
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 138

ISSN No. 0976-5697

Scheduling Real-Time Multiprocessor Systems with Fault Tolerance Mechanism:
Approaches Survey

Nima Jafari Navimipour*

Department of Computer, Tabriz Branch,
 Islamic Azad University, Tabriz, Iran

n.jafari@srbiau.ac.ir

Seyed Hasan Es-hagi

Department of Computer, Tabriz Branch,
 Islamic Azad University, Tabriz, Iran

Es-hagi@iaut.ac.ir
Abstract: Real-Time system is a system that time of response to jobs play a very important role. Due to time limitations, fault tolerance mechanism in
real-time multiprocessor systems is extremely important. In this kind of systems the fault should be discovered and be repaired as soon as possible to
let the jobs are completed in determined deadline.
The specified system needs redundancy for be a fault tolerant system. One of the redundancy types is software redundancy. The special kind of
software redundancy is "Primary Backup" that is used for scheduling real time multiprocessor systems. In this paper three new approaches for
scheduling jobs in real time, fault tolerance systems is reviewed. Also we explain benefits and disadvantages of each approach are explained. Finally
these approaches will be compared.

Keywords: Fault Tolerance, Real Time Systems, Primary Backup, Multiprocessing

I. INTRODUCTION

Real-time systems perform an important role in societal
infrastructure, with application domains ranging from safety-
critical systems (e.g., cars, aircraft, and robots) to user-
interactive systems (e.g., consumer electronics, multimedia
devices, streaming servers) [1]. Although, the real time system
is a system in which all the jobs must completed in a specific
time. In other word in these systems the accuracy of system
depends on not only to the results of logical computations, but
also to the time that these results have been produced in
system. In hard real time systems, job should be completed
exactly on time and no delay is acceptable, otherwise causes
system to become incapable. In soft real time systems,
response time is important but it is not as vital as the real time
systems. Also jobs in real time systems are Periodic and
Aperiodic. In periodic system jobs repeats periodically for
example measuring temperature in special times. In aperiodic
system jobs take place accidentally and this time is not
determined.

In fault-tolerant real time systems, detection of fault and its
recovery should be executed in timely manner so that in spite
of fault occurrences the intended output of real-time
computations always take place on time [2]. For fault tolerant
technique detection, latency and recovery time are important
performance metrics because they contribute to node downtime
[2]. In real time systems, jobs should be finished in their
deadline despite any fault, therefore the algorithms that can
response in determined time with considering faults is needed.
Fault tolerance is achieved by redundancy. The types of
redundancy are hardware redundancy, software redundancy,
information and time redundancy. Fault tolerant techniques
implemented by means of scheduling are discussed in [3-5].

One of the most important challenges in real time systems

is job scheduling. Job scheduling in real time systems is that,
recognize when and on which processor a specific job should
be executed. Job scheduling techniques can be used to achieve
effective fault tolerance in real time systems [6, 7].

Real time scheduling methods are divided into Dynamic
and Static methods. In static method, scheduling decisions are
taken before the system start to execute but in dynamic
methods, scheduling decisions are taken during the execution
time. Static scheduling algorithms are executed on periodic
jobs and do not has ability to execute on aperiodic jobs that
their entrance time and deadlines are not determined. To
scheduling these jobs dynamic methods are used. In dynamic
scheduling when a new set of jobs enter a system, the scheduler
will decide according to their specifications and flexibility.

Types of faults that may happen in system are permanent
fault, transient fault and Intermittent faults. Permanent faults
are caused by the total failure of a computing unit and are
typically tolerated by using hardware redundancy, such as
spare processors [1]. Transient faults can be caused by
limitations in the accuracy of electromechanical devices,
electromagnetic radiation received by interconnections [8].
Intermittent faults are repeated occurrences of transient faults
[9]. Fault tolerance in multiprocessor systems is much more
important because several parallel processors are working
together and if any of them fails it can influence execution of
other processors [8]. Although one of the advantages of
distributed system is tolerating the fault in crashed component
without disturbing other components [9].

Fault tolerant scheduling algorithms use Forward Recovery
and Backward Recovery. One of the forward approaches that
are used in fault tolerance scheduling is Primary backup (PB)
method. In this method two copies of jobs will be scheduled in
two different processors and a test is used to estimate the
accuracy of results. The backup method only execute if main

Nima Jafari Navimipour et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,138-143

© 2010, IJARCS All Rights Reserved 139

copy will damage.
The remainder of this article is organized as follows:

Section II introduces the real time job scheduling problem,
Section III motivates three different approaches are studied for
job scheduling by PB method; Section IV compares these
approaches; Section V presents conclusion and future works.

II. REAL TIME SCHEDULING PROBLEM

Real-time scheduling provides a way of predicting the
timing behavior of complex multi-tasking computer software
[10]. It provides a number of ‘schedulability tests’ for proving
whether a set of concurrent jobs will always meet their
deadlines or not. Numerous improvements have been made to
real time scheduling in recent years. Ways of transferring
scheduling theory from academia to industrial practice have
also been investigated in [11]. In [12] the model of real time
scheduling is assumed that consists of the following
components:

a. A set of computational jobs to be performed. Typically
these are software ‘processes’.

b. A run-time scheduler that controls which job is
executing at any given moment.

c. A set of shared resources used by the jobs. These may
include shared software variables, both with and
without mutual exclusion control, and shared hardware
devices such as data buses.

In real time scheduling is supposed that jobs are three types,
characterized by the arrival pattern of their individual
invocations.

d. Periodic jobs consist of an infinite sequence of identical
invocations which arrive at fixed intervals [13]. Thus
their arrival pattern is time driven.

e. Aperiodic jobs consist of a sequence of invocations
which arrive randomly, usually in response to some
external triggering event [14]. Thus their arrival pattern
is event driven.

f. Sporadic jobs are a special case of aperiodic ones in
which there is a known worst-case arrival rate for the
job, i.e., they have a fixed minimum interarrival time
[14].

Many algorithms for scheduling real-time jobs exist in the
literature. These algorithms in [15] are categorized as follows:

Static scheduling algorithms require the programmer to
define the entire schedule prior to execution. At run time this
pre-determined schedule is then used to guide a simple job
dispatcher. Cyclic executives are one way to program static job
scheduling [16].

Dynamic scheduling algorithms make decisions about
which job to execute at run time, based on the priorities of the
job invocations in the ready queue. They require a more
complex run-time dispatcher or scheduler. Such algorithms can
be further categorized into those based on fixed and changeable
priorities [15].

Fixed-priority scheduling algorithms statically associate a
priority with each job in advance. This can be done arbitrarily
by the programmer, or according to some consistent policy.

Two well-known policies for fixed priority assignment are
Deadline Monotonic Scheduling, in which jobs with shorter
deadlines are allocated higher priorities [17], and Rate
Monotonic Scheduling, in which jobs with shorter periods are
allocated higher priorities [18].

Dynamic-priority scheduling algorithms determine the
priorities of each job invocation at run time. Typically this
requires a more complex runtime scheduler than fixed-priority
scheduling. Two methods of dynamic priority assignment are
Earliest Deadline First, in which the ready job invocation with
the earliest upcoming deadline is given highest priority [19],
and Least Laxity, in which the ready job invocation with the
smallest difference between its upcoming deadline and
(estimated) remaining computation time is given highest
priority [20].

In the next section the common methods for scheduling the
jobs in real time system to tolerate the fault are presented.

III. FAULT TOLERANCE SCHEDULING METHODS

In this section three new approaches for real time system
are reviewed. Each of these methods solves the scheduling
problem of multiprocessor real time systems in specific
method. All of these methods use PB, this means backups are
taken from the main jobs and the jobs scheduled in a way that
main job and its backup are not in the same processor also
there is a mutual exclusion in the run time of job and its
backup. Backup copy will execute just when the main copy can
not execute properly and faces a problem. Also the EDF
(Earliest Deadline First) algorithm is used in them. In this
algorithm the process that has less time will execute first,
means it has nearest deadline. This deadline for alternating
events is equal to time of next event.

A. Backup Overloading Method (B/O):
This method is proposed by Bindu Mirle and Albert M.K.

cheng [21]. This method is based on PB (Primary/Backup).
The jobs are assumed to be periodic and two instances of each
job (a primary and a backup) are scheduled on a uni-processor
system [21]. One of the restrictions of this approach is that the
period of any job should be a multiple of the period of its
preceding jobs. It also assumes that the execution time of the
backup is shorter than that of the primary [21].

Also, in this method Primary Backup Fault Tolerance is
used. This is the traditional fault-tolerant approach wherein
both time as well as space exclusions are used. The main idea
behind this algorithm is that (a) the backup of a job need not
execute if its primary executes successfully, (b) the time
exclusion in this algorithm ensures that no resource conflicts
occur between the two versions of any job, which might
improve the schedulability. Disadvantages in this system are
that (a) there is no de-allocation of the backup copy, (b) the
algorithm assumes that the jobs are periodic (the times of the
jobs are predetermined), (c) compatible (the period of one
process is an integral multiple of the period of the other
process) and execution time of the backup is shorter than that
of the primary process [21].

Nima Jafari Navimipour et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,138-143

© 2010, IJARCS All Rights Reserved 140

The authors found some weak point for PB and tried to
solve them. The weak points are: 1- After allocating backup
copy, deallocation does not happen. 2- It assumes that jobs are
periodic; in other word their execution time is specific. 3- It
considers that the compatibility time and execution time of
backup copy is shorter than main copy. To solve these weak
points they tried to develop PB to correct these problems.

In this method, the job is in one processor and its backup is
in the other processor. The backup copy is allocated in a way
that can overlap with other backup copies of jobs and this cause
optimized use of existing processors. The purpose of
overloading is to utilize the available time slot better because
the chances that the backup copies have to run simultaneously,
is remote [21]. If P1, P2 and P3 are existing processors, PRI1
and PRI3 are copy of jobs and Bk1, Bk3 are backup copies
then the method of overlapping is shown in fig.1. The violet
region in fig.1 is the overloaded region.

Figure.1. overlapping example

Two advantages of this method are optimum use of
processors due to overlapping of backup execution time and
deallocation of backup copies. It means when a job executed
successfully, its backup will be deleted; so this cause to free the
allocated space that can be used for scheduling other jobs. This
method can tolerate only a single fault. The method cannot
afford the failure of more than one processor at the same time.
If more than one processor crashes at the same time, the
method will fail to execute the jobs on time [21]. There are
basically 2 kinds of faults considered here:

a. Transient Fault: This fault is only temporary and the
system will start running correctly after some time. So,
only that backup during which the processor had failed
needs to be executed [21].

b. Permanent Fault: Here the processor undergoes a
permanent flaw and all the processes scheduled on it
crash. So, all backups and primaries on that processor
have to be re-executed [21].

It has been deduced that the PB overloading algorithm has
been quite successful in overcoming 86% of the transient faults
but not the permanent faults.

B. Distributed Recovery Block Method (DRB):
This method present a fault tolerance approach in

heterogeneous distributed systems by software techniques
based on distributed recovery block (DRB)[22]. Recovery
blocks consist of several routines (their name is try block) that

they are used to compute results like the results of main job
and also there is acceptance test in these blocks that estimates
the results from correctness and time limitations points of
view. To simplify this method we use two blocks: Main block
and Backup block. The fault process technique is the same
acceptance test that is parallel among nodes but it functions
serially inside each node. DRB is an approach for realizing
both hardware fault tolerance and software fault tolerance in
real-time distributed and/or parallel computer systems [22].

In each system it has considered two queues, one for main
jobs and other one for backup jobs and also there is a central
queue that at first all the jobs enter into it then one of the
processors will be chosen to execute that job. In all queues use
EDF technique in a way that, the job that has nearest deadline
will execute sooner than the others.

Figure.2: a possible initial schedule according to the period of the jobs

The idea of the DRB has been adapted from [23][24]. In
this method each job is divided to sub-jobs. Each sub-job is
executed in main block; second copy of its sub-job is updated
in backup block. If a job fails, last updated sub-job in backup
block can continue the job. Fig.2 shows scheduling jobs in this
method.

In DRB two conditions should be considered. First, the
execution of backup copy should not prevent main copy from
execution. The second is if a main job fails and not finishes in
determined time, the backup copy should executes but backup
copy does not starts the job from beginning and continue it
from the point that the sub-job created by main job. This
method is used to tolerate timing faults and permanent faults.

The results show that this algorithm outperforms the
traditional EDF uniprocessor scheduler, which has missed
deadline in presence of timing and crash fault, and a
randomized assignment of jobs [22]. Experimental results show
that DRB method that is based on random EDF, can tolerate
10% to 20 % of permanent faults and several determined time
faults [22].

C. Genetic Based Method:
This model presents the fault tolerant scheduler based on

genetic algorithm and backup copy of jobs. This algorithm
designed for a soft real time multiprocessor systems that jobs
are non exclusive and alternating, and also there is no relation
between jobs. In genetic algorithm model, some heuristics used
instead of classic methods that it finds optimized results
mostly. This algorithm is designed for non-preemptive periodic
jobs without any precedence relationship between jobs on a
soft real-time multiprocessor system. Each job is assumed to

Nima Jafari Navimipour et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,138-143

© 2010, IJARCS All Rights Reserved 141

have a primary and a backup copy that are allocated to different
processors and the backup copy would be executed only if the
primary copy fails due to the fault. The objective of our
algorithm is to be fault tolerant and the jobs use the processors
equally [8].

Genetic Algorithm is an efficient searching tool that was
invented by John Holland [25].The genetic algorithm has great
application for optimization of complicated problems mostly in
where is not enough information about search space [27]. For
solving any problem by genetic algorithm, seven components
must be defined [26].

Representation (definition of individual): represents each
chromosome in the real world. A chromosome is a set of
parameters which define a proposed solution to the problem
that the genetic algorithm is trying to solve.

Fitness function: These function shows the fitness of each
chromosome. It is used to evaluate the chromosome and also
controls the genetic operators [27].

Population: The population consists of chromosomes that
each chromosome represents one result for the problem [27].

Parent selection mechanism: The role of parent selection is
to distinguish among individuals based on their quality, in
particular, to allow the better individuals to become parents of
the next generation [27].

Reproduction: The reproduction operator is based on the
Darwinian notion of "survival of the fittest"[27]. Individuals
taking part in successive generations are obtained through a
reproduction process or evolution operation. Individual strings
are copied into a mating pool according to their respective
fitness values. The higher the fitness values of the strings, the
higher the probability of contributing one or more offspring in
the next generation [27].

Crossover operators: Recombination operator selects two or
more chromosomes and then produces two new children from
them. It aims at mixing up genetic information coming from
different chromosomes to make a new individual [27].

Mutation operators: Mutation operator selects one
chromosome and then produces one new child from it by a
slight change over the parent [27].

Survivor selection mechanism: The role of survivor
selection is to distinguish among individuals based on their
quality. This mechanism survives the individual among the
passing from one generation to the next generation [27].

Termination Condition: The condition to ending the
running of genetic algorithm [27].

The implemented genetic algorithm for this problem is: If n
jobs exist, 2n jobs have to be scheduled in m processors. Each
processor has a list that keeps the jobs execute in that processor
and also have R value that shows remaining capacity. Firstly R
is 1 for all the processors and their lists are empty. When a job,
Ti, adapted to a processor, this job is added to its list and R
value changes according to R - (Ci is maximum needed time
for computations and Di is existing deadline for the job number
i) [8]. Until , Jobs can be added to a processor. Fig.3
illustrates a sample chromosome [8].\

1 2 3 … n-1 n fitness

Figure. 3: a sample chromosome
The first row in fig.3 indicates processor number, the

second row shows the list of jobs that are scheduled and the
last row indicates R (remaining time of processor).

One of the other purposes of this method is that trying to
distribute load balances among CPUs. Therefore the fitness
value for each chromosome is a variance of R. The fitness

value is that m is number of processors, Rj is

remained efficiency of j processor, and R' is average R [8].
At last the summery of all these steps are as follows:

a. Initial and chromosome encoding
b. Generating initial population
c. Applying genetic operators: crossover and mutation
d. Adopting a set of operators to balance the load on

processors.
e. Repeating steps 3 and 4 as much as needed duo to

termination condition.
This method is designed for scheduling of non-preemptive

independent jobs on a soft real-time multiprocessor system.
Each job is periodic and is assumed to have a primary copy and
backup copy that are assigned to different processors since the
backup copy is executed only if the primary copy fails due to
the fault [8].

IV. METHODS COMPARISON

In this section the comparing of these models are presented.
In table 1 these models are compared by eight aspects.

Table1: Comparing the B/O, DRB and GA methods with eight aspects
Method
Aspects

B/O Method DRB
Method

GA Method

Type of Fault
Toleration

86% of transient
faults

10% to 20%
permanent faults

and some
transient faults

Permanent faults
and transient

faults

Number of
Processor
Failed
Tolerated

1 processor About 10% of
processors

Not mentioned

Types of
Scheduling

Dynamic Dynamic Static

Types of Jobs Not periodic Periodic Periodic

Job
Dependency

Not exist Not exist Not exist

Types of
Processor

Homogeneous Heterogonous Homogeneous

Central
Scheduler

Yes Yes Yes

Other
Advantages

Deallocation of
backup copies.

Dividing a job to
sub-jobs that

prevent executed
sub-jobs from
re-executing.

The discovering
method cause

that find best or
near the best

optimized
answer.

Nima Jafari Navimipour et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,138-143

© 2010, IJARCS All Rights Reserved 142

As shown in Table1, B/O method can tolerate 86% of
transient faults only one processor. The B/O schedules the job
dynamically and the jobs are non periodic. In this method job
dependency is not exist. The types of processor in the B/O
method are homogeneous and same. In DRB method 10% to
20% permanent faults and some transient faults and about 10%
of processors can tolerated. The DRB schedules the job
dynamically and the jobs are periodic. The job dependency not
exists in this method. The types of processor in the DRB
method are heterogeneous. This method dividing a job to sub-
jobs that prevent executed sub-jobs from re-executing. In GA
method Permanent faults and transient faults can be tolerated.
The GA schedules the job statically and the jobs are periodic.
Same as the previous methods the job dependency not exists in
this method. The types of processor in this method are
homogeneous and have equal features. The discovering method
cause that find best or near the best optimized answer in GA
method.

V. CONCLUSION AND FUTURE WORKS

In this paper three methods for job scheduling in real time
fault tolerant systems are discussed. Also these methods are
compared with eight most important aspects exactly. The B/O
and DRB use PB for scheduling the jobs. Jobs are randomly
adapted to processors then are scheduled and executed
according to EDF. In third method genetic algorithm is used
for scheduling the jobs. Third methods produces more
optimized results because of its discovering procedure; but it
has assumptions that restrict it, and If these assumption can be
removed then more desirable answers will come out.

Although genetic algorithm finds optimized result but it has
basic restricting assumptions. One of these assumptions is not
considering job dependencies. In fact most of the jobs that are
executing have depending to each other; so if job dependencies
not considered, the executable jobs is limited and just involves
some special types of jobs. If the job dependencies considered,
then the number of jobs will increase and the scheduler system
improved. Also if the system has intelligent that can delete
backup copy of completed jobs then high efficiency obtained.
Finally, it is clear that such a system that can resolve
deficiencies of available system will be very useful.

VI. REFERENCES

[1] Shinpei Kato, Yutaka Ishikawa, Ragunathan (Raj) Rajkumar,
CPU scheduling and memory management for interactive real-
time applications, Springer Science+Business Media, LLC 2011

[2] B Sahoo, A Ekka,2007. “A Novel Fault Tolerant Scheduling
Technique In Real-TimeHeterogeneous Distributed Systems
Using Distributed Recovery Block”, Proceedings of National
Conference “VISION’07” on “High Performance Computing”
2nd April’07

[3] A. Girault, C. Lavarenne, M. Sighireanu, and Y. Sorel,
“Generation of fault-tolerant static scheduling for real-time
distributed embedded systems with multi-point links,”
Proceedings 15th International, pp. 1265 – 1272, April 2001.

[4] G. Manimaran and C. Murthy, “A fault-tolerant dynamic
scheduling algorithm for multiprocessor real-time systems and
its analysis,” IEEE Transactions on Parallel and Distributed
Systems, vol. 9, no. 11, pp. 1137 – 1152, November 1998.

[5] S. Ghosh, R. Melhem, and D. Mosse, “Fault-tolerance through
scheduling of aperiodic tasks in hard real-time multiprocessor
systems,” IEEE Transactions on Parallel and Distributed
Systems, pp. 272–284.

[6] R. Mall, Real-Time Systems, 1st ed. Pearson Education, 2007.

[7] K.H. Kim, “Slow advances in fault-tolerant real-time distributed
computing," in Proceedings of the 23rd IEEE International
Symposium on Reliable Distributed Systems, October 2004, pp.
106 - 108.

[8] G Zarinzad, A M Rahmani, N Dayhim, 2008. “A Novel
Intelligent Algorithm for Fault-Toleran Task Scheduling in
Real-Time Multiprocessor Systems”, Third 2008 International
Conference on Convergence and Hybrid Information
Technology

[9] Burns, A. and Wellings, A. J. 1995b. Engineering a hard real-
time system: From theory to practice. Software–Practice &
Experience 25, 7 (July), 705–726.

[10] Buttazzo, G. C. 1997. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications. Kluwer.

[11] Ghosh, S., Melhem, R., Mosse, D., Sarma, J. S.: Fault- Tolerant
Rate Monotonic Scheduling. Journal of Real-Time System 15(2)
(1998) 149-181

[12] Audsley, N., Burns, A., Richardson, M., Tindell, K., and
Wellings, A. 1993. Applying new scheduling theory to static
priority pre-emptive scheduling. Software Engineering Journal
8, 5 (Sept.), 284–292.

[13] Buttazzo, G. C. 1997. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications. Kluwer.

[14] Sprunt, B., Sha, L., and Lehoczky, J. 1989. Aperiodic task
scheduling for hard real-time systems. Journal of Real-Time
Systems 1, 1 (June), 27–60.

[15] Buttazzo, G. C. 1997. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications. Kluwer.

[16] Burns, A. and Wellings, A. J. 1990. Real-Time Systems and
Their Programming Languages. Addison-Wesley.

[17] Tindell, K. 2000. Deadline monotonic analysis. Embedded
Systems Programming 13, 6 (June), 20–38.

[18] Briand, L. P. and Roy, D. M. 1999. Meeting Deadlines in Hard
Real-Time Systems: The Rate Monotonic Approach. IEEE
Computer Society Press.

[19] Liu, C. L. and Layland, J. W. 1973. Scheduling algorithms for
multiprogramming in a hard real-time environment. Journal of
the ACM 20, 1, 46–61.

[20] Jones, M. B., Barrera III, J. S., Forin, A., Leach, P. J., Rosu, D.,
and Rosu, M.-C. 1996. An overview of the Rialto real-time
architecture. In Proc. Seventh ACM SIGOPS European
Workshop (Sept. 1996).

Nima Jafari Navimipour et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,138-143

© 2010, IJARCS All Rights Reserved 143

[21] B Mirle, AMK Cheng, 2006.” Simulation of Fault-tolerant
Scheduling on Real-time Multiprocessor Systems Using Primary
Backup Overloading”, Real-Time Systems Laboratory,
Department of Computer Science, University of Houston, 2006

[22] R. Mall, "Real-Time Systems", 1st ed. Pearson Education, 2007.

[23] K. Kim, “Designing fault tolerance capabilities into real-time
distributed computer systems," in IEEE Proceedings., Workshop
on the Future Trends of Distributed Computing Systems in the
1990s, September 1988, pp. 318 - 328.

[24] Proceedings. 12th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, Feb. 2004,pp. 434 -
439.

[25] Holland, J. H. (1975) "Adaption in Natural and Artificial
Systems". The University of Michigan Press, Ann Arbor, MI,
1975

[26] A.E.Eiben, J.E.Smith, "Introduction to Evolutionary
Computing", Springer, 2004

[27] N Jafari navimipour, A M Rahmani, The New Genetic Based
Method with Optimum Number of Super Node in
Heterogeneous Wireless Sensor Network for Fault Tolerant
System, International Journal of Computer and Electrical
Engineering, Vol. 2, No. 1, February, 2010, 1793-8163

AUTHOR’S PROFILE

Nima Jafari Navimipour received his B.S. in computer
engineering, software engineering, from Islamic Azad University,
Tabriz Branch, Tabriz, Iran, in 2007, the M.S. in computer
engineering, computer architecture, from Islamic Azad University,
Tabriz Branch, Tabriz, Iran, in 2009. From 2011, he is a Ph.D
student in Science and Research Branch, Islamic Azad University,
Tehran, Iran. He has published more than 20 papers in various
journals and conference proceedings. His research interests include
Traffic Control, Traffic Modeling, Computational Intelligence,
Evolutionary Computing, Computational Grid, and Wireless
Networks.

Seyed Hasan Es-hagi received his B.S. in computer
engineering, hardware engineering, from Shomal University, Amol,
Iran, in 2007, the M.S. in computer engineering, computer
architecture, from Islamic Azad University, Tabriz Branch, Tabriz,
Iran, in 2009. From 2008, he worked as a researcher with the Young
Researchers Club, Tabriz Branch, Islamic Azad University, Tabriz
Branch. He is the author/co-author of more than 12 publications in
technical journals and conferences. His area of research is in Digital
Communications, Error Correction Codes, and Wireless Networks.

http://shomal.ac.ir/�

	INTRODUCTION
	REAL TIME SCHEDULING PROBLEM
	FAULT TOLERANCE SCHEDULING METHODS
	Backup Overloading Method (B/O):
	Distributed Recovery Block Method (DRB):
	Genetic Based Method:

	METHODS COMPARISON
	CONCLUSION AND FUTURE WORKS
	REFERENCES

