
Volume 2, No. 6, Nov-Dec 2011

 International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 504

ISSN No. 0976-5697

CONFERENCE PAPER
International Conference on Issues & Challenges in Networking,

Intelligence & Computing Technologies

Organized by Krishna Institute of Engineering and Technology

(KIET) Ghaziabad, India

A non-revisiting Genetic Algorithm with adaptive mutation for Function Optimization

Saroj Ratnoo
 *, Devraj Kamboj

*Associate Professor, 2Student, M Tech (CSE)

Deptt. Of Computer Science & Engg., GJUS&T, Hisar, Haryana.

ratnoo.saroj@gmail.com

devraj.kamboj@gmail.com

Abstract- Genetic Algorithm (GA) is a robust and popular stochastic optimization algorithm for large and complex search spaces. The major

disadvantages of Genetic Algorithms are premature convergence and revisits to individual solutions from search space. In other words Genetic

algorithm is a revisiting algorithm that leads to duplicate function evaluations which is a clear waste of time and computational resources. In

this paper, a non-revisiting genetic algorithm with adaptive mutation is proposed for the domain of function optimization. In this algorithm

whenever a revisit occurs, the underlined search point is replaced with a mutated version of the best/random (chosen probabilistically) individual

from the GA population. Moreover, the suggested approach is not using any extra memory resources to avoid revisits. To test the power of the

method, the proposed non-revisiting algorithm is evaluated using nine benchmarks functions. The performance of the proposed genetic

algorithm is superior as compared to simple genetic algorithm as confirmed by the experimental results.

Keywords: Function optimization, Genetic Algorithm, Non-Revisiting, adaptive mutation.

I. INTRODUCTION

Developing new optimization techniques is an active

area of research and Genetic Algorithm (GA) is a

relatively new stochastic optimization algorithm

pioneered by Holland [1]. A GA is capable of finding

optimal solutions for complex problems in a wide

spectrum of applications due to its global nature. A GA is

an iterative procedure that maintains a population of

structures that are candidate solutions to the specific

problem under consideration. During each temporal

increment (called a generation), the structures in the

current population are rated for their effectiveness as the

problem solutions through a fitness function, and on the

basis of these evaluations, a new population of candidate

solutions is formed using specific genetic operators such

as reproduction, crossover, and mutation[2]. In fact, a

GA mimics the natural principle of survival of fittest. A

fitness proportionate selection and GA operators ensures

the better and better fit solutions to emerge in successive

generations. However, GAs is not without limitations.

Two such problems are: 1. premature convergence i.e.

many a times a GA converges to some local optimal

solution. 2. Redundant function evaluations.

A simple genetic algorithm do not memorizes the

search points or solutions to the problem that it visits in

its life time and it revisits lots of search points generating

duplicate solutions which results into redundant fitness

computations. Here, a revisit to a search position x is

defined as a re-evaluation of a function of x which has

been evaluated before. The problem of revisit is all the

more severe towards the end of a GA run. In many

domains the fitness evaluation is computationally very

expensive and lots of time is wasted in revisiting the parts

of the search space and duplicate function evaluations.

The problem of redundant function evaluations has been

addressed by several researchers by providing GA a long

term memory i.e. the GA stores all the search points

visited and their corresponding fitness into some data

structure. In such approaches every time a new search

point is produced by GA, before actually computing its

fitness, the memory of GA is looked into and if this

search point exists, its fitness is not recomputed. If the

new solution is not in the memory, its fitness is computed

and appended to the memory. The problem with all such

approaches is that now GA spends a significant amount of

its time in memory look ups and a very large data

structure is required as supplemented GA memory.

Binary search trees, Binary partition tress and heap

structures have been used as GA memory [3]. It is not

uncommon for a GA to run for thousands of generations

with a population of hundreds of individuals. If we

assume a GA with 100 individuals and 5000 generations,

we shall need a data structure that can store 250000

problem solutions and that is when we assume half the

individuals produced are duplicates.

The GA shall require 500000 look ups to avoid

redundant fitness computation. GAs is already considered

slow as compared to other optimization techniques and

these approaches further slow down GA’s performance.

Clearly this method is successful only in the domains

where fitness computations are significantly larger than

the memory look ups and not suitable at all for domain of

function optimization where fitness evaluation is

relatively less expensive.

In this paper, we propose an improved GA with

adaptive mutation operator to avoid revisits and

redundant fitness evaluations. This GA has the elitist

approach and retains the best individual in every new

population. A look up for revisits is made only in the

current population along with the population of previous

generation. If any individual produced is found duplicate,

it is replaced probabilistically with a mutated version of

the best individual or of a random individual. The

mutation operator is adaptive in the sense that its power

of exploration decreases and power of exploitation

increases with the number of generations.

The proposed approach demonstrates that the

duplicate removal introduces a powerful diversity

preservation mechanism which not only results in better

Saroj et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 504-507

© 2010, IJARCS All Rights Reserved 505 CONFERENCE PAPER
International Conference on Issues & Challenges in Networking,

Intelligence & Computing Technologies

Organized by Krishna Institute of Engineering and Technology

(KIET) Ghaziabad, India

final-population solutions but also avoids premature

convergence. The results are presented for nine

benchmark functions and illustrate the effectiveness of

duplicate removal through adaptive mutation. The results

are directly compared to a simple GA which is not

removing duplicate.

Rest of the paper is organized as below. Section II

describes the related work. The proposed non revisiting

Genetic algorithm which removes duplicate individuals

through adaptive mutation is given in section III.

Experimental design and results are enlisted in section IV.

Section V concludes the papers and points to the future

scope of this work.

II. RELATED WORK

Mauldin [4] was among the first ones who enhanced

the performance by eliminating duplicate genotypes

during a GA run. Mauldin used a uniqueness operator

which removes duplicate and similar genotypes in an

evolving population. This operator only allowed a new

child x to be inserted into the population if x was greater

than a Hamming-distance threshold from all existing

population genotypes. Davis [5] also showed that, by

using binary coded GA for a comparable number of child

evaluations, that removes duplicates in the population has

superior performance.

Eshelman and Schaffer [6] later re-confirmed this

observation. Eshelman and Schaffer used new operators

and selection-based innovations for their test. They

checked the performance by preventing duplicates. They

used thirteen mathematical test problems like epistatic

problem for their test. Their results showed that the

prevention of duplication of individuals reduced the

number of evaluations required to find the global

optimum. Povinelli and Feng [7] also work on duplicate

individuals. They use a small hash table to store all

visited individuals. When this table is full, it is thrown

away and a larger table is used. Kratica [8] works on

visited individuals by using a small fixed size cache

which store all visited individuals. When this cache is

full, an old entry is thrown away to make place for a new

entry using the least-recently-used strategy. They

confirmed the improvement to GA by adding the cache,

but they do not store all the individuals and thus do not

guarantee non-revisiting.

Friedrich et al. [9] analyze that an evolutionary

algorithm with a population greater than 1 using uniform

bit mutation but no crossover has better performance by

duplicate removal. He observed that the duplicate

removal method changes the time complexity of

optimization. Ronald [10] used the Hash table to reduce

the number of comparisons. However, he compared a

child only with the current population. So it does not

guarantee for non-revisiting. Yuen and Chow used a

novel binary space partitioning tree to eliminate the

duplicate individuals [11].

Saroj et al. (2010) used a heap structure to avoid the

redundant fitness evaluations in domain of rule mining.

Their approach proved to be effective for large datasets

where fitness evaluation was computationally expensive

[12].

III. PROPOSED NON-REVISITING GA WITH

ADAPTIVE MUTATION

Non-revisiting algorithm is the one which do not visit

the search points already visited. The improved GA with

non-revisiting algorithm and adaptive mutation has to

perform some extra steps than a simple GA. These steps

are used to found the duplicate individuals. If any

duplicate individual is found then it is mutated and

reinserted in the current population. The duplicates are

looked with respect to current and the previous generation

only. There is a special condition that the best individual

is preserved and not mutated. The flow chart and

algorithm for the proposed GA is given in Fig. 1 and Fig

2 respectively.

Figure 1: Step by Step Procedure for the Improved GA

The mutation applied is Gaussian adaptive mutation.

The Gaussian function generates a random number

around 0 mean. The formula for mutation is as follows.

rations)total_geneeneration/(current_g

*mscale*mshrinkmscalemscale

mscale)*rand(gaussian_best_xx(i)

The amount of mutation is controlled by the two

parameters mscale and mshrink. Here, mscale represents

the variance for mutation for the first generation and

mshrink represents the amount of shrink in mutation in

successive generations. The mutation scale decreases as

the number of generation increase. It is clear from the

above formulae that such kind of mutation is exploratory

towards initial runs and exploitative towards the final runs

No

Yes

Selection
Stopping

criteria

Output the best

Individual

Crossover

Mutation

New Pop

Replace the revisited

with mutated individual

in current Population

Mutate probabilistically the

best/ random individual

Find Revisited

Initialize population

Evaluate population

Start

Saroj et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 504-507

© 2010, IJARCS All Rights Reserved 506 CONFERENCE PAPER
International Conference on Issues & Challenges in Networking,

Intelligence & Computing Technologies

Organized by Krishna Institute of Engineering and Technology

(KIET) Ghaziabad, India

of the GA. We have kept the mscale as 1.0 and mshrink

equals to 0.75.

Figure 2: Algorithm for improved GA with no-revisit

The proposed non-revisiting GA with adaptive

mutation has three key strengths.

a. It automatically assures maintenance of diversity

and prevents premature convergence. Most of the

individuals in a GA population are guaranteed to

be different. By nature, it is impossible for a

population to consist of one kind of individual

only.

b. It doesn’t require large data structure to store the

individuals for to do a look up for duplicates and

only uses the previous and current populations

which are anyway available.

c. It probabilistically takes the advantage of the best

individuals and converges faster without suffering

problem of convergence.

IV. EXPERIMENTAL RESULTS

A. Test function set:

Nine Benchmarks functions in four dimensions used

to test the proposed GA are as follows.

a. Rastrigin’s function

b. Sphere function

c. Generalized Rosenbrock function

d. Generalized Rastrigin function

e. Griewank’s function

f. Ackley function

g. Rotated Griewank’s function

h. Rotated Weierstrass’s function

i. Branin function

All these function are shown in detail in the

Appendix. The first four functions are unimodal

functions; the next six are multimodal functions designed

with a considerable amount of local minima. The eighth

function and nine are rotated multimodal functions. The

improved GA is implemented in MATLAB. A

comparison is made between a simple GA and the

proposed GA on the basis of mean fitness and the best

fitness over the generations. The best fitness is the

minimum score of the population [13]. Both the GAs stop

when there is no improvement in the best score over last

fifty generations. The population size is kept at 20 for all

the functions and, the crossover and mutation rates are

equal to 0.6 and 0.01 respectively.

The normal mutation rate is kept low as adaptive

mutation to remove duplicates is also applied. The best

individual or a random individual is mutated with equally

likely (probability = 0.5) to replace the revisited points in

the new population. We have used real encoding, linear

scaling, roulette wheel selection, heuristic crossover and

Gaussian mutation. The mean fitness and the best fitness

of the final populations are shown in Table 1. These

results are averaged over 20 runs of the GAs. A graph

comparing the performance of the proposed GA and

simple GA for Rastrigin’s function is shown in Fig 3.

Figure 3: Performance comparison between improved GA and simple

GA

Table1: A comparison of mean and best fitnesses for the nine

benchmark functions

BENCHMARKS

FUNCTION

BEST

FITNESS

MEAN

FITNESS

 SGA Improved

GA

SGA Improved

GA

Rastrigin’s function 0.589 0.053 6.684 3.817

Sphere function 0.002 0.001 0.279 0.105

Generalized Rastrigin

function

0.079 0.002 6.474 5.414

Griewank’s function 0.001 0.001 0.077 0.021

Generalized Rosenbrock

function

0.031 0.017 28.22 21.34

Ackley function 0.024 0.013 1.426 0.936

Rotated Griewank’s

function

0.001 0.001 0.041 0.017

Rotated Weierstrass’s

function

0.212 0.083 1.531 1.321

Branin function 0.146 0.054 1.134 1.011

The accuracy of our approach is better for all the nine

benchmark functions. It is quite clear from the results that

the performance of the non-revisiting GA with adaptive

mutation is better than the simple GA.

V. CONCLUSION

In this paper, a novel non-revisiting GA with adaptive

mutation is proposed and tested in the domain of function

optimization. Though new improved GA may not

completely eliminate the revisits to the same points in the

Saroj et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 504-507

© 2010, IJARCS All Rights Reserved 507 CONFERENCE PAPER
International Conference on Issues & Challenges in Networking,

Intelligence & Computing Technologies

Organized by Krishna Institute of Engineering and Technology

(KIET) Ghaziabad, India

search space and redundant function evaluation, it

guarantees enough diversity to avoid the problem of

premature convergence. The envisaged approach achieves

better accuracy without much overheads of searching

time for duplicates individuals and large data structures to

serve as the long term memory for a GA.

The mechanism of a probabilistic adaptive mutation

provides the much required balance between exploration

and exploitation along with faster convergence to the

optimal. It is exploratory in the initial runs of GA and

exploitative towards the final runs of GA. More the

number of generations of the GA, smaller will be the

change in the new individual that replaces the revisited

search point. The experimental results are very

encouraging and show that the improved GA is clearly

superior to its conventional counterpart. The adaptation of

the current approach is underway for the domain of rule

mining in the field of knowledge discovery.

Appendix

A. Benchmarks Functions:

a. Rastrigin’s function [14]:

f1(x) = 10x+ 2-10cos (2πx) +10]

Where x [-5.12, 5.12] D

Min f1(x) = f1 ([0, 0….0]) =0

b. Sphere function [14]:
2 where x [-5.12, 5.12] D

Min f2(x) =f2 ([0, 0….0]) =0

c. Generalized Rosenbrock function [14]:

f3(x) = i+1-xi
2)2 + (xi-1)2]

Where x [-5.12, 5.12] D

Min f3(x) = f3 ([1, 1….1]) =0

\

d. Generalized Rastrigin function [14]:

f4(x) = 2-10cos (2πx) +10]

Where x [-5.12, 5.12] D

Min f4(x) = f4 ([0, 0… 0]) =0

e. Griewank’s function [14]:

f5(x) = 2-

Where f5(x) [-5.12, 5.12] D

Min f5(x) = f5 ([0, 0… 0])

f. Ackley function [14]:

f6(x) = -20 exp (-0.2√ i
2)-exp

(i) +20+e

where x [-5.12, 5.12] D

Min f6(x) = f6 ([0, 0… 0]) = 0

g. Rotated Griewank’s function [14]:

f7(x) = 2-

Where z=xM , f7(x) [-5.12, 5.12]D

Min f7(x) = f7 ([0, 0… 0])

h. 8. Rotated Weierstrass’s function [14]:

 f8(x) = //D2=D2

i. Branin function [14]:

f9(x) = (x2- x1
2+ x1-6)2+10(1 -) cosx1+10

Where x [-5.12, 5.12]

Min f9(x) = f9 ([-3.142, 12.275]) =

f9 ([3.142, 2.275])

VI. REFERENCES

[1]. J. H. Holland, “Adaptation in natural and artificial
systems”. Ann Arbor, MI: Univ. of Michigan Press,
1975.

[2]. K. M. Bakwad, S. S. Pattnaik, B. S. Sohi, S. Devi, B. K.
Panigarhi and V, R. S. Gollapudi, “Multimodal Function
Optimization using Synchronous Bacterial Foraging
Optimization Technique”. IETE Journal of Research,
vol. 56, pp. 80-87, April 2010.

[3]. Goldberg D.E.: “Genetic Algorithms in Search,
Optimization and Machine Learning”. New York:
Addison-Wesley Publishing Company, Inc. MA, 1989.

[4]. M. L. Mauldin, “Maintaining diversity in genetic
search,” in Proc. National Conf. Artif. Intell., 1984, pp.
247–250.

[5]. L. Davis, Handbook of genetic algorithms. New York:
Van Nostrand Reinhold, 1991 L. Eshelman and J.
Schaffer, “Preventing premature convergence io genetic
algorithms by preventing incest,” in Proceedings of the
Fourth International Conference on Genetic
Algorithms,R. Belew and L. Booker, Eds. 1991, pp.
115-122, Morgan Kaufmann Publishers, San Mateo,
CA.

[6]. R. J. Povinelli and X. Feng, “Improving genetic
algorithms performance by hashing fitness values,” in
Proc. Artif. Neural Netw. Eng., 1999, pp. 399–404.

[7]. J. Kratica, “Improving performances of the genetic
algorithm by caching,” Comput. Artif. Intell., vol. 18,
no. 3, pp. 271–283, 1999.

[8]. T. Friedrich, N. Hebbinghaus, and F. Neumann,
“Rigorous analyses of simple diversity mechanisms,” in
Proc. Genetic Evol. Comput. Conf., Jul. 2007, pp. 1219–
1225.

[9]. S. Ronald, “Duplicate genotypes in a genetic algorithm,”
in Proc. IEEE Int. Conf. Evol. Comput., 1998, pp. 793–
798.

[10]. S. Y. Yuen and C. K. Chow, “A non-revisiting genetic
algorithm,” in Proc. IEEE Congress. Evol. Comput.,
2007, pp. 4583–4590.

[11]. Saroj, Kapila, Dinesh Kumar, Kanika, A Genetic
Algorithm with entropy based probabilistic initialization
and memory for automated rule mining, In Natrajan
Meghanathan, Brijesh Kumar Kaushik and Dhinaharan
Nagamalai, Advances in Computer science and
Information technology, CCSIT-2011, Bangalore, India,
Jan-2-4, 2011, vol. 131, pp. 604-613.

[12]. S. Y. Yuen and C. K. Chow, “A Genetic Algorithm That
Adaptively Mutates and Never Revisits” IEEE
Transaction on Evolutionary computation,vol 13, april
2009, pp 454-472.

[13]. X. Yao, Y. Liu, and G. M. Lin, Evolutionary
programming made faster,” IEEE Trans. Evol.
Compute., vol. 3, no. 2, pp. 82–102, Apr.

