
Volume 2, No. 6, Nov-Dec 2011 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved    1 

ISSN No. 0976-5697 

A New Architecture for NLIDB Using Local Appropriator Engine for SQL Generation 

Enikuomehin Oluwatoyin* 
Computer Science Dept,  

Lagos State University  

Lagos, Nigeria 

toyin@lasunigeria.org 
 

Sadiku J.S 

Computer Science Dept,  

University of Ilorin  

Ilorin, Nigeria 

ijssadiku@unilorin.edu.ng 

Abstract: In this paper, we present the design and implementation of a special type of Natural Language Interface using the 

concept of Local Appropriator (LA). The purpose of natural language introduction to database is to allow users post questions 

coined “natural language” and get discriminated answers which form the result of their query in terms of tables. A Local 

Appropriator Natural Language Interface, the LANLI, parses semantically, a natural language on a relational database by building 

the corresponding SQL. The LANLP is a new generation of NL2DB which uses a Syntactic-Semantic (SySe) tree to generate a 

matching algorithm for its transformation using word net for semantic analysis and a parse tree algorithm for its syntactic analysis. 

The generated tree is fuzzified to handle ambiguity contained in word. For expert users, this advancement could be likened to the 

development of an automated structure query language (sql) generator. The essence of this paper is to present a new architecture 

for querying databases that provide users with the capabilities of extracting information contained in the relational database. Users 

do not have to learn the process of formulating a query through sql.. 

 

Keywords: natural language interface, database, local appropriator, query, sql 

I. INTRODUCTION 

Information Technology and computerization has taken 

over the way organizations operate. Public and private 

organizations now depend on the services embedded in IT to 

perform their services. This is a justification for the 

continued acceptance of the Database Technology as a way 

to properly handle data. This has resulted in a simple 

extraction: more people will have to access the content of a 

database; however, most of these users are non-expert in the 

field of IT and computer science thus they do not have the 

knowledge of how to use the ANSI approved universal 

Database language, the Structure Query Language (SQL). 

Its therefore becomes necessary to develop a system that can 

enable non expert users retrieve data from the database by 

posting request in their natural language. Natural language 

NL, as language spoken by man such as English, contains 

high level of ambiguity, thus a NL interface for relational 

database will only be appropriate for a section of NL at time 

however this coverage can be extended. We therefore 

propose the use of a Local Appropriator (LA) as a model 

that completes the transformation of user natural language 

request at the front end without having to affect the structure 

of the database.  We examine the earlier transformation 

processes and propose a new transformation algorithm using 

appropriate model to measure the accuracy level of the 

result presented by non sql expert and that presented by an 

sql expert on the same domain.  

Consider the following: 

a. By non sql expert; All students in biology 

department  

b. By sql expert: Select * from Student Where 

dept_name =biology.  

The above simple request shall be upheld as a sample 

request in this paper. 

We attempt to compare the result of these two simple 

queries and use that as a measure of the performance level  

 

of the system. Systems that are capable of managing data are 

classified as Database Management System (DBMS) [1]. 

Retrieval processes in relational databases have been shown 

to be very important to the growth of database technology 

[2]. The growth in database usage is experiencing an all time 

high as both private and public sectors now depend largely 

on it to achieve their organizational goals. The database 

allows for view of data at a logical level. Operations on the 

database are purely on dedicated languages which are 

capped as either Data Manipulation language (DML) or 

Data Definition Language (DDL). Also, in use is the Data 

Control Language (DCL). All of these are embedded in the 

structure of a complete structure query language, sql. 

SQL is the ANSI approved querying standard for 

accessing the database, It has been found appropriate for use 

in most DBMS. A major concern about the performance of 

sql is its inability to handle ambiguity as pertinent to the 

way human talk, reason and act. This singular act makes the 

sql incomplete and inappropriate it for non trained users. 

Due to the above constraint, it has become necessary and 

important to develop a system that will be able to extract 

additional hidden data from the database. Intelligence has 

been introduced to database itself [4] however, it has 

become necessary to move the enhancement from the 

database to the frontend, in this case, the query interface. 

We therefore suggest the concept of a Local Appropriator. 

We propose the Local appropriator as an intelligent sql 

generator that transforms a user request from plain language 

to sql. 

II. NLIDB AND SOME RELATED WORK 

Natural Language Interface to Databases (NLIDB) has 

been an area of interest over some time. It is a branch of a 

larger domain of research called Natural Language 

processing which itself is a study area in Artificial 

Intelligence. The research on this aspect of AI has been on 



Enikuomehin Oluwatoyin et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011,1-7 

© 2010, IJARCS All Rights Reserved    2 

since early 80s [4], [5]. The dream has always been to 

develop a system that can interact with human in an English 

way[6]. NLIDB are generally seen as easy ways to obtain 

information from databases. These days they are seen as 

special types of Question Answering systems. Relationship 

has been proposed for QA systems like HITIQA[7] 

Many times, researchers have linked the NLIDB with the 

QA systems. Scientifically, they have been shown to have 

fundamental differences. QA addresses answers using the 

structure of a text while the NLIDB uses a transformation of 

its meaning-- the semantic generation. Both systems, are 

working to make the computer understand human by 

building a higher level of interaction thereby making users 

more flexible in system usage. A proper system should be 

able to interprete a request appropriately. 

Most existing database queries that have been proposed 

do simple keyword match. They initially attempt to break 

down the request but still execute such by matching relevant 

keyword other than extracting the actual meaning of a 

request. They locate the keyword in any query and try a 

match them across defined database. Some use forms also 

known as template to analyze users input[8]. The interface 

of the LA allows users to type in their NL questions which 

are mostly fuzzy-type sentences without using a form or a 

template.  

III. OVERVIEW OF LOCAL APPROPRIATOR 

SYSTEM 

The concept of Local Appropriator is a new attempt 

aimed at making the operations of the querying processes 

end at the frontend without any further activity required 

from the database. This will enable the system to have the 

ability to work on many distributed databases and of course, 

improve time of execution. All activities at the interface 

takes place at the domain of the Local Appropriator. A 

nested structure of the syntactic natural language is mapped 

onto the semantic generations using the concept of wordnet. 

This leads to a Syntatic-Semantic tree (SySe tree) formation, 

the syntactic and semantic tree, on the formation can be 

implemented for retrieval processes using a transformation 

into the conventional SQL for execution in the RDBMS.  

The Earley J algorithm was invoked for use on the parse 

structure.  With Earley‟s syntactic parse algorithm [9], we 

can decide if a word will be generated by a given grammar. 

This semantic algorithm is induced to generate a high level 

influential and portable interface. The link parser analyzes 

the syntactic structure of the sentence. The Link Grammar 

Parser is a syntactic parser of English (and other languages 

as well), based on link grammar, an original theory of 

English syntax.  

IV. A RECAP OF THE EARLEY’S ALGORITHM 

As adapted from [10], given a sentence, the system 

assigns to it a syntactic structure, which consists of a set of 

labelled links connecting pairs of words. The parser also 

produces a "constituent" representation of a sentence.  The 

descriptions, α, β, and γ represent 

any string of terminals/non-terminals (including the empty 

string), X and Y represent single non-terminals, 

and a represents a terminal symbol. Earley's algorithm is a 

top-down dynamic programming algorithm. In the 

following, we use Earley's dot notation: given a production 

       X→αβ                         (1)                                                                                          

The notation X → α • β represents a condition in which 

α has already been parsed and β is expected. For every input 

position (which represents a position between tokens), the 

parser generates an ordered state set. Each state is a tuple  

    (X→α•β, i),                     (2)                                                                                             

consisting of the production currently being matched (X 

→ α β), the current position in that production (represented 

by the dot) and the position i in the input at which the 

matching of this production began( the origin 

position).(Earley's original algorithm included a look-ahead 

in the state; later research showed this to have little practical 

effect on the parsing efficiency, and it has subsequently 

been dropped from most implementations.) 

The state set at input position k is called S(k). The parser 

is seeded with S(0) consisting of only the top-level rule. The 

parser then iteratively operates in three 

stages: prediction, scanning, andcompletion.. Prediction: 

For every state in S(k) of the form (X → α • Y β, j) 

(where j is the origin position as above), add (Y → • γ, k) to 

S(k) for every production in the grammar with Y on the left-

hand side (Y → γ).. Scanning: If a is the next symbol in the 

input stream, for every state in S(k) of the form (X → α 

• a β, j), add (X → α a • β, j) to S(k+1).. Completion: For 

every state in S(k) of the form (X → γ •, j), find states in S(j) 

of the form (Y → α • X β, i) and add (Y → α X • β, i) to 

S(k). 

These steps are repeated until no more states can be 

added to the set. The set is generally implemented as a 

queue of states to process (though a given state must appear 

in one place only), and performing the corresponding 

operation depending on what kind of state it is. Adapted 

from[10] 

V. THE PARSING PROCESS 

When a sentence or a natural language is placed on the 

interface, the sentence is firstly broken down into words, at 

this point, stemming takes place-tokenization. After 

stemming, they are reformed as a sentence again at the 

instance of the LA which invokes wordnet for the generation 

of the semantic tree, knowing that the Earley‟s algorithm 

will be used as stated above to generate the syntactic tree. 

Semantic relation and nodes are created mainly by wordnet.  

When an input is placed into the interface in LA, the LA 

invokes word net to place the word in its semantic category, 

since the grammar is context free and not in the Chomsky 

normal form, CNF. The CNF is given as follows:  

If L(G) does not contain  , then G can have a CNF form 

with productions only of type                                                              

(3) 

  

where  

  

  

  

http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols
http://en.wikipedia.org/wiki/Empty_string
http://en.wikipedia.org/wiki/Empty_string
http://en.wikipedia.org/wiki/Empty_string
http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Lexical_analysis
http://en.wikipedia.org/wiki/Tuple


Enikuomehin Oluwatoyin et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011,1-7 

© 2010, IJARCS All Rights Reserved    3 

Due to complexity, the semantic relations that may also 

exist are not always all presented in the tree. The LA 

adheres to  the above using a data mapping system 

contained in word net to provide information about the 

given word which will be transformed to query usable by 

the database. The entities, attributes etc of the database are 

all maintained at the level of the database. Finally, the LA 

returns the NL query earlier presented by the user based on 

the generated standard tree. The LA generates a 

corresponding SQL query from the standard tree. An 

additional attempt in this study is to further fuzzify the 

generated sql based on the premise that fuzzy logic closes 

the gap between man and machine. For the purpose of 

translation, the tree concept as entrenched in data structure 

is used. For translation processes, each main node (not root) 

is travervesed. Consider, again, the request for all student 

used above, word net generates the following transformation 

for students. 

[student::] [student] pupil, learner 

The British National corpus presents a ranking for the 

first 5000 synsets.  Consider a user request query on a table 

called students as represented above. In our application, 

students is first stemmed into student(singular), then 

Wordnet attempts to present words related in meaning, in 

WordNet 2.0  

Student produces student, pupil, learner. Results for 

„Synonyms, hypernyms and hyponyms are ordered by 

estimated frequency‟ search of noun „students‟. Two 

(2)senses of students were generated and they are as 

follows: Student search on wordnet  produces pupil(a child 

or young person in school or in the charge of a tutor or 

instructor ) and learner (To gain knowledge, comprehension, 

or mastery of through experience or study). Thus the 

semantic set for student is given as {pupil, learner}. A 

ranking of synsets derived from word frequencies in theB 

British national corpus synsets have been used[11]. Problem 

of execution exist in cases where the same word have 

different semantic nodes.As example, the word pupil can 

also mean a layer of the eyes which will lead to another 

structural formation other than that of the student. 

 

 

 

VI. DATABASE AND LA 

Database attributes are also assigned a node. The 

complete query is generated after all nodes including the 

root have been transverse. This means that it is possible to 

translate the standard tree into sql using the LA. Note that to 

handle the preferential nature of human user, a column 

degree is automatically inserted into the result table to 

ascertain the level of satisfaction of users, this is the 

knowledge domain. This is used in measuring the 

satisfaction level of users and can be expanded to build a 

suitable feedback system. Some few concepts are germane 

to the semantic structure of a word.  They include the 

following;  

A. Phonology: 

Phonetics deals with speech sound of words in the 

context of a relationship between phonemes: small, distinct 

sound unit of a language. Most NLS system do not operate 

at this level. 

B. Morphology:  

These are the processes of marking, stemming and 

truncation of words. It deals with the meaningful part the 

word. 

C. Lexicology:  

This is the study of words itself. This refers to the area of 

lexicon. Lexicon are of great importance in the deployment 

of effective IR system. 

D. Semantics: 

Involves the study of the meaning of the words. This is a 

more complex level of importance analysis. 

The proposed architecture has the LA as the “CPU”. The 

LA, the knowledge tree and the DB forms a complete set for 

the proposed system. The LA controls all activities involve 

in the transformation of Natural Language to sql for 

execution on Relational Databases. 

The LA used in this study is an extension of a query 

agent called ADAM [12] . A general overview of the system 

is shown below  

 

 

 

Figure 1: A theoretical view of the parsing system 



Enikuomehin Oluwatoyin et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011,1-7 

© 2010, IJARCS All Rights Reserved    4 

 

Figure 2. The flow of the parsing structure 

VII. SYNTAX BASED SYSTEM 

Natural language interfaces has shown that the user is 

not required to learn any artificial motional language. Since 

formal queries like sql are difficult to learn and must by a 

non computer expert. NL has been described as an easy to 

use process for implementing the desire of the user against a 

database. 

In a syntax based system, the user input/question is 

parsed syntatically. The question is translated from its 

language syntatically in this form, from English to SQL, 

parsing is the process of identifying structure in data [13]. It 

determines the whether the input data has some pre-

determined structure and respond accordingly. Parsing 

requires the definition of a set of grammars. Gradually, all 

syntax based system uses the grammar to describe the 

possibility of a syntactic structure embedded in the users 

question. These grammars are set of rules which define how 

the language is structured. Rules are specific platform of 

data, which appears in the input. Sub rules also exist as 

those rules with reference to the main rule. 

The syntactic system is regularly based on the rules 

defined in the grammar. It can be summarized as follows: 

Grammar:  rulers  #one or more 

rule 

Rule: productions  # can be form 

in several ways depending on 

structure   of 

input  

Productions:  terminal # used to describe 

complex structure of inputs  

Sub rule:  terminal  

The bottom – up parser are series of syntax encoded in a 

look-up table. Parsers are transitive as the begin act a pre-

defined state and move to other states depending on the next 

valuable write with which parser works. Tokens can be 

terminal and non-terminal. Token groupings are determined 

by the grammar rules.  

Transforming a SySe tree to an sql cannot be achieved in 

a single step. Consider, the universal of Essex NLI which is 

a multi – stage transformation process[14].  

A. Implementation and Result: 

The proposed system is implemented using php on an sql 

server. The processes described above were all implemented 

in the underline coding.  Matching and generation rule are 

developed within the preprocessor. This rules are created in 

other to form a dependent relation. That it, match will occur 

if and only if a relation exist. This is the benchmark that 

maps the user input into the required SQL. It means that for 

any given query with term a, b there must be corresponding 

tables a-like, b-like on the database. In such case, we can 

have a rule that for any query containing student and 

department then system list all content of table and 

department from the database. Our system associate rules to 

each table content as been implemented in php and ensure 

that they are well weaken by the pre-processor. Consider the 

request for list all of students in the department of biology. 

It is evaluated as figure 5:  

The bottom up parser is given as: 

 



Enikuomehin Oluwatoyin et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011,1-7 

© 2010, IJARCS All Rights Reserved    5 

 

 
 

Figure 3. The main Architecture 

  



Enikuomehin Oluwatoyin et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011,1-7 

© 2010, IJARCS All Rights Reserved    6 

 

 

 

 

 

Figure 5. A sample execution flow 

VIII. RESULTS AND CONTRIBUTIONS 

On implementation, the runtime test of the project over a 

university database is presented below. It shows that our 

model is completes its task over a shorter period than others 

that were tested. We may not be able to give confirm further 

enhancement at this stage as the model was just tested on a 

sample database. We are of the opinion that the model will 

be appropriate for use in large databases. 

The success rate in the result received is presented as a chart 

below: 

 

 

Figure 6. Rate at which result match ordinary sql at several runs 

 

Figure 7. The LA(ours) based query against some commercial 

NLPs(others). 

IX. CONCLUSION AND FUTURE WORK 

Initial results showed the prototype implementation to be 

successful. The system users were able to put their request 

into the system and the system was able to display expected 

and required result. The success rate of several training of 

the system is presented below. Future work will include the 

enhancement of the fuzzy logic part of the sql translation 

process. We shall attempt to include some weighted constant 

into the query. An attempt will be made to understand the 

possibility of the database itself handle the semantic 

interpretation. This will make the execution process faster 

than as it is now. 

X. REFERENCES 



Enikuomehin Oluwatoyin et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011,1-7 

© 2010, IJARCS All Rights Reserved    7 

[1]. M. Zongmain, „‟Intelligent databases technology and 

applications‟‟, IGI publishing, 320 pages, 2007 

[2]. W. Dietmar, “Application of sql for infometric data 

processing”, proceeding of the 33rd conference of the 

Canadian Association for information science, 2005 

[3]. Intelligent databases, available at 

http;//serachsqlserver.techtarget.com, accessed nov. 2011 

[4]. I. Androutsopoulos, G. Ritchie, and P. Thanisch, “Natural 

language interfaces to databases – an introduction”, Journal 

of Natural Language Engineering 1 (1) (1995) 29–81.].  

[5]. Giordani, Alessandra, .Kapetanios, Epaminondas, 

Sugumaran, Vijayan, Spiliopoulou and Myra, “Mapping 

Natural Language into SQL in a NLIDB”, Natural 

Language andInformationSystems, Lecture Notes in 

Computer Science,Springer Berlin / Heidelberg, 2008 

pp367-371 

[6]. M. bordie, Future Intelligent information system: AI and 

Database Technologies Working Together in Rendering 

artificial Intelligence and Database Morgan, Kaufmann, 

san mateo, CA, 1988 

[7]. S.Small, T.Strzalkowski, T. Janack, T. Liu, S. Ryan, R. 

Salkin, N. Shimizu, P. Kantor, D. Kelly, R. Rittman, N. 

Wacholder, and B. Yamrom. HITIQA: scenario-based 

question answering. In Proceedings of the Workshop on 

Pragmatics of Question Answering at HLT-NAACL 

Boston, MA, 2004.  pp. 52-59]. 

[8]. M.Blazquez, Q. Sheu , “linguistic Hedges on trapezoidal 

Fuzzy set” a revisal (2001) 

[9]. N Nihalani, S. Silakari and M. Motwani , “Design of 

Intelligent layer for flexible querying in databases”, 

International Journal of Computer Science and Engineering 

(IJCSE) Vol 1(2) 2009 

[10]. J. Earley "An efficient context-free parsing 

algorithm", Communications of the ACM 13 (2): 94–

102, doi:10.1145/362007.362035. 1970. 

[11]. Available at http://www.natcorp.ox.ac.uk/, accessed on 

Tuesday 1st, November, 2011 

[12]. Adam: Student Debt Advisor, Convagent Ltd, 

Manchester,UK, 2001, Available 

at:http://www.convagent.com/convagent/adam3.aspx 

[13]. D. Klein and D. Manning. “Fast Exact Inference with a 

Factored Model for Natural Language Parsing”. 

In Advances in Neural Information Processing Systems 15 

(NIPS 2002), Cambridge, MA: MIT Press, 2003 pp. 3-10. 

[14]. K.church, R. Murer,“Introduction to the special issue on 

computational linguistic using large corpus”, 

computational linguistic, 19 (1), 1993;   pp. 1 -24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

  

 

 

 

 

http://en.wikipedia.org/wiki/Communications_of_the_ACM
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F362007.362035
http://www.natcorp.ox.ac.uk/
http://www-nlp.stanford.edu/~manning/papers/lex-parser.pdf
http://www-nlp.stanford.edu/~manning/papers/lex-parser.pdf
http://www-nlp.stanford.edu/~manning/papers/lex-parser.pdf

