
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 479

ISSN No. 0976-5697

Reliability of Software Development Using Open Source Technology
Razeef Mohd. and Mohsin Nazir*

Department of Information Technology
Central University of Kashmir, Srinagar, J&K (India)

m.razeef@gmail.com
*mohsin.kawoosa@yahoo.com

Abstract: The main quality attribute of a software product is the degree to which it can be relied upon to perform its intended function.
Evaluation, prediction, and improvement of this attribute have been of concern to designers and users of computers and software from the early
days of their evolution. A number of analytical models have been proposed during the past 15 years for assessing the reliability of a software
system. Software reliability concerns itself with how well the software functions to meet the requirement of the user. Thus reliability
incorporates all those properties that can be associated with execution of the program. For example, it includes correctness, safety and the
operational aspects of reusability and user friendliness. In this paper we present an overview of the software reliability in general and reliability
of open source software in particular. Furthermore in this paper various analytical models proposed to address the problem of software reliability
measurement are discussed.

Keywords: Software Reliability, Software Reliability Growth Models (SRGMs), fault, failure, Weibull distribution, open source software,
Rayleigh distribution, Exponential distribution, Exponentiated Weibull (EW) and Non-Homogenous Poisson Process (NHPP).

I. INTRODUCTION

The role of computer software has undergone significant
change over a time span of little more than 50 years. Today,
software takes on a dual role. It is a product and, at the same
time, the vehicle for delivering a product. As a product, it
delivers the computing potential embodied by computer
hardware or, more broadly, a network of computers that are
accessible by local hardware. Whether it resides within a
cellular phone or operates inside a mainframe computer,
software is information transformer — producing,
managing, acquiring, modifying, displaying, or transmitting
information that can be as simple as a single bit or as
complex as a multimedia presentation. As the vehicle used
to deliver the product, software acts as the basis for the
control of the computer (operating systems), the
communication of information (networks), and the creation
and control of other programs (software tools and
environments).

Software delivers the most important product of our
time—information. Software transforms personal data (e.g.,
an individual’s financial transactions) so that the data can be
more useful in a local context; it manages business
information to enhance competitiveness; it provides a
gateway to worldwide information networks (e.g., Internet)
and provides the means for acquiring information in all of
its forms.

In this contemporary world where, to keep pace, with
environment and market has become most vital part of
society and business at large, the most important factor to
sustain customer in competitive market in order to provide
the best possible service quality, which results in improving
customer satisfaction, customer retention and at the same
time profitability.

Thus, the impact of the service quality concept augurs
the researchers and scholars to address this issue and to
investigate it further across the different service sectors. To
maintain the basic theme and agenda that leads the way for
development and customer centricity and connectivity is the

main cause that encompasses and paves way to tread on the
right track to elevate and create an atmosphere of trust
among the customers and then retain them. It appears that
service quality is not a new concept; however, measuring
and managing service quality from the customers’ point of
view is still a developing and a challenging issue. It is well
established that measurement of service quality is an
important procedure for improving the performance of the
overall service quality.

Systems with a high degree of complexity, including
software, will be hard to reach a certain level of reliability,
system developers tend to push complexity into the software
layer, with the rapid growth of system size and ease of doing
so by upgrading the software. For example, large next-
generation aircraft will have over one million source lines of
software on-board; next-generation air traffic control
systems will contain between one and two million lines; the
upcoming international Space Station will have over two
million lines on-board and over ten million lines of ground
support software; several major life-critical defense systems
will have over five million source lines of software. While
the complexity of software is inversely related to software
reliability, it is directly related to other important factors in
software quality, especially functionality, capability, etc.
Emphasizing these features will tend to add more
complexity to software.

The amount and complexity of software produced today
stagger the imagination. Software development strategies
have not kept pace; however, software products fall short of
meeting application objectives. Consequently controls must
be developed to ensure a quality of a product. The software
development life cycle includes various stages of
development, and each stage has the goal of quality
assurance.

The software quality contains a set of different
properties. Software Reliability is one of the most important
attribute of software quality, together with functionality,

mailto:m.razeef@gmail.com�
mailto:mohsin.kawoosa@yahoo.com�

Mohsin Nazir et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,479-485

© 2010, IJARCS All Rights Reserved 480

usability, performance, serviceability, capability,
installability, maintainability, and documentation.

II. SOFTWARE AND HARDWARE
RELIABILITY

The partition between hardware and software reliability
is somewhat false. We can define both the reliabilities in the
same way. And then combine hardware and software
component reliabilities to get system-reliability. Both
depend on the environment. The source of failures in
software is designed faults while the principal source in
hardware has generally been physical deterioration.

However, the concepts and theories developed for
software reliability could really be applied to any design
activity, including hardware design. Once a software
(design) defect is properly fixed, it is in general fixed for all
time. Although manufacturing can affect the quality of
physical components, there application process for software
(design) is trivial and can be performed to very high
standards of quality. Since introduction and removal of
design faults occur during software development, software
reliability may be expected to vary during this period. The
“design reliability” concept has not been applied to
hardware to any extent. It was possible to keep hardly
generally less complex logically then software.

A. Software Reliability:
Software Reliability is a subfield of software engineering

in which practitioners are concerned with measuring and
managing software quality. This valuable discipline has
inherited much of its theory from hardware reliability and
has gained mixed acceptance from the software community.
Software Reliability has been regarded as one of the
important quality attributes because low reliable software
systems have high possibilities of causing serious problems
such as the loss of human life, catastrophic mission failures,
and the waste of valuable resource investments. Software
reliability can be viewed as a powerful measure of
quantifying software failures and is defined as the
probability of failure-free software operation for a specified
period of time in a specified environment.

Therefore, in order to achieve a desired level of quality,
the reliability of a software system must be high. The fault-
detection and fault correction are critical processes in
attaining good software quality. During the software
detection process, testing cases are run and ultimately
failures are detected. After detection, the debugging team
should analyze the failure, locate the fault and fix the fault.
That is, the fault correction process affects the reliability of
a software product significantly and we should pay more
attention to it.

Software Reliability is defined as: the probability of
failure-free software operation for a specified period of time
in a specified environment [12, 18, 20, 21]. It is evident
from the definition that there are four key elements
associated with the reliability namely element of probability,
function of the product, environmental conditions, and time.
Software Reliability is not a function of time - although
researchers have come up with models relating the two. The
software reliability also can be expressed as the intensity of
the defects- number of defects in the unit time. The
relationship between the intensity of defects and reliability

depend upon the model used for evaluation. It is difficult to
establish the fact that a model is better than others.

B. Hardware Reliability:
Hardware Reliability is concerned with the random

occurrences of undesirable events, or failures, during the life
cycle of a physical system. Since a failure phenomenon can
only be described in probability terms, the definition of
reliability depends heavily on probability concepts. The
reliability of a system is defined as the probability that the
system will adequately perform its intended function for a
specified interval of time under stated environment
conditions. Reliability evaluation using probability methods
provides a quantitative measure of system performance.
Hence it allows comparison between systems or provides a
logical basis for reliability improvement in a system.

A straight approach of the reliability supposes its
orientation rather to the user than to the software
development process. This approach derives from the users'
point of view, which determinates an easier understanding
of the reliability by the clients. Also, refers more at the
execution than to the design, which makes it more dynamic
than statically. One advantage is the fact that reliability is
being calculated for the both components: hardware and
software. We can also calculate the reliability to the entire
system.

The software reliability management is defined as the
software reliability improvement process that accentuate on
warning, detecting and elimination of the software errors
and on using the metrics in order to maximize the reliability
by its project compulsions-resources, the cost and the
performances. For reliability maximization we must do:

a. Error Prevention.
b. to detect and eliminate errors;
c. Measurements for increasing reliability, for define

and for using specific metrics to sustain first two
activities.

Reliability determination implies sustained efforts which
takes into account the medium time between errors and the
medium time until appears first error. This date represents
in-puts for the successful models which had been built and
which realize previsions of the error rate and of the
reliability.

Reliability is the quality product and quality can be
measured. In order to be effective, the measure must be a
part of the management activity. The measures help in order
to achieve the fundamental objectives of the management,
concerning prevision, progress, and processes improvement.

III. MODELING

A model is a simple representation of the system or real
process comportment or structure. The goal of the modeling
process is to reproduce the fundamental relationships in
order to realize their clear understanding.

In order to model software reliability we must first
consider the principal factors that affect it: fault
introduction, fault removal, and the environment. Fault
introduction depends primarily on the characteristics of
developed code (code created or modified for the
application) and development process characteristics. The
most significant code characteristic is size. Development
process characteristics include Software Engineering
technologies and tools used and level of experience of

Mohsin Nazir et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,479-485

© 2010, IJARCS All Rights Reserved 481

personnel. Code can be developed to add features or remove
faults. Fault removal depends on time, operational profile
(set of run types that the program can execute along with the
probabilities with which they occur) and the quality of repair
activity. The environment directly depends on operational
profile. Since some of the foregoing factors are probabilistic
in nature and operate over time, software reliability models
are generally formulated in terms of random process. The
models are distinguished from each other in terms of
probability distribution of failure times or number of failures
experienced and by the nature of the variations of the
random process with time. A software reliability models
specifies the general form of the dependence of the failure
process.

A Software Reliability Growth Model is one of the
fundamental techniques to assess software reliability
quantitatively. The Software Reliability Growth Model
required having a good performance in terms of goodness-
of-fit, predictability, and so forth. In order to estimate as
well as to predict the reliability of software systems, failure
data need to be properly measured by various means during
software development and operational phases. Any software
required to operate reliably must still undergo extensive
testing and debugging. This can be a costly and time
consuming process, and managers require accurate
information about how software reliability grows as a result
of this process in order to effectively manage their budgets
and projects. The effects of this process, by which it is
hoped software is made more reliable, can be modeled
through the use of Software Reliability Growth Models,
hereafter referred to as SRGMs. Research efforts in software
reliability engineering have been conducted over the past
three decades and many software reliability growth models
(SRGMs) have been proposed. SRGMs can estimate the
number of initial faults, the software reliability, the failure
intensity, the mean time-interval between failures, etc.

Ideally, these models provide a means of characterizing
the development process and enable software reliability
practitioners to make predictions about the expected future
reliability of software under development. Such techniques
allow managers to accurately allocate time, money, and
human resources to a project, and assess when a piece of
software has reached a point where it can be released with
some level of confidence in its reliability. Unfortunately,
these models are often inaccurate. A comparative study of
Software Reliability Growth Models [41] allows to
determine with models is suited well and under what
conditions.

Many SRGMs based on NHPP which incorporates the
testing–effort functions (TEF) have been proposed by many
authors (Yamada et al., 1984; 1986; 1993; Yamada and
Ohtera, 1990; Huang et al., 2007; Kuo et al., 2001; Bokhari
and Ahmad, 2006; Quadri et al., 2006). Recently, Bokhari
and Ahmad (2007) and Ahmad et al. (2008; 2010) also
proposed a new SRGM with the Exponentiated Weibull
(EW) testing-effort functions to predict the behavior of
failure and fault of software.

A. Characteristics of a Software Reliability Model:
A good model presents following properties: [23]
a. It should provide good prediction of future

behavior.
b. It should compute useful quantities.
c. It should be simple.

d. It should be widely applicable.
e. It should be based on sound assumptions.

The software reliability modeling is a functional
representation of the debated system and the better model
offers a viable mechanism for reliability estimation.

B. Analytical Models:
A number of analytical models have been proposed to

address the problem of software reliability measurement.
These approaches are based mainly on the failure history of
software and can be classified according to the nature of the
failure process studied as indicated below:

a. Times between Failures Models :
In this class of models, the process under study is the

time between failures. The most common approach is to
assume that the time between, say, the ()i 1 st− and the ith
failures, follows a distribution whose parameters depend on
the number of faults remaining in the program during this
interval. Estimates of the parameters are obtained from the
observed values of times between failures and estimates of
software reliability, mean time to next failure, etc., are then
obtained from the fitted model. Another approach is to treat
the failure times as realizations of a stochastic process and
use an appropriate time-series model to describe the
underlying failure process.

b. Failure Count Models:
The interest of this class of models is in the number of

faults or failures in specified time intervals rather than in
times between failures. The failure counts are assumed to
follow a known stochastic process with a time dependent
discrete or continuous failure rate. Parameters of the failure
rate can be estimated from the observed values of failure
counts or from failure times. Estimates of software
reliability mean time to next failure, etc., can again be
obtained from the relevant equations.

c. Fault Seeding Models:
The basic approach in this class of models is to "seed" a

known number of faults in a program which is assumed to
have an unknown number of indigenous faults. The program
is tested and the observed numbers of seeded and indigenous
faults are counted. From these, an estimate of the fault
content of the program prior to seeding is obtained and used
to assess software reliability and other relevant measures.

d. Input Domain Based Models:
The basic approach taken here is to generate a set of test

cases from an input distribution which is assumed to be
representative of the operational usage of the program.
Because of the difficulty in obtaining this distribution, the
input domain is partitioned into a set of equivalence classes,
each of which is usually associated with a program path. An
estimate of program reliability is obtained from the failures
observed during physical or symbolic execution of the test
cases sampled from the input domain

IV. RELIABILITY OF OPEN SOURCE
TECHNOLOGY

Open source technology has gained a significant amount
of mind share and has been the subject of much debate.
Often promoted as being better than proprietary software

Mohsin Nazir et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,479-485

© 2010, IJARCS All Rights Reserved 482

(from an ethical and social point of view), and criticized as
being unrealistic or too idealistic. The concept itself is based
on the philosophy of free software, which advocates freely
available source code as a fundamental right. However,
open source extends this ideology slightly to present a more
commercial approach that includes both a business model
and development methodology.

According to the “Open Source Initiative” software is
considered “open source” if its distribution terms adhere to
the following:
a. Free Redistribution – Copies of the software can be

made at no cost.
b. Source Code – The source code must be distributed

with the original work, as well as all derived works.
c. Derived Works – Modifications are allowed, however it

is not required that the derived work be subject to the
same license terms as the original work.

d. Integrity of the Author’s Source Code – Modifications
to the original work may be restricted only if the
distribution of patches is allowed. Derived works may
be required to carry a different name or version number
from the original software.

e. No Discrimination Against Persons or Groups
Discrimination against any person or group of persons
is not allowed.

f. No Discrimination Against Fields of Endeavor
g. Restrictions Preventing use of the Software by a

Certain Business or Area of Research are not
Allowed.

h. Distribution of License – Any terms should apply
automatically without written authorization.

i. License Must Not Be Specific to a Product – Rights
attached to a program must not depend on that program
being part of a specific software distribution.

j. License Must Not Contaminate Other Software –
Restrictions on other software distributed with the
licensed software are not allowed.

In general Open Source Software (OSS) refers to any
software whose source code is freely available for
distribution. The success and benefits of OSS can be
attributed to many factors such as code modification by any
party as the needs arise, promotion of software reliability
and quality due to peer review and collaboration among
many volunteer programmers from different organizations,
and the fact that the knowledge-base is not bound to a
particular organization, which allows for faster development
and the likelihood of the software to be available for
different platforms. Eric Raymond states that “with enough
eye balls, all bugs are shallow”, which suggests that there
exist a positive relationship between the number of people
involved, bug numbers, and software quality. Some
examples of successful OSS products are Apache HTTP
server and the Mozilla Firefox internet browser.

An open source program typically consists of multiple
modules [8]. Attributes of the reliability models have been
usually defined with respect to time with four general ways
to characterize [29, 24] reliability, time of failure, time
interval between failures, cumulative number of faults up to
a period of time and failure found in a time interval. The
present methodology involves defining an equation for the
pattern of failure based on the available bug arrival rate and
developing a generalized model for the reliability of the

software. The following are the assumptions involved in the
analysis.

a. The software analyzed is an open source.
b. As the open source software is made up of a very large

community the environmental changes are not
considered.

c. The total number of packages at the beginning of the
analysis is assumed to remain constant and is taken as
the initial population.

d. The failures of various packages are assumed to be
independent of each other.

e. The model is developed for evaluation of the software
reliability at the developmental stage and the packages
that fail during this period are not further considered. It
is further assumed that by the end of developmental
stage the bug associated with the failed packages
would be eliminated and will be stable further.

f. The reliability of the software is inversely proportional
to the number of bugs reported at any point of time.

g. The beginning of the time period after which the bug
arrival or failure rate remains constant marks the
culmination of the developmental stage and the
software will be stabilize.

V. ERROR ESTIMATION FOR OPEN
SOURCE SOFTWARE

Many models have been proposed to assess whether a
software-testing objective has been met to determine when
to stop testing. These models are based on various sets of
assumptions about the software and its execution
environment. Software reliability growth models (SRGM`s)
use data about the times that failures occur to estimate the
number of remaining failures in a system [26]. Generally,
SRGM`s estimate the number of failures in a system.

However, existing empirical evidence shows that
SRGM`s can also be applied on error data to estimate the
number of defects in a system [26], [10]. For the software
practitioner, the assumptions or conditions for the various
SRGM`s are an open problem, because they are often
violated in one way or another. SRGM`s are usually robust,
despite these assumption violations [26] [10].There are
empirical selection method that aids in choosing the
appropriate SRGM model when assumptions are not met
[10].

The approach for the project described includes three
phases. The first phase involves selecting, downloading and
installing defect-tracking tools that are freeware or open
source. Several tools are installed on both Windows and
Linux platforms. The second phase involves documenting
the format of the data collected by the tools and
implementing data extraction and conversion routines to
transform data from the various defect tracking software
tools into a consistent delimited format for a comprehensive
defect estimation tool. The third phase involves analyzing
the defect data for the tools to determine if any defect
estimation method can be applied.

Seven defect-tracking tools were installed on either
Windows or Linux platforms. Those tools include Buggit,
Bugtrack, Bugs Online on the Windows platform and
Bugzilla, Roundup, Mantis and Incident Management
Systems (IMS) on the Linux side. Table 1 provides the
details about each tool, such as the supporting software

Mohsin Nazir et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,479-485

© 2010, IJARCS All Rights Reserved 483

needed, effort to install, and the usability of the tool in terms
of how easy it is to learn and use. Roundup was immediately

rejected, because the data could not be easily exported from
the tool.

Table I.Defect tracking tools analyzed [30]

 Buggit Bugzilla Bugtrack Roundup Mantis IMS Bugs Online
Platform Windows

2000/XP
Linux (Fedora) Windows 2000 Linux (Fedora) Linux (Fedora) Linux (Fedora) Windows

Database MS access MySQL SQL Server 2000 MySQL MySQL MySQL MS access
Server

(if any)
 Apache IIS 5.0 Apache Apache Apache IIS 5.0

Other SW Perl modules Python php Php/Zend
optimizer

Effort to
install

Low High High Med High Med Med

Effort to
learn &use

Low Med Low High Med Med Med

Ability to
export data

Export from
MS Accesss

Export using
phpMYAdmin

Export from SQL
Server 2000

Cannot
export data

Export using
phpMYAdmin

Export using
phpMYAdmin

Export from MS
Accesss

In table 1 are detailed information on the kinds of data

reported for each defect by the tools. Analysis of the
database formats of these defect tracking tools lead to
several observations. All of the tools have an ID or a name
for each bug in their databases, which is necessary to
identify each defect uniquely. Four tools have data about the
components in which a defect exists. This is useful in
estimating fault-content by modules or components. The
component may be a subsystem, a module, or a file. Almost
all defect-tracking tools analyzed have data that give the
date a defect report is created or added. For applying
SRGM`s, the add date or the open date of a defect is
necessary. Almost all tools include severity levels in their
data. Metrics by severity are very helpful in improving
software reliability growth models (SRGM`s) [26], [10].

VI. RELIABILITY MODELS FOR OPEN SOURCE
SOFTWARE

Concern about software reliability has been around for a
long time and as open source is a relatively novel software
development approach differing significantly from
proprietary software waterfall model, we do not yet have
any mature or stable technique to assess open source
software reliability. Weibull distribution and Reliability
Growth Model are possible ways to establish the reliability
model.

A. The Weibull Family Models:
Weibull distribution family is perhaps the most widely

used lifetime distribution model [19]. Its simplest form, the
2-parameter Weibull distribution, has long been used to
model reliability pattern due to its ability in describing
failure modes like initial, random and wear-out [31]. Data
from large commercial software suggests two special forms
of Weibull distribution: Rayleigh distribution and
exponential distribution have been applied in software
reliability models [17].

The 2-parameter Weibull distribution has a probability
distribution function of the form:

 f(t) = (βt)(β - 1) e – (t/α) β

 α
 (1)

Where t represents time; α = 1/λ represents the scale
parameter of the distribution and β represents the shape
parameter of the distribution. The Weibull probability

density function is monotone decreasing if β <=1 and
becomes bell shaped when β > 1. The larger the β value the
steeper the bell shape. Its special case Rayleigh distribution
has β = 2; while exponential distribution has β = 1. Figure 1
shows several Weibull probability density curves with
varying values for the shape parameter β.

β

Figure: 1

In software quality engineering, large body of empirical
data supports the finding that software projects follow a life
cycle pattern described by Rayleigh curve. This is
considered as a desirable pattern since the bug arrival rate
stabilizes at a very low level. In closed source software, the
stabilizing behavior is usually an indicator of ending test
effort and releasing the software to the field. The
development cycle, from quality perspective, is divided into
six phases, high-level design inspection, low-level design
inspection, code inspection, unit test, component test and
system test. The bug arrivals usually peak at the code
inspection phase and are rather stabilized in the system test
phase [13].

a. Data Collection Phase:
In the data collection stage, users first identified a few

target open source projects according to product size. The
main selection criteria include project duration and activity.
New projects with less than one-year history usually will not

Mohsin Nazir et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,479-485

© 2010, IJARCS All Rights Reserved 484

be able to contribute enough useful information. One typical
phenomenon associated with many open source projects is
that they might get on and off during the project period. To
rank projects according to activities, SourceForge.net
devised an activity measure. It takes number of downloads,
number of times mentioned in the forum and other measures
into consideration and combine them to form an activity
index. We picked our target projects following
SourceForge’s “Most active” rank list as of August, 2004.

The projects identified are listed in table 2 along with
their prominent features. Actual names of the projects were
not revealed to follow standard software engineering ethics
[5].

Users mainly collected information regarding newly
opened bugs per month. SourceForge provides simple
statistics on monthly bug reported. However, these statistics
show all bugs reported regardless whether they are valid or
not. Each month, there are a few bugs reported and then
deleted by the project owner or core developer members.
They are considered as invalid bugs for various reasons; we
need to exclude those bugs for accuracy.

Besides, those statistics are collections of all software
products under one project title, it is more sensible to
differentiate among different products. Fortunately,
SourceForge keeps detailed description for each reported
bug, its status and the component it belongs to. We used the
query function provided to isolate bugs from a certain
component as well as each month’s deleted report and rule
them out from our data. Hence, the original data we got for
monthly opened bugs are slightly different from those
reported in SourceForge statistics.

Table II.Target Open Source Projects

Project Title Starting Time Developer
number

PrA 2003-11-08 14
PrB 2007-05-19 9
PrC 2007-02-11 40
PrD 2004-08-21 1
PrE 2005-01-15 8
PrF 2005-01-12 115
PrG 2004-02-20 40
PrH 2004-06-23 2

b. Data Analysis Phase:
The data show similar trend across all projects except for

a few projects, which are still in their infancies. The
monthly bug arrival rate goes slowly upwards along until it
reaches a peak; it then starts to decrease, stabilizes at a
rather low level. The trend is consistent in PrA, PrE, PrF,
PrD, PrG and PrH projects. Two other projects, PrB and PrC
are registered for short times - around 1 year.

Since the monthly bug rate keep increasing, it is hard to
tell at this stage whether they are going to reach the peak
and then decrease to a stabilizing state. The monthly bug
data reveal a clear pattern and there are families of models
in the analysis of failure process data that fit this general
distribution. However, users will concentrate on the Weibull
distribution, which has long been demonstrated its
appropriateness in reliability/failure time analysis [23].

VII. CONCLUSION

In this paper we discuss software reliability in general
and modeling of software reliability using software

reliability growth models in particular. We tried to give a
general overview of the reliability of open source software
and also gave a comparison of reliability of some open
source software. We then discussed various various
analytical models proposed to address the problem of
software reliability measurement. In this paper we have also
discussed reliability models for open source software.
Distinctive feature of this research is that we do not add any
new models to the already large collection of SRGMs.

VIII. REFERENCES

[1]. Adalberto Nobiato Crespo, Alberto Pasquini ,”Applying
Code Coverage Approach to an Infinite Failure Software
Reliabilit Model” , 2009 XXIII Brazilian Symposium on
Software Engineering, 2009 IEEE.

[2]. Alex Bishop. Major roadmap update centers around phoenix,
thunderbird; 1.4 branch to replace 1.0; changes planned for
module ownership model. MozillaZine (online), April 2
2003. http://www.mozillazine.org/articles/article3042.html

[3]. Brendan Eich and Mitchell Baker. Mozilla .super-
review.Web page, cited September 6, 2006., Mozilla
Foundation, June 2000.
http://www.mozilla.org/hacking/reviewers.html

[4]. Christian Robottom Reis and RenataPontin de Mattos Fortes.
An overview of the software engineering process in the
mozilla project.In Proceedings of the Open Source Software
Development Workshop, Newcastle upon Tyne, UK,
February 2002.

[5]. E. Emam, Ethics and Open source. Empirical Software
Engineering, No. 4-6, 2001, pp.291-292.[35]
http://sourceforge.net/, last visited in 2006.

[6]. E.S. Raymond, “The cathedral and the bazaar: musings on
linux and open source by an accidental revolutionary, 2nd
Ed., O’Reilly, 2001.

[7]. Fenghong Zou , Joseph Davis “Analysing and Modeling
Open Source Software Bug Report Data’, 19th Australian
Confeence on Software Engineering.,2008 IEEE.

[8]. Fenghong Zou , Joseph Davis “ A Model of Bug Dynamics
for Open Source ”, The second International Conference on
Secure System Integration and Reliability Improvement.,
2008 IEEE.

[9]. gboone. Open new window in background (tabbed
browsing).http://groups.google.com/group/netscape.public.m
ozilla.wishlist/tree/br%owse_frm/thread/ef62c3307e2a7a32/4
ec071eae14082ff?rnum=1&hl=en&_done=%2Fgroup%%2F
netscape.public.mozilla.wishlist%2Fbrowse_frm%2Fthread
%2Fef62c3307e2a7a32%2F%4ec071eae14082ff%3Ftvc%3
D1%26hl%3Den%26#doc_4b33ef52c30564cf.

[10]. G. N. Rodrigues, D. Rosenblum and W. Emmerich, “A
model driven approach for software systems reliability,”
Proceedings of the 26th International Conference on
Software Engineering, 2004.

[11]. H.J. van Rantwijk. Multizilla's home
page.http://multizilla.mozdev.org, February 24 2006. Home
page for the MultiZilla project, cited September 6, 2006.

[12]. H. Pham, Software Reliability. Springer-Verlag, 2000.
[13]. H. S. Kan, Metrics and models in software quality

engineering, 2nd edition, Addison-Wesley, 2003.
[14]. http://www.opensource.org/licenses/alphabetical

[15]. http://www.damicon.com/resources/opensource.html

http://www.mozillazine.org/articles/article3042.html�
http://www.mozilla.org/hacking/reviewers.html�
http://www.opensource.org/licenses/alphabetical�
http://www.damicon.com/resources/�

Mohsin Nazir et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,479-485

© 2010, IJARCS All Rights Reserved 485

[16]. Hudson, A, “Program Error as a British and Death Process”,
Technical Report SP- 3011, Santa Monica,Cal,:Systems
development Corporation, 1967.

[17]. I. Samoladas, I. Stamelos, L. Angelis and A. Oikonomou,
“Open source software development should strive for even
greater code maintainability,” Communications of the ACM,
Vol. 47, No. 10, October 2004.

[18]. J.D. Musa and K. Okumoto, “A logarithmic poisson
execution time model for software reliability measurement”,
7th Int’l Conference on Software Engineering (ICSE), 1984,
pp. 230-238.

[19]. J. F. Lawless, Statistical Models and Methods for Lifetime
Data, 2nd edition, New York, 2003.

[20]. Kan H.S. Metrics and models in software quality
engineering, 2nd edition, Addison-Wesley(2003)

[21]. Lars M.Karg, Michael Grottke, Arne Beckhausa .
Conformance Quality and Failure Costs in the Software
Industry: An Empirical Analysis of Open Source Software.
2009 IEEE.

[22]. M. P. Cristescu, Modele de evaluare a fiabilităţiisistemelorde
programe, PhD thesis, Bucuresti, 2003.

[23]. M. P. Cristescu, “Methods for software reliability
determination,”, The 13-th International Conference „The
Knowledge Based Organization” - Computer Science,
Modeling and Simulation, e-Learning Technologies and
Solutions for the Engineering Domain – Conference
Proceedings 11, Sibiu, 22-25 November 2007, pp. 66-72,
Land Forces Academy ”NicolaeBălcescu” Sibiu.

[24]. Musa, J.D., Iannino, A. and Okumoto, K. (1987),”Software
Reliability: Measurement, Prediction, Application’, pp. 621.

[25]. Rachel Rosmarin. Mozilla _refox gaining ground on
microsoft IE. Forbes.com, August 12, 2006.

[26]. R. Lincke and W. Lowe, Compendium of SW Quality
Standards and Metrics, available at:
http://www.arisa.se/compendium/, 2005.

[27]. Peter Bojanic. The joy of xul. Web page, cited september 6,
2006., Mozilla Foundation,June
2006.http://developer.mozilla.org/en/docs/The_Joy_of_XUL

[28]. Quadri, S.M.K., Mohd Razeef,”A Comparative Overview of
Software Reliability Growth Models” International Journal
of Advanced Research in Computer Science, Volume 2, No.
1, Jan-Feb 2011, pp. 99-104.

[29]. Sharifah Mashita Syed-Mohamad, Tom McBride,
‘Reliability Growth of Open Source Software using Defect
Analysis’, 2008 International conference on Computer
Science and Software Engineering, 2008 IEEE.

[30]. Steve Hamm. A _refox in IE's henhouse. Business Week,
September 17 2004.

[31]. S. Yamada, J. Hishitani and S. Osaki, “Software-Reliability
Growth with a Weibull Test- Effort: A model & application,”
IEEE Transactions on Reliability, Vol. 42, No. 1, March
1993.

[32]. unknown. A guide to mozilla
1.0.http://www.mozilla.org/start/1.0/guide/, 2002.Web page
describing release 1.0 of Mozilla.

[33]. VladimirNeyman. Open new window in background.
http://groups.google.com/group/netscape.public.mozilla.wish
list/tree/br%owse_frm/thread/ef62c3307e2a7a32/4ec071eae1
4082ff?rnum=1&hl=en&_done=%2Fgroup%%2Fnetscape.p
ublic.mozilla.wishlist%2Fbrowse_frm%2Fthread%2Fef62c3
307e2a7a32%2F%4ec071eae14082ff%3Ftvc%3D1%26hl%3
Den%26#doc_4ec071eae14082ff, June 23 1999. Message
posted to Netscape.public.mozilla.wishlist mailing list.

[34]. Walt Scacchi. Understanding the requirements for
developing open source software systems. IEE Proceedings .
Software, 149(1):24.39, February 2002

[35]. Wonko The Sane.
none.http://gnomesupport.org/forums/viewtopic.php?t=3603
&highlight=&sid=c5f4%e5ae34765db22bac227d7f8b17cb,S
eptember 22 2003. Posting to the Gnome desktop user
support forum.

[36]. Ying ZHOU, Joseph Davis. Open Source Software reliability
model: an empirical approach, ACM 2005.

http://developer.mozilla.org/en/docs/The_Joy_of_XUL�
http://www.mozilla.org/start/1.0/�
http://gnomesupport.org/forums/viewtopic.php?t=3603&highlight=&sid=c5f4%e5ae34765db22bac227d7f8b17cb�
http://gnomesupport.org/forums/viewtopic.php?t=3603&highlight=&sid=c5f4%e5ae34765db22bac227d7f8b17cb�
http://gnomesupport.org/forums/viewtopic.php?t=3603&highlight=&sid=c5f4%e5ae34765db22bac227d7f8b17cb�

	INTRODUCTION
	SOFTWARE AND HARDWARE RELIABILITY
	Software Reliability:
	Hardware Reliability:

	MODELING
	Characteristics of a Software Reliability Model:
	Analytical Models:
	Times between Failures Models :
	Failure Count Models:
	Fault Seeding Models:
	Input Domain Based Models:

	RELIABILITY OF OPEN SOURCE TECHNOLOGY
	ERROR ESTIMATION FOR OPEN SOURCE SOFTWARE
	VI. RELIABILITY MODELS FOR OPEN SOURCE SOFTWARE
	The Weibull Family Models:

	VII. CONCLUSION
	VIII. REFERENCES

