represents the document node. Within the Structured
Schema Graph, there is all necessary information in order to
execute the modified XPath evaluator, as the parent-child-
axis and the next sibling- axis are available in the Structured
Schema Graph. The evaluator does not consume any element
from the XPath expression XP and passes all the empty
nodes. The Structured Schema Graph may contain loops in
contrast of the XML document. Hence it becomes mandatory
for the modified XPath evaluator to take loops into
consideration at the time of revisiting a node but it did nit
process the next location step inside the XP. To address this
issue the modified XPath evaluator marks all the nodes that
contribute to the successful evaluation of an XP.

For reference consider example, see the steps 1, 9
performed on the Structured Schema Graph of Fig. 2 for the
successful evaluation of the XPath query /conference/
paper/references/conference/paper. The whole processing is
completed till step 9, and as a result this XPath query is
considered to be compatible. In general, with this technique,
we can test whether or not a schema definition allows only
XML documents for which a given XPath expression XP can
never be successfully evaluated, i.e. for which the evaluation
of the XPath expression returns an empty set.

D. XQuery Graph

(1)let $view :=

(2) <root>

(3) <result>

(4) {

(5) for $a in

(6) document('p.xml')/conference/paper

(7) let $b :=

(8) <single result>{$a}</single_result>

(9) return $b

(10) }

(11) {

(12) for $a in

(13) document('p.xml')/conference/tutorial

(14) let $b :=

(15) <single_result>{$a}</single_result>

(16) return $b

(17) }

(18) </result>

(19)</root>

(20)return

(21) $view/result/single_result/tutorial

Figure. 3A. Query for retrieving the tutorials

Figure. 3B. XQuery graph of the XQuery query of Fig. 3A

For the optimization rules, we consider that subset of
XQuery, where the XQuery expression must conform to
following rule Start in EBNF notation.

Start ::= (FunctionDecl)* FLRExpr.

FunctionDecl ::= "declare" "function" QName "(" ("$"

QName ("," "$" QName)*)? ")" "{" ExprSingle "}".

FLRExpr ::= (ForClause | LetClause)+ "return" ExprSingle.
ForClause ::= "for" "$" VarName "in" ExprSingle.

LetClause ::= "let" "$" VarName ":=" ExprSingle.

ExprSingle ::= FLRExpr|IfExpr|PathExpr.

IfExpr ::= "if" "(" ExprSingle ")" "then" ExprSingle "else"

ExprSingle.

PathExpr ::= ("/" RelativePathExpr?) |

("//"RelativePathExpr) | RelativePathExpr.

RelativePathExpr ::= (Step | PrimaryExpr)(("/"|"//")

(Step | PrimaryExpr))*.

Step ::= ("child" | "descendant" | "attribute" | "self" |

"descendant-or-self" | "following-sibling" | "following" |
"parent" |"ancestor" | "preceding-sibling" | "preceding" |

"ancestor-or-self") "::" (QName | "node()" | "*").

PrimaryExpr ::= "$" QName | Constructor | FunctionCall.

Constructor ::= ("element" | "attribute") QName "{"

ExprSingle "}".

FunctionCall ::= QName "(" (ExprSingle ("," ExprSingle)*)?

")".

The subset presented above of XQuery consists of

nested for-let-return clauses, if expressions, element and

attribute constructors, declarations of functions and function

calls. The general rules for the generation of XQuery graph

from an XQuery expression is presented by us:
We generate an own XQuery graph for each variable

assignment $view of the XQuery expression. Every

expression within the variable assignment of $view, which

generates output, gets its own new node N representing the

output.

M.sai kumar et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 432-437

© 2011, IJARCS All Rights Reserved 435

All the Variables which may be nested as well as not
nested are completely replaced with their content. A new
node N is set as parent node of every node in XQuery graph
representing the output, which can also be generated as a
child node to the output node N by the XQuery evaluator.
Furthermore, we relate the new node N with every node in
the XQuery graph representing output, which could be
generated as sibling node to the output of node N by the
XQuery evaluator, by a directed sibling relation. If the next
generated output of the XQuery evaluator is a sub-tree of the
input XML document specified by an XPath expression XP,
we search within the Structured Schema Graph by the
modified XPath evaluator as before, and we retrieve a node
set SN of nodes of the Structured Schema Graph. We first
copy the nodes of SN and copy all descendant nodes and all
sibling nodes, which can be reached from the nodes of SN by
parent-child relationships and sibling relationships. We copy
also all parent-child relationships and sibling relationships
for the copied nodes. Finally, we set the current node as
parent node of the copies of SN. In the example of Fig. 3,
which represents the XQuery graph of the XQuery query of
Fig. 1, these copies consists of the node N2 and its
descendant nodes N3 to N10, and the node N14 and its
descendant node N15. We label the association with the
XPath expression of the XQuery expression (or we use a
reference; here, line number (5) and (12)).

E. Optimization

This section presents the most important feature of the

work i.e. optimization. The general rules for the

optimization of a query have been discussed in the next few

paragraphs. The intiation step towards optimization of a

query is as follows: At times when the content of a variable

$view is queried by an XPath expression XP by $view/XP

in the XQuery query, the following optimization steps are to

be followed. The modified XPath evaluator is executed on

the XQuery graph of the variable assignment which is of the
view $view with the input XPath query XP. For the case of

XQuery expression displayed in fig. 1, the XPath query XP

is /result/single_result/tutorial for $view. All nodes have

been marked by the modified XPath evaluator within the

XQuery graph which are integral part of the successful

evaluation of the query XP, similarly the evaluation of an

XPath query is done on an Structured Schema Graph.

Figure. 4A. Marked nodes of Structured Schema Graph for

(/result/single_result/tutorial)

let $view :=

<root>

<result>

{

for $a in

document('p.xml')/conference/tutorial

let $b :=

<single_result>{$a}</single_result>

return $b

}

</result>

</root>

return $view/result/single_result/tutorial

Figure. 4B. Optimized query of the query in Fig. 3A

The second step which includes deletion of the sub-
expressions which are not so useful for the display of the
results is commenced in the following way, all the sub-
expressions of the XQuery expression from which the
marked nodes in the XQuery graph has been generated and
which do not assign variables are deleted but gradually i.e.
all of them are not deleted.

The frequency and structure of execution of the result-
statement is defined by the for-statement. Hence, only those
for-statements are deleted which are retumstatement is
reduced to an empty state.

All other sub-expressions which are unmarked are
deleted by us and at last the optimized query remains. The
pseudo code of the entire algorithm for optimizing XQuery
queries is given in Fig. 4, which expects an XQuery query Q
as input and which returns the optimized XQuery query Q’ as
output.

For the case of the XQuery query discussed in fig. 3A,
firstly the XQuery graph is generated by us which is
displayed in Fig. 10B for the variable assignment of $view.
Further, the process of marking of nodes shown in Fig. 4A is
done, followed by the last step of optimizing to the XQuery
query in Fig. 4B.

F. Algorithm Optimize Query

Input: XQuery query Q conforming to rule Start in Section 3.3

Output: Optimized XQuery query Q’

(1) Generate abstract syntax tree T of Q

(2) Compute XQuery graph XG with marked nodes of T

(3) Mark all nodes in T, which correspond to marked nodes in XG

(4) while(all children of a symbol ExprSingle of a LetClause expression

are unmarked) do

(5) delete the whole LetClause expression

(6) For all nodes n in T do

(7) If(n and its child nodes are unmarked and (n is a symbol ExprSingle

and not(n is a parameter of a function call or n is a condition of an if-

statement))) then

(8) delete n (and its children)

(9) Compute Q’ from the remaining nodes of T

Figure.5. Algorithm for optimizing XQuery queries

IV. PERFORMANCE ANALYSIS

An 1.7 GHz Intel Pentium 4 processor with 128
Megabyte RAM and windows 2000 operating system with
JAVA VM build version 1.4.2 has been used as the test
system for all experiments. We use the XQuery evaluator of
Saxon version 7.9 [15].

The test input XML document of different sizes valid
according the schema of Fig. 1A for all experiments are
generated by us, where every paper and tutorial element
consists of exactly one empty author element. Furthermore,
we have used the XQuery query of Fig. 1 and the optimized
query of Fig. 6. The mean results of 10 experiments have
been displayed by us in the figures.

M.sai kumar et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 432-437

© 2011, IJARCS All Rights Reserved 436

The first experiment for which the test input XML
documents contains the same amount of paper and tutorial
elements. The file size of the XML document have been
increased by us from 8 kilobytes of doocument to 8
megabytes, further in Fig. 6 we have shown the evaluation
time as a function of the filesize in Kilobytes. We found that
the evaluation of the optimized query is approximately 1.8
times faster than the earlier original query for file size larger
than 1.5 Mega bytes; through Fig. 7 we have presented the
extent of fastness in the evaluation of the optimized query as
compared to that of non-optimized query.

Figure. 6. Experiment 1: Evaluation time depending on filesize

Figure. 7. Speed-up factor in Experiments conducted

V. CONCLUSIONS

Through this paper we have examined general rules of
optimization, which are widely applicable for all XQuery
queries and further which are very useful like in the context
of XQuery queries on XQuery views. A new test have been
introduced by us in the beginning of the work for the purpose
of fast evaluation of the compatibility of XPath variable XP
pursuant to the ordered schema, it exactly tells whiter or not
a given schema permits only XML document. The extension
of this tester which was incomplete in some sense was the
second step of this paper. The extended, modified tester
optimizes variable assignments of XQuery queries in such a
way that the computation of irrelevant intermediate results is
eliminated. We have proved by experimental results that the
evaluation of the optimized queries saves processing costs
depending on the amount of saved unnecessary intermediate
results. Future work will include further optimization rules,
which, for example, also optimize the order of operations
within the XQuery expression.

VI. REFERENCES

[1]. S. Abiteboul et al, “The Lorel Query Language for
Semistructed Data, Journal of Digital Libraries”, Vol
1, No 1, 1997, pp. 68-88.

[2]. J. Robie, J. Lapp, D. Schach, XML Query Language
(XQL). Available
http://www.w3.org/TandS/QL/QL98/pp/xql.html

[3]. S. Ceri et al, XML-GL : A Graphical Language for
Querying and Reshaping XML Documents. Available
http://www.w3.org/TandS/QL/QL98/pp/xml-gl.html

[4]. W3C, XML Path Language (XPath). Available
http://www.w3.org/TR/xpath-datamodel/

[5]. W3C, XML Query (XQuery). Available
http://www.w3.org/XML/XQuery

[6]. D. Zhang, Y. Dong, “A Data Model and Algebra for
the Web”, Proceeding 10th International Workshop on
Database and Expert System Application, IEEE
Computer Society, 1999, pp. 711-714.

[7]. F. Frasincar, G. Houben, C. Pau, “XAL : An Algebra
for XML Query Optimization”, 13th Australasian
Database Conference, 2002, pp. 49-56.

[8]. V. Christophides, S. Cluet, J. Simeon, “On Wrapping
Query Languages and Efficient XML Integration”,
ACM SIGMOD International Conference on
Management of Data, ACM Press, 2000, pp. 141-152.

[9]. Gottlob, G., Koch, C., and Pichler, R., The Complexity
of XPath Query Evaluation, In Proceedings of the 22th
ACM SIGMOD-SIGACT-SIGART symposium of
Principles of database systems (PODS 2003), San
Diego, California, USA, 2003.

[10]. Grinev, M., and Kuznetsov, S., Towards an Exhaustive
Set of Rewriting Rules for XQuery Optimisation:
BizQuery Experience, ADBIS 2002, LNCS 2435, pp.
340-345, 2002.

[11]. S. Groppe, and S. Böttcher, XPath Query
Transformation based on XSLT stylesheets, Fifth
International Workshop on Web Information and Data
Management (WIDM’03), New Orleans, Louisiana,
USA, 2003.

[12]. Groppe, S., Böttcher, S., and Birkenheuer, G.,
Efficient Querying of transformed XML documents,
6th International Conference of Enterprise Information
Systems (ICEIS 2004), Porto, Portugal, 2004.

[13]. Sven Groppe, Stefan Böttcher, Reiko Heckel, Georg
Birkenheuer. Using XSLT Stylesheets to Transform
XPath Queries. Eighth East-European Conference on
Advances in Databases and Information Systems
(ADBIS 2004), Budapest, Hungary, September 2004.

[14]. Hidders, J., Satisfiability of XPath Expressions, DBPL
2003, LNCS 2921, pp. 21 – 36, 2004.

[15]. Kay, M. H., Saxon - The XSLT and XQuery
Processor, http://saxon.sourceforge.net, April 2004.

[16]. Lakshmanan, L., Ramesh, G., Wang, H., Zhao, Z., On
Testing Satisfiability of Tree Pattern Queries, In
Proceedings of the 30th VLDB Conference (VLDB
2004), Toronto, Canada, 2004.

[17]. Marian, A., and Siméon, J., Projecting XML
Documents. In Proceedings of the 29th VLDB
Conference, Berlin, Germany, 2003.

[18]. Oracle, Oracle XQuery Technology – Preview,
http://www.oracle.com/technology/tech/xml/xquery/in
dex.html., 2004.

[19]. Papakonstantinou, Y., and Vianu, V., DTD Inference
for Views of XML Data, In Proceedings of the
Nineteenth ACM SIGACT-SIGMOD-SIGART

M.sai kumar et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 432-437

© 2011, IJARCS All Rights Reserved 437

Symposium on Principles of Database Systems (PODS
2000), Dallas, Texas, USA, 2000.

[20]. Paparizos, S., Wu, Y., Lakshmanan, L. V. S., and
Jagadish, H.V., Tree Logical Classes for Efficient
Evaluation of XQuery, SIGMOD 2004, Paris, France,
2004.

Short Biodata for the Author

Mr. M.sai kumar received his B.Tech in Computer

science and Engineering from Sri Indu college of

engineering and Technology , JNTU, Hyderabad and

Pursuing M.Tech in Computer science (Software

engineering) from Aurora’s Engineering College, JNTU,

Hyderabad.

Mr. C. Balarengadurai received his B.Tech in

Information Technology from Anna University Chennai,

M.Tech in Information Technology from Sathyabama

University Chennai and pursing his Ph.D in Artificial

Intelligence at Manonmaniam Sundarnar University

Tirunelveli, Tamilnadu. He is working as Associate professor

in Computer Science & Engineering at Aurora’s Engineering

College with a teaching experience of 6 years. His area of

interest includes Computer Networks, Compiler Design, and

Artificial Intelligence and Wireless Networks.

Mr. Srikanth Jatla working as associate professor and

Head of the Department of Computer Science and

Engineering at Aurora’s Engineering College with a teaching

experience of 12years. He is a B.E and M.Tech in computer

science and pursuing his PHD. In Data Stream Mining at

JNTU, Hyderabad. His areas of interest include data

structures, principles of programming language, algorithm

analysis and complier design.

