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Abstract— The recognition process comprises two phases, the offline and the online. In the offline phase, we prepare an ensemble speaker and 

speaking environment space formed by a collection of super-vectors.Each super-vector consists of the entire set of means from all the Gaussian 

mixture components of a set of Hidden Markov models that characterizes a particular environment. In the online phase, with the ensemble 

environment space prepared in the offline phase, we estimate the super-vector for a new testing environment based on a stochastic matching 

criterion. 

In this paper, we focus on methods for enhancing the construction and coverage of the environment space in the offline phase.We first 

demonstrate environment clustering and partitioning algorithms to structure the environment space well; then, we propose a minimum 

classification error training algorithm to enhance discrimination across environment super-vectors and therefore broaden the coverage of the 

ensemble environment space. 

 

Index Terms—Environment modeling, noise robustness. 

I. INTRODUCTION 

The performance of automatic speech recognition (ASR) 

systems has improved significantly by adopting the hidden 

Markov model (HMM) was as a fundamental tool to model 

speech signals. However, the applicability of HMM-based 

ASR is limited due to one critical issue: data-driven HMM-

trained speech models do not generalize well from training 

to testing conditions. Such an inevitable mismatch is 

generally derived from  

a. Speaker effects, e.g., speech production, accent, 

dialect, and speaking rate differences and  

b. Speaking environment effects, e.g., interfering noise, 

transducers and transmission channel distortions. 

Although some functions can model particular 

distortion sources well, the form of an unknown 

combination of speaker and environment distortions 

is often unavailable or cannot be exactly specified. 

 
The mismatch between training and testing conditions 

can be viewed in the signal, feature or model space, as 

illustrated in Fig. 1. 

 

 First, in the signal space, Sx and Sy denote the speech 

signals in the training and testing conditions, respectively 

we represent the distortion observed in the signal space as 

Ds (.). A following feature extraction procedure converts the 

speech signals to a few compact and perceptually 

meaningful features we represent training and testing 

features as Fx and Fy in Fig. 1. From these features, the 

statistical models Ax and Ay can then be trained. We denote 

the distortions observed in the feature and model-spaces as 

DF (.) and DM (.) and, respectively. 

The approaches that tackle the mismatch problems can 

be roughly classified into three categories: C1, C2, and C3 

(Fig. 1).  

The first category of C1 approaches is often referred to 

as speech enhancement These approaches usually involve a 

new feature extraction procedure. One such C1 approach, 

spectral subtraction (SS), and its extensions significantly 

reduce additive noise by subtracting the  noise power 

spectrum from each speech frame involve a new feature  

extraction  procedure.tracting the noise power spectrum 

from each speech frame. Likewise, cepstral mean 

subtraction (CMS), normalizes speech features features in 

the cepstral domain by subtracting the means from speech 

frames. Techniques using second or higher order cepstral 

moment normalization adjusts the distribution of noisy 

speech features closer to that of the clean ones and provides 

further improvement over the first-order CMS. More 

recently, the ETSI advanced front-end (AFE) is proposed to 

achieve good performance in ASR noise robustness. This 

ETSI AFE removes mismatch by using several stages of 

noise reduction schemes, including a two-stage Wiener 

filter,  

Signal-to-noise ratio (SNR)-dependent waveform 

processing, cepstrum calculation, and blind equalization. 

The second category of approaches removes mismatches 

in the feature-space; we denote them as C2 in Fig. 1. These 

methods form a parametric function to model the distortion 

DF(.) between the training and testing speech features. The 

parametric function is estimated based on some optimality 
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criterion and is used to compensate testing features. The 

codeword dependent cepstral normalization (CDCN) 

algorithm and the stereo-based piecewise linear 

compensation environments (SPLICE) technique, for 

example, perform feature compensation with a correction 

vect or, which is estimated or located with a VQ code word 

that indicates the gap between the training and testing 

environments. Similarly, both feature-space maximum-

likelihood linear regression (MLLR) and feature space 

Eigen-MLLR compute affine transformations to compensate 

noisy features based on a maximum-likelihood (ML) 

criterion. 

The third class of approaches, C3, reduces mismatches 

by adjusting parameters in the acoustic models so that they 

can accurately match various adverse testing conditions. 

These approaches intend to map the original acoustic 

models, Ax, to a new set of acoustic models Ay that matches 

the testing features. For these approaches, a set of speech 

segments from the testing environment is required for the 

mapping process, and these speech samples are called 

adaptation data. The model mapping process can be done in 

either a direct or an indirect manner.  A direct mapping finds 

the target acoustic models for the unknown testing 

environment directly. When sufficient adaptation data is 

available, such direct mapping achieves a good 

performance. Maximum a posteriori (MAP) estimation is a 

well-known method belonging to this category. On the other 

hand, indirect adaptation models the difference between Ax 

and Ay training and testing conditions by a mapping 

function that transforms the original models to new models.  

The most often used form of the mapping function is an 

affine transformation. Maximum-likelihood linear 

regression (MLLR) and its Bayesian version, maximum a 

posteriori linear regression (MAPLR)  [3], have been 

adopted with good success, where the affine transformations 

are estimated through ML and MAP learning, respectively. 

Moreover, stochastic matching [1], [2] provides an effective 

way to estimate the compensation factor in a maximum-

likelihood self-adaptation manner. Another mapping 

function is a distortion model that characterizes the 

mismatch between and. A vector Taylor series (VTS) 

expansion is often used to approximate the distortion model. 

Examples include the joint compensation of additive and 

convoluted distortion (JAC) and VTS-based HMM 

adaptation [4]. 

When comparing the direct and indirect adaptation 

approaches, the later ones are generally more effective 

features. When a small set of adaptation data is available. 

Therefore, extensions have been proposed to the direct 

mapping approaches. One successful extension is to 

introduce a hierarchical structure as a flexible parameter 

tying strategy in estimating HMM parameters. Structural 

MAP (SMAP) [5] uses such a hierarchical structure and 

shows performance improvements over the conventional 

MAP. Moreover, a unified framework for a joint MAP 

adaption of transformation (indirect) and HMM (direct) 

parameters has been proposed  to not only achieve rapid 

model adaptation with limited adaptation data but also 

continuously enhance performance when a large set of 

adaptation data is available. 

In this paper, we present an ensemble speaker and 

speaking environment modeling (ESSEM) approach to 

characterizing unknown environments. ESSEM models each 

environment of interest with a super-vector, consisting of 

the entire set of mean vectors from all the Gaussian 

components in the HMM set for that particular environment. 

A collection of such super-vectors obtained from many 

speaker and speaking conditions forms an environment 

space. With such an environment configuration, ESSEM 

estimates a target super-vector for an unknown testing 

environment online with a mapping function. The estimated 

super-vector is then used to construct HMMs for the testing 

environment. In contrast with multicondition training, which 

trains a set of models to cover a wide range of acoustic 

conditions collectively, the proposed ESSEM approach 

generates a new set of models that is more focused for a 

specific environment. 

II. ENSEMBLE SPEAKER AND SPEAKING 

ENVIRONMENT MODELING FRAMEWORK 

We know that two classes of mapping procedures are 

applicable to find the target super-vector, namely direct and 

indirect ESSEM approaches. For direct ESSEM, we 

estimate the target super-vector through a mapping function 

along with a large collection of environment specific super-

vectors. For indirect ESSEM, we use a mapping function to 

estimate a transformation with another large collection of 

transformations, each corresponding to the mapping 

required for a particular known environment over an anchor 

or reference super-vector. Then, we compute the target 

super-vector with the estimated transformation and the 

anchor super-vector. Similar frameworks to indirect ESSEM 

show good performance in speaker adaptation In this paper, 

we limit our discussion on direct ESSEM.The proposed 

ESSEM approach is derived from the stochastic matching 

framework [1], [2]. Therefore, we review the stochastic 

matching framework before introducing the ESSEM 

approach. 

A. Stochastic Matching: 

First, we briefly review the ML-based stochastic 

matching framework. In speech recognition, we are 

interested in the following problem:  

given a set of trained acoustic models Ax and a set of testing 

data Fy  as in Fig. 1, we want to decode a word sequence 

such that 
 

 

 
The stochastic matching approach uses a mapping 

function . With parameters  to transform the original 

acoustic models to a desired set of models for the testing 

environment by 

 
The form of the mapping function depends on the 

amount of adaptation data and the type of acoustic 

mismatch. We call the nuisance parameters that are only 

used in the mapping procedure but not involved in the 

recognition procedure. From (1) and (2), we can formulate a 

joint maximization equation 
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An iterative procedure can be used to solve . Since our 

main interest is to compute the parameters , we remove the 

dependence of for notational simplicity and rewrite as 

 
The nuisance parameters in (4) are estimated based on 

the expectation maximization (EM) algorithm B.  

B. Ensemble Speaker and Speaking Environment 

Modeling: 

It is similar to stochastic matching; the final goal of 

ESSEM is to estimate a mapping function so as to find 

a set of acoustic models for the testing environment. 

However, instead of using one set of models in (2), ESSEM 

prepares multiple sets of acoustic models for many different 

acoustic environments. We believe such an extension can 

effectively represent the complex structure of the 

environment space. 

The ESSEM framework comprises two stages: offline 

and online phases. In the offline phase, we collect speech 

data from different speaker and speaking environments, e.g., 

different speakers, noise types, and channel distortions. A 

collection of data with many different combinations of 

adverse conditions from real-world environments is usually 

prohibitive. We address this issue by artificially simulating a 

wide range of speaker and speaking environment conditions.  

The simulation process also enables us to quantitatively 

and qualitatively control the property and the coverage of 

the environment space. After collecting or simulating P sets 

of training data for P different speaker and speaking 

environments, we can train P sets of HMMs Ap,p=1,2,….,p . 

The entire set of mean parameters within a set of HMMs is 

then concatenated into a super-vector Vp, p=1,2,….,p The 

order of concatenating the mean parameters is unified 

among all the super-vectors and is followed by a reference 

HMM set. If one set of HMMs contains M Gaussian mixture 

components, and every mean vector has D dimensions, then 

every super-vector has R(D*M) dimension. These P super-

vectors form an ensemble speaker and speaking 

environment space, , that 

serves as a priori knowledge for estimating the super-vector 

representing of the target condition. In the following, we call 

this environment space the ESS space for notational 

simplicity. In the online phase, we estimate the target super-

vector for a testing environment with the ESS space 

prepared in the offline phase 

 
Similar to (4), we can use an EM algorithm to estimate 

the nuisance parameters . 

III. OFFLINE ENVIRONMENT SPACE 

PREPARATION 

In this section, we present techniques to enhance the 

environment configuration. To well structure the 

environment space, we develop environment clustering (EC) 

and environment partitioning (EP) algorithms. To increase 

the discrimination power of the environment structure, we 

derive two environment training algorithms based on 

minimum classification error (MCE) training. 

A. Structuring the Environment Spaces: 

The objective of environment clustering (EC) resembles 

that of well-known subset selection methods that select a 

subset from the entire set of components to model a signal 

of interest. On the other hand, environment partitioning (EP) 

is similar to the piecewise-polynomial and spline functions 

that approximate complicated functions with local 

polynomial representations. 

a. Environment Clustering (EC): 

First, we introduce EC to cluster the ensemble 

environments into several groups with each group consisted 

of environments having close acoustic properties; 

environments within a same group then form a subspace. In 

this paper, we present a hierarchical clustering procedure to 

construct a tree structure. The root of the tree is the entire set 

of training environments, and the tree is partitioned into 

several layers, with each layer of environment clustering 

performed based on similarity between each pair of 

environments. In the offline phase, the super-vectors 

belonging to a same cluster form an environment clustering 

(EC) ESS subspace. For a hierarchical tree with  C1 groups 

(including the root node, intermediate nodes, and leaf 

nodes), we can categorize the original ESS space in (5) into 

C1subspaces: 

 
We specify a function to determine a representative 

super-vector for each of these R(.) subspaces; for example, 

the super-vector,  represents the th cluster . 

 
More details about the establishment of a hierarchical 

tree and the calculation of the function R(.)  can be found in 

our previous study [6]. The similarity measure between a 

pair of environments can be defined either by a deterministic 

distance between their corresponding super-vectors or based 

on knowledge about the acoustic difference between them. 

Using a deterministic distance allows us to construct a 

hierarchical tree in a data-driven manner, while it is 

perceptually meaningful to use the acoustic knowledge as 

the similarity measure. For example, when we obtain super-

vectors from many different acoustic environments, we can 

form speaker subspace  noise subspace  and 

channel subspace,  

 
A combination of the deterministic distance and acoustic 

knowledge can be another tree construction scheme. For 

such a case, we first cluster environments based on the 

distortion sources they contain; then, we build a hierarchical 

tree for each distortion domain based on some deterministic 

distances. 

b. Environment Partitioning (EP): 

 Next, we introduce the EP algorithm to structuring the 

ESS space. Instead of clustering environments, EP partitions 
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each super-vector into several subvectors. Then, we collect 

each set of sub-vectors among all the training environments 

to form a subspace. From our previous study , two types of 

super-vector partitioning are successful,namely, the mixture-

based and feature-based EP techniques.  

For mixture-based EP, we establish a tying structure to 

cluster Gaussian mixture components, as in the tree structure 

in SMAP [5], and thereby the entire set of Gaussian mixture 

components in a set of HMMs is classified into S 

clusters.We can use Mahalanobis, Bhattacharyya, or the 

divergence distance  to measure the similarity between a 

pair of Gaussian mixture components. Then, the original 

super-vector is partitioned into sets of sub-vectors 

 for the P th super-

vector). Each set of such sub-vectors from the environments 

then forms a subspace 

individually,   

Another tying method is to classify models with whole-

word, or subword units, and accordingly their Gaussian 

mixture components, into different clusters based on 

acoustic or linguistic knowledge. 

For feature-based EP, we tie different vector 

components, e.g., energy, static, first- and second-order time 

derivative coefficients. When tying coefficients into Z 

groups, the original super-vector is partitioned into Z 

subvectors. for the 

Pth super-vector). Then, we can construct Z sets of 

subspaces  

with each subspace spanned by a particular group of 

coefficients. 

B. Increasing Coverage of the Environment Spaces: 

Traditionally, discriminative training methods, such as 

minimum classification error (MCE) , maximum mutual 

information estimation (MMIE) [7], minimum word/phone 

error (MWE/MPE) and soft margin estimation (SME) [8], 

were used to refine accuracy of acoustic modeling. In the 

ESSEM framework, we use the discriminative training to 

maximize the separation between super-vectors in order to 

spread the coverage of the ESS space. Among these 

discriminative training methods, we adopt MCE training [6] 

because its misclassification measure can represent a 

probabilistic distance between two classes. We propose two 

modes of training on the ESS space, intra-environment 

(intraEnv) and inter-environment (interEnv) training. For 

both intraEnv and interEnv training, the parameters in the 

ESS spaces are first estimated with the ML criterion; then 

refined by MCE training. 

a. Intra-Environment (intraEnv) Training:  

We use intraEnv training to increase the separation 

between components in one particular environment. With 

the training data Fp of Up utterances from the Pth 

environment, we have the objective function 

where is the  th training utterance for the th environment; 

both and are control parameters for the sigmoid function;  

represent the parameters other than means in HMMs. Since 

our goal is to minimize the objective function by adjusting 

parameters in the ESS space,  is fixed across different 

environments. 

The misclassification measure d(.) is defined as 

 where is a positive control parameter, is the given correct 

where  is a positive control parameter,  is the given 

correct transcription, and are the N -best 

decoded competing word sequences. The -best are generated 

by decoding   using the HMMs for the Pth environment. 

We used a log-likelihood for the discrimination 

function,  in and (11), and adopted the generalized 

probabilistic descent (GPD) algorithm to update parameters 

inVp iteratively 

 

 

b. Inter-Environment (interEnv) Training:  

For the interEnv training mode, we consider each 

environment, accordingly its super-vector, as a particular 

class in the ESS space. Then, we collect speech data of a 

total of U utterances for P different environments and define 

an objective function 

 

 

Where  is the th utterance in the training set. The 

misclassification measure   is now defined as 

 
Is again the given correct transcription.  are 

the N--best decoded competing word sequences. In the 

optimization process, we know the target environment to 

any segment of the training data, and we generate Wn by 

using the HMMs for the nth most competitive environment 

to that target environment. Parameters in the ESS space are 

then updated iteratively based on 
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After performing intraEnv and interEnv training for 

several iterations, we obtain MCE-refined ESS spaces. Fig. 

2 illustrates the ESS spaces with ML, intraEnv, and intraEnv 

followed by interEnv training, respectively.  

IV. ONLINE TARGET SUPER-VECTOR 

ESTIMATION 

In this section, we introduce super-vector estimation in 

the online phase with the refined ESS spaces described in 

the previous section. 

A. Environment Clustering: 

For the EC algorithm, we first conduct an online cluster 

selection to locate the most relevant cluster, whose 

representative super-vector has the highest likelihood to the 

testing data Fy 

 

With the selected cluster , and based on (5), we 

estimate the target super-vector,Vy through 

 
The structure defined by acoustic difference in (8) is 

advantageous when the testing condition is contaminated by 

a single distortion source, and the type of that distortion is 

determinable. 

For example, to remove channel distortions in a 

telephony service, we simply select the channel environment 

subspace  and estimate the target super-vector 

through . Previous studies have 

verified such distortion-specific compensation operating 

well in speaker variations  channel mismatches and additive 

background noise. It is also useful if each distortion has 

individually refined structure, such as hierarchical structure 

to facilitate estimating the target super-vector in  

B. Environment Partitioning: 

For the mixture-bases EP technique, we estimate sub-

vectors in Vy through stochastic matching as shown in  

individually. 

For example, the th sub-vector is estimated by 

 
Then, the target super-vector is formed by sets of 

estimated sub-vectors. 

 
For mixture-based EP, a same tying structure may not be 

well shared among different environments, especially for 

those environments with way different acoustic 

characteristics. We can handle this issue by sharing a same 

tying structure among environments with close acoustic 

properties. Therefore, it is favorable to combine EC when 

conducting mixture-based EP. On the other hand, feature-

based EP estimates sub-vectors consisting different groups 

of coefficients individually. For the th group of coefficients, 

we have 

 

Finally, we have the target super-vector by concatenating 

the Z- sub-vectors into one super-vector 

 

V. EXPERIMENTAL SETUP AND RESULTS 

We evaluated the ESSEM framework on the Aurora2 

database [45]. The multicondition training set was used to 

train HMMs and to build the ESS spaces. The training set 

includes 17 different speaking environments that are 

originated form the same four types of noise as in test Set A, 

at four SNR levels: 5, 10, 15, and 20 dB, along with clean 

condition. We further divided the training set into two 

gender-specific subsets and obtained 34 speaker and 

speaking environments. We tested recognition on the 

complete evaluation set that consists of 70 testing conditions 

with 1001 utterances in each condition. A self-adaptation 

(unsupervised) mode is used, and each testing utterance was 

first decoded into an -best list and used for ESSEM model 

adaptation. We studied many online mapping functions, 

such as best first, linear combination, linear combination 

with a correction bias, and multiple cluster matching [10]; in 

this paper, we selected the linear combination function 

throughout the following experiments. This mapping 

function is also used in cluster adaptive training (CAT) [11] 

and Eigen voice .With the EC algorithm, the online super-

vector estimation in becomes 

 

where  is the pth weighting coefficient in the linear 

combination function, and is the number of bases in 

the Cth subspace. The set of weighting coefficients is 

estimated according to the ML algorithm 

 
As mentioned earlier, the online process of EC 

resembles the subset selection methods. When comparing to 

CAT and Eigen voice, the major advantage of EC is to use 

the regional prior knowledge of the ESS space from the EC 

tree structure. This regional knowledge is critical to dealing 

with unknown testing conditions. With such regional 

knowledge, EC only uses the located group of super-vectors 

(the Pth cluster) to estimate the target super-vector in (5). 

Moreover, EC locates a representative HMM set through 

cluster selection. Instead of using the environment-

independent HMM set, we use the located HMM set to 

calculate statistics needed in estimating the weighting 

coefficients in The representative HMMset can provide 

more accurate statistics estimation than the environment-

independent HMM set. 

A. Environment Clustering and Environment 

Partitioning: 

We first evaluated the performance of the EC and EP 

algorithms. For this set of experiments, each speech frame 

was characterized by 39 coefficients consisted of 13 MFCCs 

with their first and second order time derivatives. An 

utterance-level CMS was performed for normalization. All 

digits were modeled by 16-state whole word HMMs with 

each state characterized by three Gaussian components. The 

silence and the short pause were modeled by three and one 
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state, respectively, with each state characterized by six 

Gaussian mixture components. 

 

 

 

We tested ESSEM on gender-independent (GI) and 

gender-dependent (GD) systems. For the GI system, a 

GIHMM set was trained on the multicondition training data, 

and 34 environment specific HMM sets were obtained by 

adapting (we used MAP [19]) mean vectors from the GI 

HMM set to particular environments. Next, we collected the 

mean vectors for these 34 HMM sets to build an ESS space. 

For the GD system, two GDHMMsets were first trained. 

Then, 17 environment-specific HMMsets for each gender 

were obtained by adapting mean vectors from that GD 

HMM set. Therefore, two ESS spaces corresponding to the 

two genders were prepared. An additional pair of HMM sets 

was prepared for automatic gender identification (AGI). For 

the AGI HMMs, each gender was modeled with 16 active 

states with each state characterized by 88 Gaussian mixture 

components. 

a. Overall Combination: MCE EC EP: Finally, : 

we integrated EC, EP, and MCE training techniques to 

refine the ESS space. We first used the MCE training to 

increase the discrimination; then, we applied the same two-

layer tree structure for EC followed by mixture-based and 

feature-based EP. The result of using in Table XII as “MCE 

EC EP(M)” and “MCE EC EP(F)” for mixture-based and 

feature-based EP, respectively. Again for Mixture-based EP, 

we used a hierarchical tree structure to clustering Gaussian 

mixture components. For feature-based EP, we partitioned 

each super-vector according to different types of coefficient 

components, namely, 13 static, 13 first-, and 13 second 

order time derivatives of AFE features .We also list the 

average WERs and P-values for the two overall combination 

techniques in Table XIII. The P-values are estimated based 

on the two combination methods versus “GD-intraEnv 

intraEnv” in Table IX. 

From the results in Tables IX and XII, we find both the 

two combination techniques provide better performance 

than “GD-intraEnv intraEnv.” From Table XIII,. The two 

combination methods provide clear improvements under 

low SNR conditions. 

We further used dependent t-Test to estimate P-values 

for the overall 50 testing conditions. The corresponding P-

values are 0.066 and 0.019, respectively, for “MCE EC 

EP(M)” and “MCE EC EP(F)” versus “GD-intraEnv 

intraEnv.” Thus, we claim that both the two combination 

methods are better than “GD-intraEnv intraEnv.” Since the 

concepts of mixture-based and feature-based EP techniques 

are different, we tested recognition by using an integration 

of the two EP techniques. However, the integration did not 

give further improvement over “MCE EC EP(F)” alone. We 

believe that it is due to the limited adaptation statistics 

needed for the per-utterance compensation mode. 
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VI. CONCLUSION 

We present an ESSEM framework that can be applied to 

enhance performance robustness of ASR under noisy 

conditions. We also propose techniques to refine the ESS 

spaces for ESSEM and thereby enhance its performance. We 

first introduce EC and EP to structure the ESS space well; 

then, we propose intraEnv and interEnv training to improve 

environment discriminative power. We tested the ESSEM 

performance with its extensions in an unsupervised 

compensation (self-learning) mode with very limited 

adaptation data. For EC, although it requires an online 

cluster selection process before stochastic matching, the 

dimensionality of the selected subspace is smaller than the 

original space. The computational cost is therefore lower 

than the original method. Moreover, the selected subspace 

can provide higher resolution to model the target super-

vector for the testing environment than the entire ESS space.  

For EP, the parameters belonging to different groups are 

estimated individually, obtained accurately. Although we 

need to conduct several stochastic matching procedures 

instead of once, partitioning high dimensional super-vectors 

is favorable in applications with limited resources of online 

operation. Next, we use intraEnv and interEnv training 

algorithms to enhance confidence interval within one 

particular environment and increase distance across different 

environments, respectively. Recognition results indicate that 

ESSEM achieves better performance with an MCE-trained 

ESS space than an ML-trained ESS space on both GI and 

GD systems. We also adopt two measurements to directly 

investigate the effects of intraEnv and interEnv training.We 

show that intraEnv training enhances the separation between 

parameters within an HMMset for a particular environment, 

while interEnv training increases the difference across 

environments. Finally, we integrate all techniques, namely 

MCE training with EC and EP, to obtain our best 

environment configuration. 

In this paper, we implemented the ESSEM framework 

with an ESS space formed by 34 different environments in 

the offline phase. We believe the same approach can be 

extended to more environments for different ASR tasks. 

Moreover, we focus on the offline preparation issues in this 

paper; many online supervector estimation issues are also 

critical to the ESSEM performance and will be further 

studied.  
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