
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 567

ISSN No. 0976-5697

An Approach for Test Case Generation Using UML State chart Diagram

Veenu Makker*
Lecturer

Department of information technology
Haryana College of technology & management

Kaithal, Haryana, INDIA
Veenu.makker63@gmail.com

Vikram Singh
Professor

Department of CSA
Chaudhary Devi LalUniversity

SIRSA, Haryana, INDIA
vikramsinghkuk@yahoo.com

Abstract: Software testing accounts for consumption of the largest chunk of life cycle resources. Within the software testing test case generation is a
paramount step. In this paper, we propose an approach to generate the test cases using UML state chart diagrams. Firstly, state chart diagram is
transformed into a labeled graph which in turn is transformed into what has been called an intermediate testable model – a representation suitable for
deriving system level test cases.

Keywords: Software testing, State chart diagrams, Labeled graph, Intermediate testable model, test cases.

I. INTRODUCTION

Owing to the spiraling size and complexity of software
systems, the specification and design of such systems has
assumed much importance. Software quality assurance and
testing is aimed at ensuring that the software meets user
requirements and its specifications. However, the field of
software testing has a number of underlying issues like
effective generation of test cases, prioritization of test cases
etc which need to be tackled. In a typical software
development project, around 60 % of development effort is
typically spent on testing. Both test case design and test case
execution are time consuming and labor intensive. Hence test
case generation based on design specification is important.

Test case generation from design specification has the
added advantage of allowing test cases to be available early in
the software development cycle, thereby making test planning
more effective [1],[2]. It is therefore advantageous to generate
test cases from the software design or analysis documents
rather than the code .The unified modeling language is a visual
modeling language that comprises nine types of graphics,
called diagrams [3],[5]. This paper presents test cases that are
generated from the specification based on UML state chart
diagrams. Our objective is to develop a testable model that
can manage the test case generation process from a state chart
diagram.

This paper aim at providing methodological support for
automating the test case generation process from a state chart
diagram using a two-phase approach. The control flow
analysis of state chart diagram is accomplished in the first
phase. In order to accomplish control flow analysis, it is
desirable to view a state chart diagram in terms of unit of
states such as in control flow analysis of programs. A directed
graph representation known as labeled graph is presented as an
outcome of the first phase. Generating test paths from a
labeled graph constitutes the second phase in our approach. To
do this, our approach considers each node of a labeled graph
as a single entry, single exit region that can be characterized
by a single entry node to the region and a single exit node
from the region. Since a labeled graph is identified in terms of

regions rather than nodes, exits paths can be associated to the
respective regions. The complex structure of a state chart
diagram is transformed into a well formed hierarchical
structure which has been called as an intermediate testable
model.

This paper is organized as follows. Section 2, describe
about basic. This is followed by our proposed approach for
test case generation. Section 4 describes a case study for our
proposed approach. Finally conclusion and future direction are
discussed in section 5.

II. BASIC TERMINOLOGY

This section presents the description and definitions of
terms and concepts that come across in this paper. A brief
review of the UML State chart diagram and labeled graph and
finally, the concept of testable model known as Intermediate
Testable Model (ITM) have been discussed.

State chart diagram is a pictorial representation of a state
machine, emphasizing the flow of control from state to state.
A state chart “G” can be described as a couplet <V, E> where

- V is the set of nodes of G
- E is the set of edges in G. Nodes represent states and

edges represent transitions between states.
A Labeled graph is a labeled graph is a directed graph,

G=<A, E, IN, F>. Here, in denotes the initial node such that
A is a set of nodes composed of BN and CN, where BN is a
set of block nodes, and CN is a set of control nodes like DN,
MN, FN, JN where DN is a set of decision nodes, MN is a set
of merge nodes, FN is a set of fork nodes and JN is a set of
join nodes denotes a set of control edges [1].

 An initial node denotes the beginning of a labeled
graph.

 A block node denotes a sequence of states.

 A decision node denotes a conditional expression
such as Boolean expression that need to be satisfied for
selection among different execution.

 A merge node denotes an exit from the selection
behavior of same states.

 A fork node is an entry into parallel execution part.

Veenu makker et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,567-571

© 2010, IJARCS All Rights Reserved 568

 A join node denotes an exit from a parallel execution
part.

 A final node denotes an exit of a Labeled graph.
Intermediate Testable model In order to manage the

complexity of a labeled graph, an intermediate representation
of the labeled graph called the intermediate testable model
(ITM) has been proposed. With ITM representation; one can
analyze each region independently. In other words, a region in
the labeled graph has been mapped to a special node in ITM
termed as compressed into a composite node [1]. An ITM can
finally be described as a chain of nodes as follows:

Gk=<A, E, in, f> is a chain of nodes where
 - “A” is a finite set of Ab and Ac node.
- “in” is the start node representing an initial node of the

state chart diagram.
- “f” is the final node representing without any successor

node.

III. TEST CASE GENERATION

Our approach consist of four phases, control Flow
analysis, building Intermediate model, Test Scenario
generation and test case generation. The control flow analysis
phase produces the directed graph representation of given state
chart diagram. In the second phase the labeled graph analyzed
for finding out the dependencies among the nodes. In the test
scenarios generation phase the ITM can be mapped to
different scenarios and from these scenarios, the test cases can
be constructed. In the final step, the input and output values
are determined to form test cases.

A. Control Flow Analysis :

In order to map a state chart diagram it is first analyzed
and converted it into a labeled graph consisting of nodes like
block node Bi, merge node Mi, decision node Di, fork-Join
node Fj and Ji. Each state is represented by a node but the
sequence of transition remains same.

B. Building an ITM:

In order to build ITM our objective is to analyze the
labeled graph and find out the dependencies among the nodes.
Thus a labeled graph can be simplified by identifying the
minimal regions and reduce them to their corresponding
composite nodes. Such a procedure of replacing minimal
regions by composite nodes has been termed as composition.
If the regions are nested with other regions, then the
compositions are done from the innermost region to the
outermost successively. The composition procedure eventually
reduces a labeled graph to a single chain of nodes known as
ITM.

C. Generating Test Scenarios:

An ITM is a chain from initial node to final node and it is
called the base path Bp. This base path contains block nodes
and composite nodes. A composite node is made up by
grouping the internals path. When a composite node Ci is
expanded, then the sequence of nodes from initial to
composite is attached with a suffix which is the set of all
internals paths.

The ITM can be mapped to different scenarios and these
scenarios can be used to construct the test cases. Building a set
of test cases can therefore be considered as replacing each of

the composite nodes by each of its internal path. This process
is to be continuing until every node is expanded.

D. Test case Generation:
In test case generation process our objective is to expand

the composite node one by one in the base path and obtain
many scenarios. For each scenario the test cases are generated
and can be thought of the set of some terms like initial
condition, input and output.

IV A case study

In this section, there is a case study to illustrate the test
case generation approach. A typical state chart diagram of
“ATM System” is shown in figure1. State chart diagram
shows all the states of one object under processing.

Figure1: State chart Diagram of ATM System

Now convert this state chart diagram into labeled graph as
shown in figure 2.In labeled graph, block nodes are
represented by oval shapes and Bi is used to denote the same.
Where i=1, 2, 3. To represent the fork and join node thick line
segments are considered. To denote the decision and merge
nodes diamond symbols are used. A filled circle notation is
used to denote initial nodes and a small circle notation is used
to denote final node. FNi and JNi notations are used for fork
and join nodes. Di and Mi notation uses for decision and
merge nodes. Labeled graph G is to taken as an input for
composition procedure. The minimal regions are identified
and replaced with composite nodes. The selection nodes,
concurrent node and loop node are labeled as Si, Xi, and Li
respectively.

Veenu makker et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,567-571

© 2010, IJARCS All Rights Reserved 569

Figure 2: Labeled Graph for State chart diagram of ATM system.

Before starting the composition procedure, the labeled
graph is redrawn in form of intermediate model. Thus Labeled
graph is obtained as an intermediate diagram shown in figure
3.

Figure 3(a) ITM1

By having first intermediate diagram, the procedure of
composition for obtaining next intermediate model is carried
out. The transformed of figure 3(a) is shown in figure 3(b).
During the second iteration, procedure is repeated with all
minimal regions of previous graph. The resulting graph after
second iteration is shown in figure 3(c). After third and fourth
iteration, the finally ITM is shown in figure 3(e).

B1

S1

S2

D3

D4

D5

D6

X1

M

B2

B3

B4

B8

fn

in

D3

D4

Figure 3(b) ITM2

B1

D3

D4

D5

M

B2

B3

B8

fn

in

S1

S2

D3

D4

L1

X1

Figure 3(c) ITM3

The final ITM that is obtained is known as base path. In
base path, there are many composite nodes. These composite
nodes are decomposed and replace by its regions. These
regions can be either a loop, a fork-join or decision-merge
structures. These node- sequences are known as internal paths.

Veenu makker et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,567-571

© 2010, IJARCS All Rights Reserved 570

Figure 3(d) ITM4 Figure 3(d) ITM5

Hereafter are generated the scenario and test cases: As
illustrated in test case generation algorithm, first step is to
generate base path, which is B = < in, B1, S1, S2, S3, fn> In
next step, one by one composite node is expanded. The first
composite is S1 i.e. a selection node, and all the possible
scenarios have to be covered. Then S1 is replaced with its
internal path, so two paths are
generated:{<in,B1,D1,S2,S3,fn>,<in,B1,D1,fn>}Generates
the test case from these scenarios. Next the node is S2;
Replace S2 with its internal path. Finally after expanding all
the composite nodes, following test cases result

Table 1: Test cases for composite node S1

Initial condition/state ATM card read successfully

 Input Expected output

1 Insert ATM card Card read successfully

 2 Unauthorized card

Table 2: Test cases for composite nodes S2

Initial condition/state

ATM card read successfully

 Input Expected output

3 Insert pin no. Pin read successfully

4 Wrong pin no

Table 3: Test cases for composite nodes S3

Initial condition/state Valid card & pin no.

 Input Expected output

5 Balance enquiry selected Take receipt

6 Cancel pressed Eject card

7 Cash withdrawal selected Input amount

Table 4: Test cases for composite nodes L1, L2

Initial condition/state Cash withdrawal selected

 Input Expected output

8 Enter amount Amt. exceeding day limit amt.& reselect
choice

9 Res. Cash is not sufficient & reselect
choice

10 Insufficient balance in account
& reselect choice

11 Take cash , receipt & eject card

IV. CONCLUSION

This paper has presented a transformation method from
UML state chart diagram into labeled graph and than labeled
graph is transformed into intermediate model that are used to
generate test cases. Existing test cases generation techniques
do not include fragments and /or their nesting into test case
generation. The labeled graph provides the graphical
representation of each state correctly. The hierarchal structure
of ITM makes it possible to generate test cases from simple
path instead of doing exhaustive graph search technique. It
may be underlined that this approach is beneficial when
nesting of states occur in state chart diagram. Future work will
concentrate on improving the adequacy of test case generation
and investigating the development of a prototype tool.
Moreover, a plan is afoot to include other diagrams of UML to
generate test cases.

V. REFERENCES

[1]. A.Nayak, D.Samanta, “Model Based Test Cases Synthesis

using UML Interaction Diagram,”.Vol. 34, March2009, pp. 1-7.

[2]. S.kansomkeat, J.offutt, A.abdyazik “A comparative

Evaluation of tests generated from different UML diagrams,”

Ninth ACIS International Conference on Software

Engineering,A.I,Networking and parallel computing,3

Sep.2008, pp. 867-872.

[3]. S.Swain, D.Mohabatra. “The Test Case generation from UML

behavioral UML models,”.International Journal of computer

applications,vol.6-no.8,sep.2010,pp. 5-11.

[4]. S.Kansomkeat, W.Rivepiboon “The Automated generating test

cases using UML state chart diagrams,” In proceeding of

SAICSIT, oct.2003,pp. 296-300.

[5]. Booch,G.,Rumbaugh,J.andJacobson,I. “The Unified Modeling

Language User Guide,”(3e),Dorling Kindersely Pvt.Ltd,New

Delhi.2009.

Veenu makker et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,567-571

© 2010, IJARCS All Rights Reserved 571

[6]. Sapna,P.G.and Mohanty,H. “Automated Senario generation

based on UML Activity Diagram”, In procedding of

International Conference 2008.

[7]. W.Linzhang, Y.Jiesong,“Generating Test cases from UML

activity Diagram based on Gray-Box method”,In procedding of

the 11th Asia Pecific software Engg. Conference,30

Dec2008,pp. 209-214.

[8]. Zhan,x.“A formal testing Framework for UML

statecharts”, Eight ACIS International conference of Software

Engineering,13 Aug.2007,pp.882-887.

[9]. T.D.Trong, S.Glosh, “A systematic Approach to generate

Inputs to test UML design Model,”17 International

Symposium of software reliability Engineering,11 Dec.2006,

pp.95-104.

[10]. T.D.Trong, R.France,“A tool supported to testing UML design

models”, In procedding of 10th IEEE International Conference

Of Engineering of Complex Computer System ,11

Sep.2005,pp.1-10..

[11]. H.Kim,and S.kang,“Test cases generation from UML activity

diagram”. 8th ACIS International Conference on s software

Engg, A.I,Networking and parallel computing, 13Aug.2007, pp.

556-561.

[12]. P.Samuel, A.T.Joseph, “Test sequence generation from UML

sequence Diagrams”.9th ACIS International Conference On

software engineering, A.I,Networking and parallel computing

,3 Sep2008, pp. 879-887.

[13]. H.Y.Chen, “Transformation of UML Interaction Diagram

into control specification for object oriented testing”. In

proceeding of National Nature Science Foundation of china,13

Aug.2007,pp.556-561.

[14]. H.Reza, K.Ogaard, “Model based testing Technique to test web

Applications using statecharts”, 5th International conference on

information technology,18-april 2008,pp.183-188

[15]. M.Sarma, D.Kundu. “Automatic test case generation from

UML sequence Diagram”,15th International conference on

advanced computing and communication”2007 pp.60-65.

[16]. X.Fan, Jianshu “Test case generation from UML subactivity

and activity diagram,”2nd International Symposium on

electronic commerce and security,23 oct.2009, pp. 244-248.

