
Volume 2, No. 6, Nov-Dec 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 239

ISSN No. 0976-5697

System Testability Assessment and testing with Micro architectures

J.M.S.V.Ravi Kumar* M.Tech, (Ph.D)., Dr.M.Babu Reddy. Ph.D., I. Rajendra Kumar., P.ashok Reddy

Lakireddy Bali Reddy College of Engg.

Mylavaram, Andhra Pradesh, India.

*venkat7063@Gmail.Com, m_babureddy@yahoo.com, rajendralbrce@gmail.com, ashokreddimca@gmail.com

Abstract— Testing is necessary to ensure software reliability and fidelity. However, testing activities are very expensive and difficult. Micro

architectures, such as design patterns and anti-patterns, widely exist in object oriented systems and are recognized as influencing many software

quality attributes. Our goal is to identify their impact on system testability and evaluate how they can be leveraged to reduce the testing effort

while increasing the system reliability and fidelity. The proposed research aims at contributing to reduce complexity and increase testing

efficiency by using micro architectures. We will base our work on the rich existing tools of micro architectures detection and code reverse-

engineering.

Keywords- Testing, testability, design patterns, anti-patterns test case generation.

I. INTRODUCTION

Software is now pervasive and essential in our daily life.

Its reliability is, therefore, a major concern. Software failure

may cause unacceptable financial losses or risk human lives

in critical systems such as avionics and health systems.

Testing is the most widely adopted practice to improve

software quality and assure reliability and dependability.

Though it does not guarantee the total reliability or absence

of faults, testing allows to provide an increase in our

confidence in software dependability, reliability and more

generally user perceived quality. Testing activities are

important and crucial throughout the entire software life

cycle. They involve different abstractions levels.

Unfortunately, testing activities are very expensive,

complex and time consuming. They represent up to 50% [1]

of the effort and the cost of software development. Testing

activities are very challenging. Many researchers have been

trying to find ways to reduce their complexity increase their

efficiency and reduce required effort. Several testing

approaches and coverage criteria have been proposed with

different results, almost always with the same goal:

reduction of testing effort and cost by testing activity

automation. In the literature, various levels of testing are

reported such as unit testing, integration testing, system

testing and regression testing. Black box approaches test the

system functionalities and white box approaches assume that

code is available. Other approaches aim at assessing systems

testability. According to IEEE Standard Glossary of

Software Engineering, IEEE 610.12, Testability is defined

as the degree with which a system or component facilitates

the establishment of test criteria and the performance of tests

to determine whether those criteria have been met. Another

definition presents the testability as a quality factor for

programs, or program architectures that relates to the

easiness for testing a piece of software [2].

The testability can be assessed at different stages of

software development. Many researchers argue (e.g., [2],

[3]) that this information is more useful early in the software

life-cycle. Indeed, at early stages, testability information can

be used to improve software artifacts such as the design, in

order to facilitate testing with the ultimate goal to enhance

software quality. The goal is therefore to integrate the means

of reducing cost and complexity of the testing, early in the

life-cycle: Other things being equal, a more testable system

will reduce the time and cost needed to meet reliability and

more generally, quality goals [4]. Object oriented software

design often embeds micro architectures such as design

patterns and antipatterns. These micro architectures convey

intentions and often play important, yet specific roles. They

influence significantly many quality attributes (eg.,[5], [6],

[7], [8]). In this research, we are concerning with important

research questions such as: What is the link between these

micro architectures and the testability of systems? Can we

exploit them in the testing perspective to increase the

reliability and quality of a software system? These questions

compel to explore the impact of these micro architectures on

the testability and how micro architecture information can

be exploited to improve the testing of the system and

consequently its reliability and dependability. This

exploration will extensively use or adapt existing tools to

detect micro architectures and also rebuilt models from

source codes. The remainder of the paper is organized as

follows: In section 2, we give the motivation underlying this

research work. Section 3 describes the research questions

and section gives an overview of the methodology for

answering them. We summarize our expected contributions

in the section 5.

II. MOTIVATIONS

It is our belief that exploiting testability can

significantly, improve testing while reducing its cost.

Several previous works [2], [3], [4], [9] have addressed this

and related research topics including approaches for

testability assessment and testability improvement and also

analysis of factors which impact systems testability. While

analyzing the metrics for object-oriented systems testability,

Bruntink et al. [9] discovered factors which influence the

testability at unit testing level. Their goal was to identify and

evaluate a set of metrics that could be used to assess the

testability of Java Systems, with focus on unit testing. They

performed five case studies on commercial and open source

Java systems. They found that there is a significant

correlation between metrics they studied and testing effort.

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 239-243

© 2010, IJARCS All Rights Reserved 240

They suggested further studies to generalize these

findings and also explore other testing levels. This is an

example which shows that we need some evidence between

testability and its influencing factors. Testability can be

considered at different stages in the life-cycle of software.

Many researchers [2], [3] argue that its assessment and its

exploitation are more valuable in early stages of the life-

cycle; for instance at the design stage. Indeed, testability is

an important quality factor that risk being useless if it is not

available early in the life-cycle [2]. This can explain why

design for- testability is considered as a very important issue

in software engineering. It becomes crucial in the case of

OO designs, where control flows are generally not

hierarchical, but are diffused and distributed over the whole

architecture [10]. In this perspective, Baudry et al. [2]

presented a study on the testability of design and how to

integrate testability improvements into the usual design

process.

The factor measured to assess the testability was called

testability anti-pattern and corresponded to the undesirable

configurations in the class diagram. To deal with the

complexity of the overall design, they did a local analysis

for the testability of the design by focusing on design

patterns. They provided as result a testability evaluation grid

quantifying the relation between each pattern and the

severity of the testability anti-patterns. This evaluation grid

considers most of design patterns and can be used to guide

developers in improving design testability. Finally, they

argued that testability can also be improved by adding

specific stereotypes targeting testability and for example

helping programmers to avoid useless object interactions.

These stereotypes could be automatically added for

design patterns at the meta level, like testability constraints.

They illustrated this approach with one design pattern, the

Abstract Factory design pattern. However, this work did not

explore the impact of the design pattern on the testability of

the overall system and did not provide concrete experiment

to support presented theory. More in general, design patterns

and anti-patterns are design specifications which widely

exist in object oriented systems. As the names suggest, the

term design pattern indicates design solution believed to

promote quality while anti-patterns are considered poor

design solution, impairing quality. Design patterns have,

since their introduction in the mid 90s, been the focus of

various research trying to establish relations between design

patterns and design quality. They are defined as reusable

solutions to recurring design problems [5]. Many

researchers claimed that design patterns impact positively

quality attributes like maintainability, reusability and

understandability, for instance [5], [6]. However, other

studies, for instance [7], [8], rejected some of these claims

stating that some design patterns can also degrade some

quality attributes. These studies suggest that design patterns

should be carefully used.

For example, Khomh et al [7] carried out an empirical

study on the impact of design patterns on software quality

attributes. They based their study on a questionnaire (for

software engineers) about the usage of design patterns in

software development or maintenance. Their analysis

supported the conjecture that some quality attributes

(understandability, reusability, expandability) may be

negatively impacted by the use of some design patterns, in

contrary to the common belief. In contrast to design

patterns, the anti-patterns are defined as poor solutions to

recurring design problems. In literatures, they are widely

described as having a negative impact on the software

quality. The numerous studies on these microarchitectures

and their impact on software quality show their importance

and influence they have on systems quality. The conclusions

of these studies sometimes rejected popular beliefs and

show thus the importance of such studies. They are the basis

of taking rational decisions to improve the quality of

systems. Our research stems from the observation that

despite the vast amount of previous work, only a few

contributions addressed, in general, the impact of these

microcarchitectures on testability.

III. DISCUSSION

The class diagrams of Figures 1 and 2 represent a

program’s abstraction in a system of compilation. System B

uses the design pattern Visitor to implement operations

performed by the objects of the data structure. The design

pattern Visitor undoubtedly improves the maintainability,

the extensibility, the understandability of the system

relatively to the system A. In an other hand, it seems

decrease the system testability. Indeed, the use of

inheritance and the polymorphism in this pattern can make

testing activities hard.

IV. RESEARCH QUESTIONS

Overall, our main research question is can micro

architectures, and in particular design patterns and anti-

patterns, exploit to improve systems testability and testing?

At this early stage of the research, this question can be

explored through the following research questions which are

grouped in two main parts.

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 239-243

© 2010, IJARCS All Rights Reserved 241

Figure 1. Program’s abstraction in a system of compilation without design

pattern system A)

A. Micro Architectures and Testability :

In this part, we plan to study the testability of design

pattern and identify factors which explain it. We will also

study the impact of micro architectures on the testability of

the system.

a. Are design patterns testable?

b. What is the impact of micro architectures (design

patterns and anti-patterns) on the testability?

B. Exploiting Micro Architectures to Improve

Testing:

We want, in this second part, explore ways to exploit

design patterns to reduce testing cost and increase its

efficiency.

a. Can test of design patterns enhance software

reliability?

Figure 2. Program’s abstraction in a system of compilation with design pattern (System B)

b. Can test of design patterns help to reduce testing

cost?

c. Can test case generation for design patterns be

generic enough to be reused across systems?

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 239-243

© 2010, IJARCS All Rights Reserved 242

d. Can patterns be used to help test cases generation?

V. METHODOLOGY

In this section, we give an overview of the methodology

we will follow to achieve our goal and answer the research

questions.

A. Micro Architectures and Testability:

For addressing the first research question of this part, we

plan to analyze various software applications and existing

testability measurement approaches to identify suitable

metrics, in order to quantify the testability of design

patterns. These metrics would then be used to assess both

the testability of design patterns and the way in which it can

be improved. In order to study the impact of micro

architectures on system testability, so answer the second

research question of this part, we plan to perform a survey

targeting testing engineers. The questions would focus on

quantifying the impact of micro architectures on testing

effort. For example, we would present a list of micro

architectures and ask testers to identify from this list, the

easiest and the worst to test. Such a survey would permit to

collect opinions on the testability of systems containing

micro architectures, such as design patterns and anti-

patterns. Based on questionnaires analysis, we will classify

the micro architectures according to their impact on system

testability. We will perform some statistical analyses on

survey data in order to identify trends, if any. For the same

purpose, we plan to identify or develop systems with similar

size and objectives, with and without micro architectures

and assess their testability with existing methods. This

would lead to draw some conclusions about the impact of

these microarchitectures on the system testability,

confirming or confuting questionnaires results. The results

would provide a basis for refactoring techniques to improve

the testability of systems built with microarchitectures (ie.,

design patter and anti-pattern). And more importantly, they

would gain insight helping to further refine design

methodologies.

B. Exploiting Micro Architectures to get Better

Testing :

 For the two first questions of this part, we plan to

identify systems which contain design patterns and whose

testing data are available. We will explicitly test some

design patterns in order to verify whether this action

enhances the overall software reliability or educe the

number of needed test cases. For that, we would compare

the results of testing systems containing design patterns

(which are not explicitly tested) and of testing explicitly the

design patterns of these systems. This study would help us

to know if the test of design patterns actually enhances

software reliability.

For the third question, we will attempt to define a

etalevel devoted to testing, characterizing design patterns,

with the goal to ease the reuse or ease automatic test input

data generation for design patterns. And finally, to address

the last question, we will study the various ways to use the

knowledge of the existing patterns in the system to check if

it is possible to reduce the number of test cases while

keeping the same level of quality.

VI. PROBABLE RESEARCH CONTRIBUTIONS

Our main expected contribution is to reduce testing

effort and increase its efficiency by using design patterns

and anti-patterns. This include identification and

quantification of the impact of these micro architectures on

system testability and testing. Thus, based on this

knowledge, we would suggest refactoring techniques and

guidelines for making design decisions. This proposed

research would also guide us to improve system testability at

an early stage of the software life-cycle. Further, it aims at

providing ways to exploit design patterns to reduce test

cases generation and testing effort, and also increase the

reliability of systems. The expected results will, firstly, be

useful for designers. Designers will have a base to make

rational choice about the use of design patterns in their

systems and how they should use them in order to facilitate

testing activities. The results will be also useful for testers.

They will permit them to organize testing efforts but also

easily generate test cases. Finally, developers can use the

expected results to justify refactoring of systems.

VII. REFERENCES

[1]. M. J. Harrold, “Testing: a roadmap,” in ICSE ’00:

Proceedings of the Conference on The Future of Software

Engineering. New York, NY, USA: ACM, 2000, pp. 61–

72.

[2]. B. Baudry, Y. Le Traon, G. Suny´e, and J.-M. J´ez´equel,

“Measuring and improving design patterns testability,” in

METRICS ’03: Proceedings of the 9th International

Symposium on Software Metrics. Washington, DC, USA:

IEEE Computer Society, 2003,

[3]. [3] S. Mouchawrab, L. C. Briand, and Y. Labiche, “A

measurement framework for object-oriented software

testability,” Inf. Softw. Technol., vol. 47, no. 15, pp. 979–

997, 2005.

[4]. R. V. Binder, “Design for testability in object-oriented

systems,” Commun. ACM, vol. 37, no. 9, pp. 87–101,

1994.

[5]. R. J. Erich Gamma, Richard Helm and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison- Wesley Professional, 1995.

[6]. B. Venners, “How to use design patterns A conversation

with Erich Gamma, part I, year = 2005,

publisher=http://www.artima.com/lejava/articles/gammadp.

htm.”

[7]. F. Khomh and Y.-G. Gueheneuc, “An empirical study of

design patterns and software quality,” pp. pages 1–19,

2008.

[8]. L. Aversano, G. Canfora, L. Cerulo, C. Del Grosso, and M.

Di Penta, “An empirical study on the evolution of design

patterns,” in ESEC-FSE ’07: Proceedings of the the 6th

joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The

foundations of software engineering. New York, NY, USA:

ACM, 2007, pp. 385–394.

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 239-243

© 2010, IJARCS All Rights Reserved 243

[9]. M. Bruntink and A. van Deursen, “An empirical study into

class testability,” J. Syst. Softw., vol. 79, no. 9, pp. 1219–

1232, 2006.

[10]. B. Baudry and Y. L. Traon, “Measuring design testability

of a uml class diagram,” Inf. Softw. Technol., vol. 47, no.

13, pp. 859– 879, 2005.

