
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 403

ISSN No. 0976-5697

Reverse Engineering A Generic Software Exploration Environment Is Made Of Object
Oriented Frame Work And Set Of Customizable Tools

J.M.S.V.Ravi Kumar *, M.Babu Reddy, N.SreeRam and I. Rajendra Kumar
Lakireddy Bali Reddy College of Engg. Mylavaram, Andhra Pradesh , India

*venkat7063@Gmail.Com, m_babureddy@yahoo.com, sreeramnimmagadda@gmail.com, rajendralbrce@gmail.com

Abstract: mainly research done to date on software maintenance has been focused mainly on the evolution of legacy systems based on out of
date technologies. However, the use of more recent yet evolving technologies, like component-based techniques, also raise various issues about
software comprehension and evolution. In particular, current industrial-strength component models like COM are based on many technical
aspects that make them difficult to understand and use. The evolution of large module based software products is thus an rising issue. This paper
presents GSEE, a Generic Software Exploration Environment. GSEE is made of an object-oriented framework and a set of customizable tools.
Only few lines are needed to produce graphical views from virtually any source of data. GSEE has been successfully applied to improve the
understanding of different software artifacts including a multi millions LOC software. Currently, two kinds of tools have been integrated in this
environment: OMVT which is DASSAULT SYSTEMES specific, and GSEE which is a generic tool independent from the meta-model used.

Keywords: OM; DS;CB; UML; GSEE;

I. INTRODUCTION

Large software products have always been difficult to
understand and evolve [10]. In the late 80’s this has leaded
to the emergence of closely related techniques like
reengineering, reverse-engineering and restructuring,
collectively called RE3 technologies [26]. Traditionally,
most research work in RE3 focused on the evolution of
legacy software products based on obsolete technology.
Many tools have been proposed to deal with old-fashioned
programming languages such as Cobol, Fortran or C for
instance. There is still a belief that the usage of RE3
techniques are restricted to legacy systems.

However, reverse engineering is defined as “the process
of analyzing a subject system to: (I) identify the system’s
components and their interrelationships and (2) create
representations of the system in another form. This
definition makes no mention about the level of maturity of
the technology involved, nor the definitions of restructuring
and reengineering do [1,6]. RE3 techniques have to follow
the evolution of industrial software engineering practice.
The wave model [21] is very valuable in this context, since
it provides different.

Historical views on software engineering evolution.
industry.

These waves of interest in forward engineering

technology have an strong impact on RE3 evolution. For
instance, in the mid go’s, the first restructuring tools focused
on the shift from ad-hoc programming to structured

programming by removing goto statements from
unstructured programs [2]. The shift from structured
programming to modular programming also led to clustering
and (re)modularization tools, tools to recover software
architecture, etc. [1,3,15,16,19,27].

The increasing interest in object-oriented technology in
the last decade, results today in the existence of large oo
software products. However, every technology will show its
limits when applied at large [4]. In particular, large software
companies, pioneers in the 00-at-large approach, understood
that the 00 paradigm is no silver bullet [7].

The existence of large 00 software products naturally
give rise to significant research effort focusing on the
intersection of 00 and RE3 (e.g. the Spool [16] and Famous
projects [7]). Note that this last step in the evolution of RE3
discipline marks a discontinuity: RE3 techniques are no
longer restricted to the maintenance of legacy systems, they
can be applied for the evolution of state-of-the-art software
products. Many researchers now believe that RE3
techniques must be smoothly integrated within the forward
engineering process, leading for instance to the concept of
round-trip engineering (a series of short forward and reverse
engineering cycles).

As Fowler pointed out [13], experienced 00
programmers know that an object-oriented framework can
not be right the first time - it must evolve as experience is
gained with its use. So, software refactoring [13] (the term
used in the 00 world for restructuring), should therefore be
seen as a continuous restructuring effort integrated in the
development and evolution of any 00 software product.
Then, what will be the next step? We believe that
component-based (CB) software development may be the
one, at least this is what the experience reported in this
paper suggests. Nowadays, there is a widely accepted belief
that large software products should be built as the assembly
of software components. Tough promising, this idea was not
put into practice at a large scale until the emergence, in the
last few years, of industrial-strength component models like
Microsoft' COM [5,29], OMG' Corba and CCM [30,3], Sun'
JavaBeans [9,12] or Sun' Enterprise Java Bean [3]. The
availability of such powerful and innovative CB techniques

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,403-410

© 2010, IJARCS All Rights Reserved 404

may constitute the basis of the next significant wave of
interest in industry. Dassault Systems (DS), the world leader
in CAD/CAM, is a pioneer in this domain. This large
software company has developed a proprietary component
model which has been successfully used for years in the
development of CATIA [28]. However, like other
companies such as Microsoft or Sun, DS faces difficulties in
teaching his component model. Understanding large CB
software is not an easy task. The existence of these issues
should not be surprising since the CB approach is still in its
infancy and is usually not formalized.

This paper results from the collaboration between an
Academic institution, the LSR laboratory, and one of the
largest software company in Europe Dassault Systems (DS),
in an attempt to deal with problems related to the evolution
of large component-based software products. In particular,
this paper shows how a reverse engineering approach can
substantially improve the understanding of a CB software
product, taking CATIA as a case study. The rest of this
paper is organized as follows. Section 2 briefly presents the
main features of the DS component model in an informal
way. Section 3 describes how a meta model can be used to
formalize the concept of component.

Section 4 shows how this Meta model can be converted
into useful reverse engineer tools. Sections 5 The GSEE
Customizable Tools. Section 6 concludes the paper.

II. THE DS COMPONENT MODEL

In the mid 90s, when DS initiated the development of
CATIA V5 [28], it was rapidly discovered that 00
technology has serious limitations and in particular that C++
did not satisfy all of the requirements. The two most
important aspects were the following: Concurrent
engineering. C++ entities are too closely related: even a
minor change may produce a dramatic number of
recompilations. For large products and high concurrent
engineering constraints, this is a major issue. Extension
capabilities. The CATIA major customers and development
partners have a need to be able to extend DS components
with their own code, even without the availability of the
source code [8]. To solve these (and other) issues, DS
developed, on top of C++, a component model borrowing
ideas from COM, Corba and Java. Here follows a very short
and informal description of the "Object Modeler" (OM).
Despite its name the OM is best viewed as a component
model. This section first presents the main OM concepts,
and then provides some information about its realization.

A. Conceptual Level:
Object Modeler components are pieces of code that can

be manipulated through the use of interfaces. Interfaces can
be seen as abstract proxies for real objects that receive client
requests and forward them to the component implementing
the interface. The interface concept helps in addressing the
concurrent engineering issue, since it isolates interface
clients from modification of the component implementation.

To be more precise, a component is made of set of
elementary pieces of code, called implementations (an
implementation is realized by a C++ class). One of these
implementations is called the base (of the component).
Other implementations, called extensions, can be attached
later to the base in order to extend the component. A
fundamental feature is that extensions refer to the base, but

the base ignores that it is being extended. This allows a new
extension to be added at a later time, without any need to
recompile the base nor any of the other extensions.

The Object Modeler also provides several other
mechanisms not described in this paper. For instance it
supports the concept of delegation or conditional
implementation.

B. Realization Level:
All concepts provided by the Object Modeler, are

implemented in terms of C++ entities. For instance,
interfaces and implementations are both represented by C++
classes. In fact, the realization level is much more complex
since the mapping is not one to one: the realization of a
single Object Modeler entity can produce many C++
entities. Moreover, for a given conceptual entity there are
many realization choices: to improve performance and
address other non-functional requirements, DS has designed
and tested a wide range of realization techniques. All these
techniques allow to build efficient components, but at the
same time developing and maintaining these components is
quite a complex task. To keep the control on the resulting
software, Object Modeler concepts are translated into C++
code using patterns and naming conventions. This approach
is very similar to those taken by other component models
(e.g. [22]). In the case of Object Modeler, additional
information is also inserted into the source code through the
use of macros. This alleviates the burden of writing
repetitive pieces of code. Some pieces of code are also
automatically generated. Extra information is also provided
in separate text files called dictionaries, containing tuples
“component - interface - dll”. These files permit, at run time,
to locate and load only the necessary DLLs required during
an execution and therefore to increase performances.

C. Related Issues:
The Object Modeler has been successfully used to build

very large software products (hundreds of applications made
of thousands of components, developed by hundreds of
software engineers). Several issues have been raised: Need
for a conceptual view. Software engineers describe
components using low-level mechanisms at the realization
level (naming conventions, macro, etc.). Object Modeler
conceptual entities are mixed with huge amount of C++
code. Need for a centralized description, Information about
a single Object Modeler entity is often spread among many
different files, including source code and dictionaries. Need
of formalization. The Object Modeler component model is
informally defined by means of a huge documentation.
While very valuable, this documentation is often imprecise
and many realization constraints are poorly documented.
Moreover, since the realization techniques tend to evolve
over time to ensure continuous improvement, the most
accurate information is available from experienced software
engineers.

Need of specialized tools. Software engineers develop
and maintain components using traditional C++ tools. While
sufficient to complete most of the tasks, those tools are
inadequate for instance to understand the behavior of the
software at the conceptual level. DS also developed different
tools to cope with specific problems but they are limited in
scope. Indeed, the Object Modeler model, just like other
component models (COM, CCM, etc.), is difficult to teach
and to understand. Experienced software engineers learn

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,403-410

© 2010, IJARCS All Rights Reserved 405

how to build components, but they often find it difficult to
know what went wrong when the software they have
developed does not show the expected behavior. What is
missing is a clear picture of the overall component structure
at a conceptual level. The realization level is available, but it
contains too many technical details. Reverse engineering
provides thus a logical approach to these problems, since its
goal is to “create representations of the system in another
form or at a higher level of Abstraction” [6]. However,
while most reverse engineering techniques deal with
traditional and well-defined concepts, the problem here is to
deal with the reverse engineering of component-based
software systems, which is a rather new issue in the RE3
domain. Before trying to develop a reverse engineering tool,
the first step is to give a rigorous definition of what a
component is. This is what is done in the next section.

III. BUILDING A META MODEL

Defining the Meta model for the Object Modeler was the
first step of our approach’. The key idea is to describe each
concept of the Object Modeler model as an object-oriented
item described using the UML notation [21]. The production
of the Meta model has been a long process since the model
is quite complex and is still slightly evolving. Describing the
full Meta model is out of the scope of the paper; we rather
emphasize the method and the main properties of this Meta
model. One of the main interests of using a Meta model is
that it makes it possible to define different views on it. This
paper concentrates on a small but central part of the Meta
model: how the components are built from bases and
extensions. Here the Object Modeler is described only at the
conceptual level, without giving any detail on the realization
level. Furthermore, a few simplifications have been made to
keep things simple.

A. Describing Components As Black Boxes:
While the OM model is quite sophisticated, from an

external point of view, the OM is only based on two main
concepts: components and interfaces. Clients of a
component don’t have to know how this component is built.
This idea is described in the UML class diagram presented
in Figure 2 on the middle of the next page. Components and
interfaces are linked together by a single association: a
component can implement many interfaces (this is indicated
through the * symbol near to the name of the role all
Interfaces). Conversely, an interface may be implemented
by any number of components.

B. Describing Component Items Separately:
As it was said before, actually components are made of

elementary pieces of software produced separately by
software engineers. The concrete representation of these
items in terms of C++ entities or other low level
mechanisms like macros is not relevant from a conceptual
point of view. So, instead of giving the many technical
details required to describe those items, Figure 3 introduces
four abstract languages. The first three represent abstraction
of information contained in the source code, while the last
one is the abstraction of “dictionaries”.

Each abstract language summarizes all the information
required by the OM at the conceptual level. Note that,
within the UML diagrams, arrows indicate unidirectional
associations. For instance, an interface refers to its super

interface but not to its sub-interfaces. Similarly, an
extension refers to the bases it extends, but not the other
way around. Cardinality information also brings useful
precision. For instance, from the Figure 3 we can learn that
both interfaces and bases support single inheritance (roles
named super).

Thanks to the Object Constraint Language (OCL) [25]
provided with UML, it is also possible to: (1) define derived
information, (2) describe additional constraints. As we will
see in the Section 4, this is very important in practice.
Consider for instance, the following OCL expression.

Figure: 2

Line 1 and 2 defines for each interface the all super role
(not depicted in the figure), as being the set of all super
interfaces for a given interface. This recursive definition
provides an example of derived information. Line 3 uses this
derived information to describe an additional constraint: the
inheritance hierarchy between interfaces contains no cycle.

C. Linking Component Items Together:
Even if software engineers describe component items

separately (that is required for concurrent engineering), one
of the important aspects of the OM is how components are
built from these items. Figure 4 shows a class diagram
gathering the 4 languages described previously (these
associations are drawn in black in the figure) and add
derived information (in grey and prefixed by a ”/” symbol).
Putting together component items must be done with an
extreme care, not all combinations will work. Describing
assembly constraint is therefore of fundamental importance.
Indeed, this process leads to a great number of constraints
that each assembly must satisfy to be considered as
consistent. In the context of this paper, only two of these
constraints will be described in Section 3.4 to illustrate the
approach, but we first need to introduce the necessary
derived information upon which the constraint are based.

This is what is done in Figure 5. The OCL expressions
explain how components are made from implementations
and define inheritance on components. Line 2 indicates that
component inheritance (super) is in fact directly derived
from base inheritance (base. Super). Lines 3 indicate that the
extensions of a component (extensions) are all extensions
attached to its base. Line 4 defines the direct implementation
of a component (implementations). Line 5 recursively
defines the set of all implementations (all implementations)
of a component considering component inheritance. Line 6
defines the direct interfaces of a component. Finally line 7
defines the set of all interfaces (all interfaces) that can be
reached from the component following either the interface
inheritance relationship or the component inheritance
relationship.

D. Discovering Potential Inconsistencies:

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,403-410

© 2010, IJARCS All Rights Reserved 406

Gathering the four abstract languages (Figure 3) into a
single diagram (Figure 4) helps to discover possible
inconsistencies between the information they describe.

Indeed, the global view provided by a Meta model is one of
the main benefits of the approach.

Figure 3. specification of component separately by means of four abstract languages

For instance, in our context, one should wonder what is

the relationship between the derived roles declared
interfaces and the explicit role all interfaces. After asking
for more precision from OM designers, we learned that
software engineers must explicitly declare all interfaces in
the component language (i.e. in the dictionaries). So the next
invariant is expected to hold.

Figure 4 . Component as Black Boxes

In practice ensuring this kind of constraint proved to be
difficult, since the whole graph of entities is developed
concurrently by hundreds of software engineers working in
different sites, without a conceptual or global view. So, the
meta model has to deal with inconsistencies. rather than
ensure strict consistency. Therefore we comment out this
constraint, so this is not an invariant of the meta model. This
approach permits to represent "invalid" data. Next section
will show how to locate these constraint violations in
practice. While the constraint above can be discovered
through the examination of the structure of the meta-model
many other constraints require a better knowledge of the
component model. For instance, one important requirement
in the OM, is that the behavior associated by a component to
an interface must be Unique; this means that, within a given
component, an interface must always be associated to a
single implementation.

Figure: 5

This expression translates the fact that two
implementations of a component must not implement the
same interface. The next section will give some examples
showing how to locate and identify entities
Leading to such a constraint violation called multi-adhesion

IV. BUILDING REVERSE ENGINEERING
TOOLS

Building a meta model not only improves the
understanding of the component model. It also provides a
very good basis to build a reverse engineering platform on
which a large set of tools can be built, ranging from simple
visualization tools, to complex analysis or restructuring
tools. This includes for instance, tools that detect constraint
violation. Developing all these tools from scratch is
certainly not cost effective. Fortunately, a common platform
can be derived from the meta model.

A. A Reverse Engineering Platform:
Figure 6 shows a simplified view of the overall

architecture of the reverse engineering platform we have
built. This traditional architecture for a reverse engineering
environment [1,6] is made of the following parts. Extractors.
The first step is to extract information from concrete
software artifacts. In our case, source code and dictionaries
are parsed and analyzed. Repository. The repository plays a
central role in the environment. One important feature of our
approach is that the structure of this repository is directly
derived from the meta model. Tools. The tools generate
different views on the repository. While some tools generate
specific views, generic tools take as input a specification of
the view to be generated. As we will see, the meta model
can be directly used to express the information to be
displayed.

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,403-410

© 2010, IJARCS All Rights Reserved 407

Figure 6. The reverse engineering platform

As an illustration, the’ next section shows how the Meta
model was used to build views displaying components using
different visualization techniques. It then shows how
inconsistencies can be found and located through the use of
specific views. The realization level is far more complex. In
this particular case, there were 49821 C++ classes involved
in the concrete representation of these components.

B. Example Of Visualization Tools:
Displaying components was the first application of our

reverse engineering platform. This was a very interesting
experiment because components are built in a blind way
(through the use of macros and other low level mechanisms
spread out over many files), software engineers had never
actually "seen" these components While the interfaces and
implementations described above deal with the sources of
data, visualization constitutes another important part of the
GSEE framework. Indeed the interfaces required by
visualization components are also expressed in terms of
abstract structures based on the set theory: sequence, graph,
tree, etc. In other words all data displayed by visualization is
expressed in terms of type constructors that can in turn be
expressed in terms of set and functions. This uniform
treatment of components greatly helps the connection
between source components and visualization components.

From a concrete point of view, GSEE includes a large set
of visualization components. GSEE is based on the Java
Bean component model [29] and makes an extensive use of
the Swing framework provided with the java environment.
In particular this framework provided valuable components
to visualize a rich set of structures including sequences,
tables, trees, hyper texts, etc. To complete the spectrum of
visualization techniques, GSEE also integrates wrappers to
various other visualization components, such as Grappa, the
java version of the dot graph visualization tool [11]. We also
have developed from scratch different visualization
components such as tree maps and line sequences inspired
from [6]. All visualization techniques currently available in
GSEE have been selected for their ability to display very
large sets of data. Tough a wide range of components are
included with GSEE, it is still possible to add to the
environment new visualization components dynamically,
just like source components. This makes it possible to
include specific components.

An interesting aspect of GSEE is that each visualization
component described above has been encapsulated to
support a uniform interface. All views are described in the
same format: (1) a model specifies the software artifacts to
visualize, and (2) a renderer indicates how these artifacts are

mapped to graphical entities. This approach followed by
most modern visualization frameworks, is further improved
in GSEE: both the model and the renderer can be expressed
in terms of one or more successors, making it very easy to
produce a new view.

To further simplify the production of renderers, the GSEE
framework also provides a set of interfaces and
Implementations dedicated to visualization. For instance the
interface Colorizer is intended to map objects to colors. The
EnumColorizer implementation maps a specified set of values
to a specified set of colors (this is an example of function
represented in extension since it is a set of pair (value,
color)). Similarly RangeColorizer maps a range of values to a
gradation of color, etc. Other implementations make it
possible to combine these features. Some implementations
are provided to edit the renderer properties interactively
through the use of panels, color choosers, etc. and to save
these renderers for further use. Since the renderers of each
specific component are defined consistently it is easy to
switch from a visualization technique to another. For
instance, a hierarchical structure can be visualized using a
Swing JTree, a graph displayed by a tree map, by just
changing a parameter while keeping the same model.

V. THE GSEE CUSTOMIZABLE TOOLS

Usually one of the best ways to evaluate a software
exploration tool is to see it at work. In the case of GSEE, it is
important to keep in mind that the power of this
environment is not directly visible since it resides first of all
in the GSEE framework. However, in this section two
demonstration tools included in the GSEE environment are
briefly presented as an illustration of the approach: the GSEE
Interpreter and the GSEE Viewer. Though simple, these tools
proved to be usable on a very large scale, in the context of
Dassault Système [10,26], on a software made of more than
40 000 C++ classes. In the context of this paper, let us
suppose that the goal is to explore the java standard library
(more than 8000 java classes are delivered with the
JDK1.3). The same tools can be used without any
modification: instead of loading DS’repository at the
beginning of the session a connection will be made to source
components extracting information from java programs.

A. Example 1: The GSEE Interpreter:
The first demonstration tool is called the GSEE

Interpreter (see Figure 1). Thanks to the ramework, this tool
is made of only 60 lines of java code!
a. Features. This tool aims to give access to the GSEE

language through a very rudimentary interface (see
Figure 1). Simply put, the GSEE language is a
functional language giving access to the compositional
operators supplied by the framework.

Each step of interaction with the GSEE Interpreter
consists in entering a new command. The command is
immediately interpreted and the result displayed both in a
textual and graphical form. In the Figure 1, the history of the
session is displayed in textual form on the top. The result of
the last command is displayed graphically on the bottom.
There are basically three kinds of commands: (1)
expressions (or queries), (2) definitions of new symbols (let
x = …), (3) and directives controlling the behavior of the
interpreter (e.g. loading a new source component). Like with
any other interpreted language, these commands can be

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,403-410

© 2010, IJARCS All Rights Reserved 408

saved to form a program for later use. In particular it is
possible to create a specific tool from that program and
make this tool available at large for novice explorers.
b. Example of A Scenario: To illustrate the use of the

GSEE Interpreter, let us assume that we want to study
the relationship between the composition of packages
and the inheritance relationship: for instance we want
to know, for a given package P, which packages
contain the super classes of the classes in P. In other
words, we want to know if the inheritance relationship
crosses package boundaries. We unlikely want to build
from scratch a specific tool for that! Selecting adequate
source components. So let us study the problem and
see what we have at hand. Since building a java parser
will be far too expensive let see which source
components are available and how to extract the
necessary information. Thanks to the java introspection
library provided with the java environment, it is
possible, for a given class to get its super class through
the method getSuperclass. Unfortunately, this library
does not provide enough support to deal with
packages. For instance it is not possible for a given
package to get the list of the classes it contains. Before
starting to write a tedious piece of code, it is a good
idea to check if there is on Internet some piece of code
already providing this functionality. After a search
among the many tools freely available (e.g. [1,3,15]),

Java Assistant is found [4]. The main page describes
shortly the functionality of the tool. In this page the
following sentence is found “adavid.reflect.PackageFinder:
finds all the packages on your system”. To get further
information the tool is downloaded. Loading selected source
components under GSEE. The JavaAssistant is a specific tool
with a specific set of features. However, from the GSEE
point of view JavaAssistant could be considered as a source
component since it provides some way to extract
information from java programs. So let’s start a session with
the GSEE Interpreter, and load this java component (see step
(1) in Figure 1). Exploring source components. Since we
have just loaded a new component, we do not know much
about it. Fortunately, we can use GSEE to explore the
software model implemented by this component: after all
this is just another piece of software. Actually GSEE
supports the exploration of software models, that is, the
exploration of meta information on software. This topic is
an important feature of GSEE but is out the scope of this
paper. This step has not been shown in the figure so the
whole scenario can fit into the history window. What is
important here, is that we learn that the method
getPackageResources gives access to packages.

Building new functions and getting the result. Before all,
a short name is given for that method (2). The function is
then tested on a package, for example java.lang.reflect (3). It
seems to work, so we now define a successor use as being
the function we need (4). The successor expression
package;getClasses;getSuperclass ;getPackage;getName means
that we want “the names of the packages that contain the
super classes of the classes contained in a given package”.
The main benefit of an interpreted language is that we can
try it immediately (5). From the output, we learn that the
java.lang.reflect package “uses” three packages, namely
java.lang, java.security, and java.lang.reflect. To get a global
view, a function returning a graph is defined (6) and tested

(7). That's all we want. We have got the graph on the bottom
of the window. As we can see, the core packages of java are
strongly connected!

Figure: 7 A session with the GSEE Interpreter

Creating a new specific tool, we have just defined
interactively a new function taking as parameter one or more
package names and displaying the graph of inheritance over
these packages. This function is useful so we may want to
save the program we have just built and made it available to
the whole team. Since other software engineers do not know
much about the GSEE language, we supply them a specific
tool with a simplified interface: a text field to enter the name
of package and a panel to display the graph. This tool can be
standalone or integrated as a plug-in in a programming
environment. Currently GSEE is able to create plug-ins for
the Kawa programming environment [16]. The function can
be called directly from Kawa menus. The integration is
therefore entirely transparent to the novice explorer. He can
use its favorite programming environment without even
knowing that this is actually a GSEE plug-in.

B. Discussion And Related Work:
Our approach is based on two major steps: (1) building a meta

model describing the component model, and (2) building a reverse
engineering platform to explore and analyze software built using
this model.

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,403-410

© 2010, IJARCS All Rights Reserved 409

a. About The Meta Model:
It is important to stress that this paper concentrates only

on a small but central part of the OM meta model. The
complete meta model is much more complex; it also
describes the realization level (C++ classes, C++
inheritance, DLLs, etc.), larger grained entities like
frameworks, products, etc. Describing precisely the
constraints at these various levels proved to be difficult,
mainly because the model evolved over time with the
underlying technology and realization techniques. We also
found that working only at the meta model level is
insufficient, because it gives no information about actual
instances. The first reverse engineering and exploration
tools we have implemented provided us invaluable insights
on the usage of the component model. For instance, we
learned that some apparently important mechanisms are in
fact almost not used at all. The reverse engineering tools
also provided a great help in validating the meta model,
through discussions with DS software architects and
designers.

b. About Reverse Engineering Tools:
The platform is implemented in java, C++ parsers are

developed by DS, and the repository is based on Object
Store [30], a commercial Object Oriented Data Base.
Various tools have been built around the platform. The
OMVT tool, also implemented in java, represents a
significant development effort, but it is clearly worth since it
has been designed specifically to fit the needs of DS
software engineers [23]. We also experimented with
available RE3 generic tools, in particular with Rigi [19]. Our
goal was to evaluate the current state of generic exploration
tools and their capability to explore large component-based
software products [20]. This experience show us (1) that it is
easy to integrate new tool into our environment, (2) that
getting first results with Rigi can take only few hours.

However, this tool also shows a number of limitations in
our context [20]. We thus decided to develop GSEE, the
Generic Software Exploration Environment [121. This
environment has been used not only in the context of DS,
but also to explore other software artifacts. Indeed, GSEE
can be seen as a generalization of the approach presented in
this paper. Roughly speaking, this environment is
parameterized by the meta model and enables software
engineers to build “any” view on virtually arbitrary set of
data, by just specifying the view in terms of the meta model
[12]. Scalability and performance were considered as
important issues during the design and the implementation
of all the tools we have built. It is interesting to notice that
the use of java do not raises performance issues. Actually,
extraction from source code is the bottleneck of the reverse
engineering process: it takes several hours to parse the
whole software developed at DS (4 millions LOC in C++).
This step is done once a week, and is integrated in the whole
development process of the company.

C. Related Work:
Describing industrial component models in a rigorous

way is gaining an increasing attention in the academic
community. For instance, the COM component model has
been described using the Z notation [24]. We preferred to
use UML [22] and OCL [25] since these languages are
increasingly popular in industry. A similar approach has
been taken recently in the definition of the Corba

Component Model (CCM) [31]. In this case, the meta model
is mostly seen as a documentation vehicle. Actually, the use
of meta models has been widely recognized in software
engineering, but most work aims at defining new models, or
describing existing and stable models with well known
properties (i.e. a programming language). This contrasts
with our problem, since the OM component model is
evolving and a very large amount of instances are already
available. This last property naturally leads to RE3
techniques. In particular meta models have been used at the
intersection of 00 and RE3 (e.g. Famous [7] is based on
Famed, Spool [21] is based on UML). However, these
projects model 00 concepts, not components. In this paper
we have gone one step further: we consider that 00
programming languages correspond to the realization level,
and components to the conceptual level. Finally, note that
the Meta models we have built do not enforce strict
consistency, but instead deal with inconsistencies.

In parallel with component-based approach, a very large
body of work have been done in the academic community to
define Architecture Description Languages (ADLs) [14].
These languages introduce the concepts of connector and
configuration in addition to the concept of component.
Unfortunately the ADL approach have failed so far to find
its way to industry [17] in part because no support is
provided to deal with existing software products. The lack
of large industrial software products based on these concepts
explain why most of research done in architecture recovery
are usually based on traditional concepts like modules and
dependency relationships (e.g. [15,16,19,27]).

VI. CONCLUSION AND FUTURE WORK

This paper represents a study of the intersection between
reverse engineering and component-based software
engineering. We believe that this topic will be of increasing
importance as component technology will spread in
industry. DS is pioneering in this domain. Tough this paper
presents the platform as a reverse engineering platform, one
of our goal is indeed to build a complete architectural
environment to support the evolution of large software
products [17,23]. This environment will also include
forward engineering capabilities, and other RE3 techniques
like impact analysis, restructuration, etc. All existing
techniques need to be revisited to be applicable at the
architectural level. We found that the use of the meta model
is a very good basis to develop this kind of tool. Based on
the understanding we have gained in this work, we are
defining a new component model, along with the associated
formalisms and tools. One way to validate this component
model is to use it to develop our own platform and tools.

Our current research seeks to show, on the one hand,
how to apply component-based technology to build RE3
environment like GSEE [12], and on the other hand, how
RE3 can be applied to component-based technology.

VII. REFERENCES

[1]. R.S. Arnold; “Software Reengineering”, ISBN 081
8632720:200-213.

[2]. F.P. Brooks; “No Silver Bullet. Essence and Accidents of
Software Engineering”, in IEEE Computer, April
2007:243-248.

J.M.S.V.Ravi Kumar et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,403-410

© 2010, IJARCS All Rights Reserved 410

[3]. R.S. Amold; “Tutorial on Software Restructuring”, ISBN
0818606800, IEEE Computer Society Press .2004:204-213

[4]. L. Bass, P. Clements, R. Kazman; ‘Software Architecture
in Practice”, ISBN 0201 199300, Addison-
Wesley.2007:412-419

[5]. F.P. Brooks; “No Silver Bullet. Essence and Accidents of
Software Engineering”, in IEEE Computer, April 1987.D.
Box; “Essential COM”, ISBN 0201 634465, Addison-
Wesley.:223-234.

[6]. E.J. Chikofsky, J.H. Cross; “Reverse Engineering and
Design Recovery : A Taxonomy”, in IEEE Software. 2000

[7]. S. Ducasse, S. Demeyer, editors; “The FAMOOS Object-
Oriented Reegineering Handbook”2005: 323-328.

[8]. F. Duclos, J. Estublier, R. Sanlaville; “Open architectures
for Software Adaptation”, (in french) 13th Intemational
Conference on Software and Systems Engineering and their
Applications.2003 :245-248.

[9]. R. Englander; “Developing Java Beans”, 0Reill:y &
Associates. Jun. 1997:(11):343-349

[10]. J.M. Favre; “Understanding-In-The-Large”, 5th
Intemational Workshop on Program Comprehension
(IWPC’07), 2007:227-235.

[11]. J.M. Favre; “A rigorous approach to the maintenance of
large portable software”, European Conference on
Software Maintenance and Reengineering . 2005:434-440.

[12]. J.M. Favre, “GSEE: a Generic Software Exploration
Environment”, submitted to the Intemational Workshop on
Program Comprehension (IWPC’2009).

[13]. M. Fowler, “Refactoring. Improving the Design of Existing
Code”, ISBN 0201485672, Addison-Wesley, Nov.
2009.:320-330.

[14]. D. Garlan; “Software Architecture: a Roadmap”, in A.
Finke lstein, editor, The Future of Software Engineering,
22nd Int. Conference on Software Engineering, Jun. 2009.

[15]. R. Holt et al, PBS: Portable Bookshelf Tools. 2005:317-
320.

[16]. R. Kazman, S.J. Camitre; “Playing Detective:
Reconstructing Software Architecture From Available
Evidence”, Tech. Rep. CMU-SEI-TR-010, Software
Engineering Institute, 2007.

[17]. Y. Ledru, R. Sanlaville, J. Estublier; “Defining an
Architecture Description Language for Dassault
Systitmes”, 4th Int. Software Architecture Workshop,
Jun.2007.

[18]. N. Medvidovic, R.N. Taylor; “A Framework for
Classifying and Comparing Architecture Description

Languages”. 6th European Software Engineering
Conference,.LNCS 1013, Springer-Verlag, Sep. 2007.

[19]. H.A. Muller et al, RIGI, S.T. Nguyen, J.M. Favre, Y.
Ledru, J. Estublier; “Exploring Large Software Products”,
(in french), 13th International Conference on Software and
Systems Engineering and their Applications
(ICSSEA’2006), Dec. 2006.

[20]. L.B.S. Raccoon, “Fifty Years of Progress in Software
Engineering”, Software Engineering Notes, Vol. 22, No 1,
ACM SigSoft, Jan. 2007.

[21]. J. Rumbaugh, I. Jacobson, G Booch; “The Unified
Modeling Language Reference Manual”, ISBN
020130998X, 2005.

[22]. R. Sanlaville, J.M. Favre, Y. Ledru, “Helping Various
Stakeholders to Understand a Very Large Software
Product” submitted to IWPC’2009.

[23]. K.J. Sullivan, J. Socha, M. Marchukov; “Using Formal
Methods to Reason about Architectural Standards”,
International Conference on Software Engineering
(ICSE’97), 2007.

[24]. J.Warmer, A. Kleppe; “The Object Constraint Language”,
ISBN 001379406, Addison-Wesley, 2009:350-360.

[25]. E. Yourdon; “Re-3 : Re-engineering, Restructuring,
Reverse Engineering” in American Programmer, V01.2,
No. 4, 2005.

[26]. S.T. Nguyen, J.M. Favre, Y. Ledru, J. Estublier, "Exploring
Large Software Products", Proc. of ICSSEA, Paris, Dec
2000

[27]. D.E. Perry, "Software Interconnection Models", Proc. of
the 9th Int. Conf. On Software Engineering, IEEE, March
2007.

[28]. S. Robitaille, R. Schauer, and R.K. Keller, "Bridging
Program Comprehension Tools by Design Navigation",
Proc. of the Intnl. Conf. on Software Maintenance, Oct.
2000.

[29]. S. Tichelaar, M. Lanza, S. Ducasse, "Moose: an Extensible
Language-Independent Environement for Reengineering
Object-Oriented Systems", Proc. of the 2nd Int. Symp. On
Constructing Software Engineering Tools, June 2000.

[30]. R. Sanlaville, J.M. Favre, Y. Ledru, Helping Various
Stakeholders to Understand a Very Large Software
Product"submitted to the European Conference on CBS E,
2001.

	REFERENCES

