
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 510

ISSN No. 0976-5697

Adaptive Design Pattern Detection Model: A Nearness Measurement Approach
Shanker Rao A*

 M.Tech
Dept. of CSE, Aurora Engineering College,

Bhongir, Nalgonda, A.P ,India
shankerrao22@gmail.com

M.A Jabbar
Associate Professor

Dept. of CSE, Aurora Engineering College,
 Bhongir, Nalgonda, A.P India

jabbar.meerja@gmail.com

Srikanth. Jatla
Head of the Dept. of CSE

Aurora’s Engineering College,
Bhongir, Nalgonda, A.P and India

jsrikanth@aurora.ac.in

Abstract: The discovery of design pattern as part of reengineering methods will convey necessary data to the designer. However, existing pattern
detection methodologies typically have issues in managing one or additional of the subsequent issues: Identification of changed pattern versions,
search area explosion for big systems and extensibility to novel patterns. A style pattern detection methodology is proposed that's based mostly on
match gain between graph vertices. Attributable to the character of the underlying graph algorithm, this approach has the power to conjointly
acknowledge patterns that are changed from their normal illustration. Moreover, the approach exploits the very fact that patterns reside in one or
additional inheritance hierarchies, reducing the dimensions of the graphs to that the algorithm is applied. Finally, the algorithm doesn't suppose any
pattern-specific heuristic, facilitating the extension to novel style structures. Analysis on 3 open-source comes demonstrated the accuracy and
therefore the potency of the proposed methodology.

Keywords: Design patterns, GoF, JHotDraw, jRefactory, jUnit and Decision Tree.

I. INTRODUCTION

Each design pattern generally includes a bunch of categories
with reference to one another in some structure and behavior in
bound ways that. Pattern-related data is manifested by the role
every category plays within the pattern. However, such role data
is generally lost when a design pattern is applied in an
exceedingly system. Recovering pattern connected data from
system design or supply code has many advantages. First, it's
going to facilitate to grasp software systems based mostly on the
patterns. Second, it will assist the refactoring of the systems.
Third, new design patterns could also be discovered. Completely
different approaches are proposed to recover design patterns
from software systems. However, there lack approaches based
mostly on machine learning techniques.

As a popular inductive machine learning algorithm, decision
tree learning algorithm [1,2, 3] has been successfully applied to
many applications, such as pattern matching, weather forecast
and virus classification. Decision tree algorithm extracts useful
rules and pattern information from the training examples that
must be pre-classified by an expert (or a supervisor). It is
normally easy to collect the training examples by recording the
related attribute values as one single record. For example,
whether a person will play tennis is decided by the outlook,
temperature, humidity, and wind of a day. Thus, the outlook,
temperature, humidity and wind attribute values can be collected
together as one entry. Based on the classification of these
collected entries, a decision tree prediction model can be

constructed by applying the decision tree algorithms. However
the learning problem of design pattern detection is more
complicated which involves a group of classes with
relationships. Each class corresponds to a record. The potential
relationships among the group of classes (records) of a pattern
can be a large number. Nevertheless, only one set of
relationships is typically valid for the pattern. In other words, the
training example for decision tree algorithm here is a
combination of training records (classes) connected by some
relationships/links, instead of a single record (class). This is a
compound records learning problem involving multiple training
records. It is not easy to classify all the potential combinations
within a set of classes, especially when considering the roles of
different relationship.

II. RELATED WORK

Quite a bit of work has already been done in the field of
automatic pattern detection. Keller [1] describes a static analysis
to discover design patterns (Template Method, Factory Method
and Bridge) from C++ systems. The authors identify the
necessity for human insight into the problem domain of the
software at hand, at least for detecting the Bridge pattern due to
the large number of false positives. The Pat system [2] detects
structural design patterns by extracting design information from
C++ header files and storing them as Prolog facts. Patterns are
expressed as rules and searching is done by executing Prolog
queries. Brown [4] uses dynamic information, analyzing the flow
of messages. His approach is restricted to detecting design

Shanker Rao A et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,510-515

© 2010, IJARCS All Rights Reserved 511

patterns in Smalltalk, since he only regards flows in Visual
Works for Smalltalk. He therefore annotates the Smalltalk
runtime environment. Another drawback is that he only gathers
type information at periodic events. Carriere [3] also employ
code instrumentation to extract dynamic information to analyze
and transform architectures.

The presented approach only identifies communication
primitives, but no complex protocols. The present paper extends
our previous results [5] in two ways. Firstly, it implements more
than the Observer Pattern analyzer and extends the experiments
to unknown code. These extensions show that the results (and
shortcomings in the dynamic analysis) can be generalized.
Secondly, it sketches our approach to and first results of
automatic generation of analyses.

III. DESIGN PATTERN NEARNESS MARKING
(DPNM) ALGORITHM

The DPNM algorithm is the core of the proposed design
pattern detection methodology. Therefore, a brief outline of the
underlying theory will be presented.

The proposed algorithm derived based on the link analysis
algorithm called HITS [6]. In HITS algorithm, Hub and
authority weights will be obtained. The authority score of vertex
j of a graph G can be thought of as a nearness score between
vertex j of G and vertex authority of the graph hub authority
and, nearness, the hub score of vertex j of G can be seen as
nearness score between vertex j and vertex hub. Within the
context of design pattern detection, the DPNM algorithm can be
used for calculating the nearness between the vertices of the
graph describing the pattern (G1) and the corresponding graph
describing the system (G2). This will lead to a number of
correspondent matrices of size n2 X n1. In order to obtain an
overall picture for the nearness between the pattern and the
system, one has to exploit the information provided by all
matrices. To preserve the validity of the results, any DPNM
score must be bounded within the range. Therefore, individual
matrices are initially summed and the resulting matrix is
normalized by dividing the elements of column ‘C’
(corresponding to DPNM scores between all system classes and
pattern role ‘C’) by the number of matrices (mC) in which the
given role is involved. This is equivalent to applying an affine
transformation in which the resulting matrix is multiplied by a
square n2 X n1 diagonal matrix, where element (C C) is equal to
1=mC

IV. REPRESENTATION OF SYSTEM AND
PATTERNS

.

Prior to the pattern detection process, it is necessary to define
a representation of the structure of both the system under study
and the design patterns to be detected. Such a representation
should incorporate all information that is vital to the
identification of patterns. We have opted for modeling the
relationships between classes (as well as other static
information) in an object-oriented design using matrices.

The key idea is that the class diagram is essentially a directed
graph that can be perfectly mapped into a square matrix. The
main two advantages of this approach are that matrices can be

easily manipulated and 2) that this kind of representation is
intuitively appealing to engineers and computer scientists.

The relationships or attributes of the system entities to be
represented depend on the specific characteristics of the patterns
that the designer wishes to detect. The information that we have
chosen to represent includes associations, generalizations,
abstract classes, object creations, abstract method invocations,
etc. However, the nearness algorithm does not depend on the
specific types of matrices that are used. The designer can freely
set as input any kind of information, provided that he/she can
describe the system and the pattern as matrices in terms of this
information.

Concerning the Similar Abstract Method Invocation Graph,
each edge represents the invocation from a method’s body (in
the starting node) of a similar abstract method (in the ending
node). Two methods are considered similar if they have the same
signature. For example, the edge between the Decorator and
Component nodes implies that a method in the Decorator class
invokes a similar abstract method in the Component class
through reference. Moreover, similar method invocations can
also occur when explicitly stating the base class method (e.g.,
via the super identifier in Java), as in the case of classes
Concrete- Decorator and Decorator.

V. METHODOLOGY

One issue that requires careful treatment is that the
convergence of the nearness algorithm depends on the system
graph size. As a result, the time needed for the calculation of
nearness scores between all the vertices of the system and the
pattern can be prohibitive for large systems. In order to make the
approach more efficient, one must find ways to reduce the size
of the graphs to which the algorithm is applied without losing
any structural information that is vital to the design pattern
detection process. By taking the advantage of the fact that most
design patterns involve class hierarchies (since they usually
include at least one abstract class/interface in one of their roles),
a solution would be to locate communicating class hierarchies
and apply the nearness algorithm to the classes belonging to
those hierarchies. The overall methodology for the detection of
implemented design patterns in an existing system can be
outlined as follows:
a. Reverse engineering of the system under study. Each

characteristic of the system under study (i.e., association,
generalization, similar method invocation, etc.) is
represented as a separate n X n adjacency matrix, where n
is the number of classes.

b. Detection of inheritance hierarchies. All kinds of
generalization relationships are considered for building the
inheritance trees (i.e., concrete or abstract class inheritance,
interface implementation). Since hierarchies are
represented as trees, multiple inheritances cannot be
modeled as a single tree because a node cannot have more
than one parent. Therefore, each node that has multiple
parents participates (including all its descendants) in a
number of trees equal to the number of its direct ancestors.
This is diagrammatically shown in classes C, C1, and C2
are considered as classes belonging to both hierarchies.
Classes that do not participate in any hierarchy are listed

Shanker Rao A et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,510-515

© 2010, IJARCS All Rights Reserved 512

together in a separate group of classes since, in a number of
design patterns, some roles might be taken by classes that
do not belong to any inheritance hierarchy (e.g., Context
role in the State/Strategy pattern).

c. Construction of subsystem matrices. A subsystem is
defined as a portion of the entire system consisting of
classes belonging to one or more hierarchies. As already
mentioned, the role of the subsystems in the pattern
detection methodology is to improve the efficiency.
Experimental results have shown that the cumulative time
required for the convergence of the nearness algorithm
applied on all subsystems is less than the time required for
the entire system. The set of matrices that represent a
subsystem is constructed by preserving from the matrices
of the entire system the information concerning only the
classes of the corresponding hierarchies. According to the
number of hierarchies in the pattern to be detected, one of
the following two approaches is taken.

In a case where the pattern contains only one hierarchy (e.g.,
Composite, Decorator), each hierarchy in the system forms a
separate subsystem. Thus, the number of subsystems is equal to
the number of hierarchies in the system.

In a case where the pattern contains more than one hierarchy
(the design patterns that we have studied contain at most two
hierarchies, e.g. State, Visitor), subsystems are formed by
combining all system hierarchies, taken two at a time. Thus, the
number of subsystems is equal to m (m-1)/2, where m is the
number of hierarchies in the system. Next, the number of
exchanged messages between the hierarchies of each pair is
calculated, and the pairs in which the hierarchies are not
communicating are filtered out.

Since the system is partitioned based on hierarchies, pattern
instances involving characteristics that extend beyond the
subsystem boundaries (such as chains of delegations) cannot be
detected.
d. Application of nearness algorithm between the subsystem

matrices and the pattern matrices. Normalized nearness
scores between each pattern role and each subsystem class
are calculated. This corresponds to seeking patterns in each
subsystem separately.

e. Extraction of patterns in each subsystem. Usually, one
instance of each pattern is present in each subsystem (i.e.,
one or two hierarchies), which means that each pattern role
is associated with one class. There are two cases in which
more than one pattern instance exists within a subsystem:

i. One pattern role is associated with one class while other
pattern roles are associated with multiple classes. Such a
case is depicted where Strategy role is associated with
interface Strategy while Context role is associated with
classes Context1 and Context2. In this case the nearness
algorithm assigns a score of “1” to the interface Strategy
and classes Context1, Context2. The two instances of the
Strategy pattern are correctly identified as (Strategy,
Context1) and (Strategy, Context2) by combining the
classes corresponding to discrete roles.

ii. All pattern roles are associated with more than one class.
Since design patterns involve abstractions, in order for this
to happen, multiple levels of abstract classes/interfaces
must exist in the same hierarchy. The application of the

nearness algorithm in the subsystem of would assign a
score of “1” to classes Context1, Context2 as well as
interfaces Strategy1 and Strategy2. It becomes obvious that
the problem now is how to decide (based only on scores),
which classes to pair in order to identify all pattern
instances. Since there are four possible combinations, the
methodology would end up in two true positives (Context1-
Strategy1, Context2-Strategy2) and two false positives
(Context1-Strategy2, Context2-Strategy1). It should be
mentioned that such a case has not been encountered in the
systems that we have examined.

Therefore, the extraction of pattern instances is performed as
follows: The nearness scores for each subsystem are sorted in
descending order. For each pattern role, a list is created. The
subsystem classes having scores that are equal to the highest
score for each role are added to the corresponding list. The
detected pattern instances are extracted by combining the entries
of the lists.

The selection of the highest score for each role is based on
the observation that a class assigned a score that is less than the
score of another class (for a given role) definitely satisfies fewer
criteria according to the sought pattern description. As a result,
the class with the lower score is a worse candidate for the
specific pattern role. An exception would be a class satisfying
the same set of criteria, but with a lower score due to
modification. This rare case that would result in a false negative
has not occurred in the systems that we have examined.

According to the nearness algorithm, exact matching for a
given pattern role results in scores which are equal to “1.”
However, as already explained, modified pattern roles result in
scores which are less than “1.” The consideration of such “not
absolute” scores would pose difficulties in distinguishing true
from false positives. Consequently, a threshold value is required.
Values below or equal to that threshold would signify that the
sought pattern role is likely not to be present. The proposed
approach is based on the assumption that no more than one
pattern characteristic is modified for a given instance. According
to this assumption, the threshold value for a pattern role
involving x characteristics must guarantee the presence of x-1
unmodified characteristics and the presence of the other one
either as modified or unmodified. A threshold value of (x-1)/x
ensures that for a pattern role with x characteristics, (x-1) are not
modified. Moreover, the range ((x-1)/ x, 1) is covered by
nearness values for pattern roles with one modified
characteristic. The larger extend of the modification (e.g., the
number of intermediate inheritance levels) the closer the
nearness value gets to (x-1)/ x. Consequently, the threshold
value of (x-1)/x guarantees the detection of a pattern role with
(x-1) unmodified characteristics and one modified, regardless of
the extent of the modification.

In the steps that have been described above, the following
optimizations have been applied in order to improve the
efficiency of the pattern detection process:
a) Minimization of number of roles for each pattern. As

already mentioned, the description of each pattern consists
of a number of matrices, each one describing a different
attribute. Some of these attributes are quite common in a
system while others are less common. These uncommon
characteristics are the ones that distinguish a pattern from

Shanker Rao A et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,510-515

© 2010, IJARCS All Rights Reserved 513

other structures. Therefore, for the description of a pattern,
the roles with the most unique characteristics should be
preferred. For example, roles participating only in the
generalization matrix (e.g., concrete children inheriting
their abstract patterns) should be excluded. Their inclusion
to the pattern description would lead to numerous false
positives, since there are many classes in a subsystem that
simply inherit another class without being part of any
pattern instance. In the results that will be presented in the
next section, only the roles that are important for each
pattern have been considered. However, the excluded roles
can easily be found after the pattern detection process since
they are closely related to the detected pattern roles.

An alternative handling would be to assign weights to each
matrix according to the importance of the corresponding
attribute. However, assuming that all roles are sought, roles
corresponding to common characteristics will eventually obtain
very low nearness scores, hindering the detection of those roles.
b) Exclusion of irrelevant subsystems. In a case where one of

the required attributes is not present at all in a subsystem
(i.e., the corresponding matrix is a zero matrix), the pattern
detection process is terminated for the specific subsystem.

VI. IMPLEMENTATION

A tool has been implemented in Java that encompasses all
steps of the proposed methodology. The program employs a Java
byte code manipulation framework [13], which enables the
detailed analysis of the system’s static structure. The information
retrieved is
a. Abstraction (whether a class is concrete, abstract, or

interface)
b. Inheritance (parent class, implemented interfaces)
c. Class attributes (type, visibility, and static members)
d. Constructor signatures (parameter types)
e. Method signatures (method name, return type, parameter

types, abstract or not)
f. Method invocations (origin class and signature) and
g. Object instantiations.
The above information is used to extract more advanced
properties such as
a. Collection element type detection (type of elements

contained in a collection) and identification of iterative
method invocation on the elements of a collection—used for
detecting Observer and Composite),

b. Similar abstract method invocation (invocation of an
abstract method within a method having the same
signature—used for detecting Decorator and Composite),

c. Abstract method adaptation (invocation of another class’
method in the implementation of an inherited abstract
method—used for detecting Adapter/ Command),

d. Template method (invocation of an abstract class’ method in
a method of the same class),

e. Factory method (instantiation of an object in the
implementation of an inherited abstract method),

f. Static self reference (private static attribute having as type
the class that it belongs to—used for detecting Singleton),
and

g. Double or dual dispatch (used for detecting Visitor).

The extracted information is used to generate the matrices
that describe the system under study. In the current
implementation, pattern descriptions are hard-coded within the
program. However, the information required for describing a
design pattern (role names, adjacency matrices for the attributes
of interest, and the number of hierarchies that the pattern
involves) could be easily provided as external input.

Once the system has been analyzed, the user can select a
design pattern to be detected from the graphical user interface.
Next, the similarity algorithm is applied as described in the
section on methodology and the detected patterns are presented
to the user without further human intervention.

VII. RESUTLS

To evaluate the effectiveness of any pattern detection
methodology, one should interpret the results by counting the
number of correctly detected patterns (True Positives - TP),
False Positives (FP), and False Negatives (FN). False positives
are considered identified pattern instances which do not comply
with the pattern description that has been specified. On the other
hand, false negatives are actual pattern instances (according to
the documentation or an inspector) that are not being detected by
the applied methodology [10]. The sum of true positives and
false negatives is equal to the total number of actual pattern
instances in the system.

The results of the pattern detection process for the three
systems are summarized in Fig 1. The recall values (sensitivity),
defined as TP/ (TP+ FN), and is also given. Results are given for
GoF patterns [11] that, according to the internal documentation
and the relevant literature, exist in these three projects.
Concerning Observer and Visitor, whose representation in the
catalog by Gamma [11] includes sequence diagrams (referring to
dynamic information) their static description is strong enough to
allow the identification of these patterns.

The classification of the results has been performed by
manually inspecting the source code and referring to the internal
and external documentation of the projects. The precision (TP/
(TP + FP)) for all the examined patterns is 100 percent since
there are no false positives. That is mainly because the pattern
descriptions focused on the essential information of each pattern
(by eliminating roles with common characteristics as explained
in Section 4). False negatives occurred only in two patterns. In
the Factory Method pattern (JHotDraw and JRefactory) the
internal documentation mentions cases where a class method is
considered a factory method only because it returns a reference
to a created object. However, according to the literature, the
pattern description includes the requirement that an abstract
method with the same signature exists in one of the superclasses.
In the State pattern (JHotDraw and JRefactory), a State hierarchy
actually exists; however, there is no Context class with a
persistent reference to it (the reference is declared as a local
variable within the scope of a method). The usual pattern
description of State foresees the existence of a Context class
with an association for holding the current state.

As can be observed from the Table (1, 2 & 3) and Fig (1, 2 &
3), the results for patterns Object Adapter/Command and
State/Strategy have been grouped. That is because the structure
of the corresponding patterns is identical, prohibiting their

Shanker Rao A et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,510-515

© 2010, IJARCS All Rights Reserved 514

distinction by an automatic process (e.g., without referring to
conceptual information).

Table 1.

Design
Pattern

jHotDraw jRefactory jUnit

Adapter/
Command

18 7 1

Composite 1 0 1
Decorator 3 1 1
Factory
Method

2 1 0

Observer 5 0 4
Prototype 1 0 0
Singleton 2 12 0

State
/Strategy

22 11 3

Template
Method

5 17 1

visitor 1 2 0

Figure 1

Table 2
Design
Pattern

jHotDraw jRefactory jUnit

Adapter/
Command

0 0 0

Composite 0 0 0
Decorator 0 0 0
Factory
Method

1 3 0

Observer 0 0 0
Prototype 0 0 0
Singleton 0 0 0

State
/Strategy

1 1 0

Template
Method

0 0 0

visitor 0 0 0

Figure: 2

Table 3.

Design
Pattern

jHotDraw jRefactory jUnit

Adapter/
Command

100% 100% 100%

Composite 100% 100% 100%

Decorator 100% 100% 100%
Factory
Method

66.70% 25% 100%

Observer 100% 100% 100%
Prototype 100% 100% 100%
Singleton 100% 100% 100%

State
/Strategy

95.60% 91.60% 100%

Template
Method

100% 100% 100%

visitor 100% 100% 100%

Figure 3: Results extracted from jHotDraw, jReactory, jUnit

VIII. CONCLUSION

The detection of design patterns in software systems is a
crucial task within the re-engineering method, exploiting solely

Shanker Rao A et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,510-515

© 2010, IJARCS All Rights Reserved 515

UML diagrams and designers’ expertise, is extremely
troublesome within the absence of automated help tools. The
proposed methodology totally automates the pattern detection
method by extracting the particular instances in a very system
for the patterns that the user is curious about. The most
contribution of the approach is that the use of a similarity
algorithm, that has the inherent advantage of additionally
detecting patterns that seem in a very kind that deviates from
their customary illustration. The appliance of the proposed
methodology in 3 open-source systems demonstrated the
accuracy and precision of the approach. Few of the targeted
patterns were missed (false negatives), with no false positives.

IX. REFERENCES

[1]. Keller, R. K., R. Schauer, S. Robitaille, and P. Page (1999),
“Pattern-Based Reverse-Engineering of Design Components”, In
Proc. ISCE, pp. 226-235.

[2]. Prechelt, L. and C. Krämer (1998), “Functionality versus
Practicality: Employing Existing Tools for Recovering Structural
Design Patterns”, J.UCS: 4, 12, 866ff.

[3]. Carriere, S. J., S. G. Woods, and R. Kazman (1999), “Software
Architectural Transformation”, In Proc. 6th WCRE.

[4]. Brown, K. (1997), “Design Reverse-Engineering and Automated
Design Pattern Detection in Smalltalk”, Master Thesis, Univserity
of Illinois at Urbana-Champaign.

[5]. Heuzeroth, D., T. Holl, and W. Löwe (2002), “Combining Static
and Dynamic Analyses to Detect Interaction Patterns”, In Proc.
6th Int. Conf. IDPT.

[6]. J.M. Kleinberg, “Authoritative Sources in a Hyperlinked
Environment,” J. ACM, vol. 46, no. 5, pp. 604-632, Sept. 1999.

[7]. J.R. Ullman, “An Algorithm for Subgraph Isomorphism,” J.
ACM, vol. 23, no. 1, pp. 31-42, Jan. 1976.

[8]. E. Bengoetxea, “Inexact Graph Matching Using Estimation of
Distribution Algorithms,” PhD thesis, Ecole Nationale
Supe´rieure des Te´le´communications, France, Dec. 2002.

[9]. B.T. Messmer and H. Bunke, “Efficient Subgraph Isomorphism
Detection: A Decomposition Approach,” IEEE Trans. Knowledge
and Data Eng., vol. 12, no. 2, pp. 307-323, Mar./Apr. 2000.

[10]. M. Vokac, “Defect Frequency and Design Patterns: An Empirical
Study of Industrial Code,” IEEE Trans. Software Eng., vol. 30,
no. 12, pp. 904-917, Dec. 2004.

[11]. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1995.

[12]. D.J. Cook and L.B. Holder, “Substructure Discovery Using
Minimum Description Length and Background Knowledge,” J.
Artificial Intelligence Research, vol. 1, pp. 231-255, Feb. 1994.

[13]. ASM Home Page, http://asm.objectweb.org/, 2006.

[14]. we, W.; Nivre, J.; , "Evaluation of Accuracy
in Design Pattern Occurrence Detection," Software Engineering,
IEEE Transactions on , vol.36, no.4, pp.575-590, July-Aug. 2010
doi: 10.1109/TSE.2009.92

Short Biodata of the Author

Shanker Rao A is pursuing his M.Tech in Software Engineering
(Dept. of CSE) in Aurora Engineering College, Bhongir,
Nalgonda, A.P and India. His areas of interests are Software
Engineering, Testing, Network Security, and UMl.
Mr. M.A Jabbar Senior Associate Professor in the Department
of Computer Science & Engineering, Aurora Engineering
College, Bhongir, Nalgonda, A.P and India.
Mr. Srikanth. Jatla working as Associate Professor and Head
of the Department of Computer Science and Engineering at
Aurora’s Engineering College with a teaching experience of
12years.He is a B.E and M.Tech in Computer Science and
pursuing his PhD in Data Stream Mining at
JNTU,Hyderabad.His areas of interest includes data structures,
principles of programming languages, algorithm analysis and
compiler design.

