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Abstract:  Design the most existing cryptosystem incorporate just one cryptographic assumption, such as integer factorization problem or discrete 

logarithms. These assumptions appear secure today; but, it is possible that efficient algorithms will be developed in the future lo break one or more of 

these assumptions. It is very unlikely that multiple cryptographic assumptions would simultaneously become easy to solve. Enhancing security is the 

major objective for cryptosystems based on multiple assumptions. K.S. McCauley [12] proposed the first key distribution system based on two 

dissimilar assumptions, both of which appear to be hard. In his design, the sizes of the security parameters for these two assumptions are quite 

different. The modulus to satisfy the proper security requirement for one assumption is too large for the other assumption. The side effects are (1) the 

public key size is larger than the original Dime-Hellman key distribution scheme; and (2) more computation time is required. In the paper, public key 

encryption scheme is designed which is based on two problems namely integer factorization problem and Discrete Logarithm problem with double 

exponent. The adversary has to solve the two problems simultaneously in order to recover a corresponding plaintext from the received cipher text. 

Therefore, this scheme is expected to gain a higher level of security .we next show that, the newly developed scheme is efficient with respect to 

encryption and decryption since it requires only minimal operations in both algorithms.   
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I. INTRODAUCTION  

In 1976 Diffie and Hellman [1] proposed the concept of 

the public-key cryptosystem to solve the secret 

communication key distribution problem. Since then several 

public-key cryptosystems [3-5] which can provide both digital 

signature and encryption have been proposed. One common 

feature among all these systems is that the security of each 

cryptosystem is based on just one cryptographic assumption, 

such as integer factorization problem or discrete logarithms.  

According to [6], the solution of the discrete logarithm 

requires 0{exp [const. (log loglog )p p ]} integer multiplication, 

where p is the modulus. For more information on computing 

discrete logarithms [see (7-8)]. According to [9], the 

asymptotic running times for many integers factorization 

algorithms are given in the form of                                   

0{exp[const. (log loglog )n n ]} , where n is the product of two 

large primes. For more information on factoring [see (10-11)].  

Recent advanced techniques imply that the computational 

difficulties of these two assumptions are almost the same. 

Thus, in order to achieve the same security level for these two 

different assumptions, the size of the modulus p  for the 

discrete logarithm problem and the size of modulus n for the 

factoring problem should be the same. 

Although these cryptographic assumptions appear secure 

today, it is still very likely in the future that a clever 

cryptanalyst will discover an efficient way to factor integers or 

to compute discrete logarithms. Thus, cryptosystems based on 

the corresponding assumption will surrender their security. To 

enhance security is the major motivation for developing 

cryptosystems based on multiple cryptographic assumptions. 

This is because of the common belief that it is very 

unlikely that multiple cryptographic assumptions would 

simultaneously become easy to solve. 

In 1988 K.S. McCurley [12] proposed the first key 

distribution system based on two dissimilar assumptions, both 

of which appear to be hard. Instead of using arithmetic modulo 

p that is a prime (as in the Diffie- Hellman key distribution 

scheme), the distribution scheme [12] in uses a modulus n that 

is a product of two primes. Breaking the system requires the 

factoring of n  into two primes, p and q , and the ability to 

solve the Diffie-Hellman discrete logarithm problem in 

subgroups of *Zp and q
*Z . Thus, it is impossible to select 

proper modulo p  and q  to achieve the same difficulty for 

these two assumptions. In 1992 E.F. Brickell and K.S.  

McCurley [13] proposed an interactive identification 

scheme also based on discrete logarithms and integer 

factorization problem, but these two assumptions are not as 

general as the two assumptions stated previously. In 1994 

L.Harn [2] develops a cryptosystem based on two different 

cryptographic assumptions integer factoring and discrete 

logarithm problem and enhances the security of that 

cryptosystem.  

In this paper, we design a new public key encryption 

scheme based on integer factorization problem and discrete 

logarithm problem with double distinct exponent to enhance 

the security of this public key cryptosystem.  
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II. THE PUBLIC KEY ENCRYPTION BASED ON 

INTEGER FACTORIZATION PROBLEM AND 

DISCRETE LOGARITHM PROBLEM 

In this section, we introduce some notation and parameters, 

which will be used throughout this paper: 

Two large prime numbers p  and q  are safe primes and 

set n pq  .one may use method in [15] to generate strong 

random primes. A function ( ) ( 1)( 1)n p q  is a phi–

Euler function and two integers 1g and 2g are primitive’s 

elements in *Zn with order n  satisfying
1 1(mod )1

n ng  

and  
1 1(mod )2

n ng .  

The algorithm consists of three sub algorithm, Key 

generation, Encryption and Decryption  

A. Key Generation:  

The key generation algorithm runs as follows (entity A 

should do the following) 

a. Pick random an integer ,1 ( )e e n from *Z ( )n  such 

that gcd ( , ( )) 1e n . 

b. Select two random integer a and b such that 

2 ( ) 1ab n  (with no upper bounds). 

c. Compute (mod )1 1
a ny g  and (mod )2 2

b ny g . 

d. Use the extended Euclidean algorithm to compute the 

unique integer ,1 ( )d d n such that 1(mod )ed n . 

   The public key is formed by ( , , , )1 2n e y y and the 

corresponding private key is given by ( , , )d a b .  

B. Encryption:  

An entity B to encrypt a message m to entity A should do 

the following: 

a. Obtain public key ( , , , )1 2n e y y . 

b. Represented the message [1, ]m n  

c. Select two random integer i and j  such that 

2 ( ) 1ij n (with no upper bounds) 

d. Compute (mod )1 1
i ng  and (mod )2 2

j
ng . 

e. Compute ) )( ( (mod )1 2
i jy ym n . 

f. Compute (mod )1 1
e nC , (mod )2 2

e nC  and 

(mod )e n .. 

The cipher text is given by ( , , )1 2C C C .  

C. Decryption:  

To recover the plaintext m from the cipher text C , entity 

A should do the following: 

 

a. Compute
( )

(mod ) (mod )
1 1

n a an nC C and 

( )
(mod ) (mod )

2 2
n b bn nC C . 

b. Recover the plaintext m by 

compute (mod )( , , )
1 2

da b nC C . 

III. CONSISTENCY OF THE ALGORITHM  

In Encryption:  

(mod )1 1
i ng  and (mod )2 2

j
ng  

) )( ( (mod )1 2
i jy ym n  

(mod ) (mod ) ( )(mod )( )1 11 1

e iee in n ngC g  

(mod ) (mod ) ( )(mod )( )2 2 22

e jeje n n ngC g  

(mod ) (mod )) )( ([ ]1 2

ee i jn ny ym  

In Decryption: 

       
( )

(mod ) (mod ) (mod )11 1
n a iean n nyC C  

       
( )

(mod ) (mod ) (mod )
2 2 2

n b jebn n nyC C  

(mod )( , , )
1 2

da b nC C  

                                              (mod )[ ]1 12 2

dje jeie iee ny y y ym  

                                              (mod )ed nm  

                                              (mod )m n  

IV. EXAMPLE 

To make our construction easy to comprehend, we 

illustrate an example to show the basic principle of our 

scheme. However, practitioners are not recommended to 

choose such keys or parameters in practice since inappropriate 

parameters will make this scheme vulnerable to attacks.  

Let the two primes be 29p  and 43q and set 1247n   

and ( ) 1176n . 

A.        Key Generation: 

The key generation algorithm runs as follows (entity A 

should do the following) 

a. Select number 11e  and gcd(11,1176) 1 . 

b. Select two integers 19a  and 17b . 

c. Compute 19(mod1247) 1012311y  and 

17(mod1247) 766412y . 
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d. Use the extended Euclidean algorithm to compute the 

unique integer 107d , 1 ( )d n  such that 

11 1(mod1176)d . 

    The public key is formed by ( , , , )1 2n e y y and the 

corresponding private key is given by ( , , )d a b .  

B.    The Encryption: 

a. To encrypt a message 1122m  A person B 

b. Select two random integer i and j  such that 

2 ( ) 1ij n .Where 21i  and 51j  

c. Compute 11191  and. 1332 . 

d. Compute 600 . 

e. Compute 3021C  , 412C  and 600 .  

The cipher text is given by ( , , )1 2C C C . 

C.     The Decryption: 

a. A should Compute 

( )
(mod ) (mod ) 302

1 1
n a an nC C ,

( )
(mod ) (mod ) 1177

2 2
n b bn nC C . 

b. Recover the plaintext m  by computing 

(mod ) 1122( , , )
1 2

da b nC C  

c. Return the value of 1122m . 

V. SECURITY ANALYSIS 

In this section, we shall show three possible attacks by 

which an adversary may try to take down the new encryption 

scheme. For each attack, we define the attack and give reason 

why this attack could be failed.   

A.     Direct Attack: 

An attacker wishes to obtain all secrete keys using all 

information available from the system. In this case, an attacker 

needs to solve factoring and discrete logarithm problem with 

double distinct discrete exponent. The best way to factorize 

n pq  is by using the number field sieve method (NFS) 

[16].but this method is just dependent on the size of 

modulus . It is computationally infeasible to factor a 1024-bit 

integer and to increase the security of our scheme; we should 

select strong primes [17] to avid attacks using special purpose 

factorization algorithms. To maintain the same security level 

for discrete logarithm problem with double distinct discrete 

exponent, one must uses n pq  with ( 1 2)p  and 

( 1 2)q respectively is product of two 512-bit primes. 

B.     Factoring Attack: 

Assume that the attacker successfully solves the factoring 

problem so that he knows secrete d .Thus he may 

obtain
(mod ) (mod )( , , )

1 2

d eda b n nmC C
. 

Unfortunately, at this stage he still does not knows secrete a  

and b . Also he cannot exact act the plaintext m from the 

above expression. 

C.     Discrete log Attack: 

An attacker should solve a discrete logarithm problem 
twice to obtain the private key given the public as following: 

(A). In this encryption the public key is given by 

( , , , )1 2n e y y   and the corresponding secret key is given 

by ( , , )d a b . 

To obtain the private key ( )a   he should solve the DLP 

                          (mod )log 11
a nyg  

To obtain the private key ( )b   he should solve the DLP 

                          (mod )log 22
b nyg  

This information is equivalent to computing the discrete 

logarithm problem over multiplicative cyclic group *Zn   and 

corresponding secrete key a  and b  will never be revealed to 

the public. 

(B). Say that attacker is able to obtain the secret integer i  

and j  from solve the DLP as  (mod )log 1
1

u ng
 and 

(mod )log 2
2

v ng
. He could derive the plaintext m if 

and only if he manages to get (mod )( , , )
1 2

da b nC C
 . 

VI. CONCLUSION 

In this present paper, we design a public key cryptosystem 

scheme based on integer factorization problem and discrete 

logarithm problem with double exponent. This scheme 

definitely provides a new scheme with a longer and higher 

level of security than that based on two distinct hard problem 

as integer factorization problem and discrete logarithm 

problem to enhance the security of the system. In other words, 

one must break of two integer factorization problem and 

discrete logarithm problem, systems simultaneously to break 

our system. We also show that the performance of the scheme, 

requires minimal operation in encryption and decryption, 

which makes it is very efficient. Some possible attacks have 

considered and show that the scheme is secure from those 

attacks.     

VII. REFERENCES 

[1] W.Diffie and M.E.Hellman, “New directions in cryptography”, 
IEEE Trans., 1976, Vol. IT-22, pp. 644-654. 

[2] L. Harn “Public key cryptosystem design based on factoring and 
discrete logarithm” IEEE Pro.Comput.Digit.Tech. 1984, Vol. 
141(3),pp.193-195. 

[3] R.L.Rivest, A.Sihamir and L. Adelman, “A method for 
obtaining digital signatures and public-key cryptosystem” 
Commun. ACM, 1978, Vol.21, (2), pp. 120-126. 



Chandrashekhar Meshram et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,616-619 

© 2010, IJARCS All Rights Reserved    619 

[4] T.Elgamal, “A public key cryptosystem and a signature scheme 
based on discrete logarithms” IEEE Trans., 1985, Vol.IT-31, pp. 
469-472. 

[5] R.J.Mceliece “A public-key cryptosystem based on algebraic 
coding theory” DSN Progress Report1978, 42-44, pp. 114-1 16. 

[6] A.M.Odlyzko, “Discrete logarithms in finite fields and their 
cryptographic significance” Advances in Cryptology - 
EUROCRYPT ’89 (Springer, Berlin, 1990), pp. 224-314. 

[7] B.Lamacchia and A.Odlyzko “Computation of discrete 
locarithms in prime finite fields” Advances in Cryptology -
CRYPTO ’90 (Springer, Berlin, 1991). 

[8] K.S. McCurley, “The discrete logarithm problem” Proceedings 
of Symposia in Applied Mathematics, Providence, Rhode Island, 
1990, Vol. 42, American Mathematical Society, pp. 49-74. 

[9] C. Pomerance “Analysis and comparison of some integer 
factoring algorithms” Computational Methods in Number 
Theory, 1982, Vol.154, pp. 89-139 

[10] A.K.Lenstra and M.S. Manasse, “Factoring by electronic mail” 
Advances in CrvDtolorv - EUROCRYPT ’89 C.h.r ine-e 
r.Berlin, 1990), pp. 355-371. 

[11] C. Pomerance, “Factoring” Proceedings of Symposia in Applied 
Mathematics, Providence. Rhode Island. 1990, Vol. 42. 
American Mathematical Society, pp. 27-48. 

[12] K.S. McCurley “A key distribution system equivalent to 
factoring” J. Cryptology, 1988, Vol.1, (2), pp. 95-106. 

[13] E.F.Brickell, and K.S. McCurley, “An interactive identification 
scheme based on discrete logarithms and factoring” J. 
Cryptology, 1992, Vol.5, (l), pp. 29-40. 

[14] W. Baocang and H. Yupu, “Public key cryptosystem based on 
two cryptographic assumptions” IEE Proc. –Commun., Vol. 
152, (6), 2005, pp. 861-865. 

[15] S. Barnett “Matrix methods for engineers and scientists” 
McGraw-Hill Book Company, 1979. 

[16] A.K. Lenstra, H.W. Lenstra. , M.S. Manesse, and J.M.Pollard, 
“The number field sieve” Proc. 22nd ACM Symp. On Theory of 
Computing, Baltimore, Maryland, USA, 1990, pp. 564-572. 

[17] J. Gordon “Strong RSA keys” Electron. Lett. 1984, 20(12),pp. 
514-516. 

[18] K.H. Rosen “Elementary number theory and its applications” 
(Addison-Wesley, 1992,3rd edn) 

 

 

 

 

 

 

 

   


