
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 525

ISSN No. 0976-5697

Key Generator based secured system against SQL-Injection attack

 Romil Rawat

M.Tech scholar,

Department Of Information Technology

SATI Vidisha M.P

rawat.romil@gmail.com

Sumit Dhariwal*

M.Tech scholar,

Department Of Information Technology

SATI Vidisha M.P

sumitdhariwal22@rediffmail.com

Nikhil Patearia
M.Tech Scholar,

Department of Computer Science & Engineering,

SATI Vidisha M.P, India

nikhil_sati29@rediffmail.com

Abstract: As the internet has been grown, user has been tremendously addicted to use web application. Almost every sectors like banking,

Reservation, traveling and many sectors has been completely dependent on internet functionalities, SQL-Injection has been ranked at the top most

attack in web application. It breaks private and confidential secured systems by applying different vulnerable tricks used by attacker. It uses

bypassing techniques to access the restricted information in unauthorized manner. So, for protecting them various security has been implemented, but

as security grown, attacks also grown, many systems has already crashed and stolen for maliciously purposes. Here we have used a technique, which

uses key-generator and comparator function. Key is generated by permutation and combination of username and password values. It is compared by

the saved value of key, if it matches, there is no SQL-Injection, otherwise there is Injection.

Keywords: SQL Injection, Key Generator, Comparator.

I. INTRODUCTION

SQL-Injection Most threatening attack has been found

on web application, which bypasses the direction of

execution without any valid authentication[1,2] .The

Structural Query Language Injection (SQLI) attack occurs

when an attacker changes the logic, semantics or syntax

of a SQL query by inserting new SQL keywords or

operators. SQL databases are attractive targets [4, 5, 7]

because they often contain valuable information such as user

names, passwords, e-mail addresses, personal data, and

financial records. SQL Injection Attack is a class of code

injection attacks that happens when there is no input

validation. In fact, attackers can shape their illegitimate

input[3,4,15] as parts of final query sting which operate

by databases. Banking web applications or secret

information systems could be the victims of this

vulnerability because attackers by abusing this vulnerability

can threat their authority, integrity and confidentiality

[4,516,17]. So, developers addressed some defensive and

secured coding practices to eliminate this vulnerability

but they are not sufficient. SQLIAs can also escape

traditional tools such as firewalls and Intrusion Detection

Systems because they performed through ports used for

regular web traffic. SQL injection attacks can be carried

out easily using only a web browser going through port 80

which is frequently left open by firewalls.

Attackers have the opportunity to put additional SQL

instructions into places where the programmer expected

only benign data. With carefully structured inputs, an

attacker could remotely execute arbitrary instructions in a

database. With some trial and error probing, attackers can

learn about the database and gain complete control by

causing malicious string inputs to be executed by the

database.[7,8,18,19] Because there is no strict separation

between program instructions and user data, it is possible

that user data could be interpreted as instructions.

Successful attacks can lead to the extraction, modification,

addition, or deletion of sensitive data. SQL injection

vulnerabilities occur when a web application does not

properly validate [9, 10, 20] user input (for instance, fields

in a web form) and then includes that input as part of a SQL

statement.

In research contributes the methodology generating a

key from username and password , by the permutation and

combinations of username and password, and before input

query is embed ,key is generated by user input and

compared by saved Key ,if found equal, query is forwarded

with positive access. If found unequal it is diverted to

service page which generates a error report. Here service

page converts the Error report to a form, which is unusable

for attacker to retrieve the information form the appeared

error page.

II. RELATED WORK

McClure and Kruger [8] in their work used a completely

different query development platform by changing the so-

called unregulated query generation process that uses string

concatenation, to a new systematic one[21]. This solution

Sumit Dhariwal et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,525-528

© 2010, IJARCS All Rights Reserved 526

consists of two parts. The first is an abstract object model.

The second is an executable which is executed against a

database and the output is a Dynamic Link Library (DLL)

containing classes that are strongly-typed to the database

schema. This DLL is used as a concrete instantiation of the

abstract object model. However, as they provide a

completely new paradigm for query development process

which is not as easy as previous one, the developer need to

learn before its use. Swaddler [3], analyzes the internal

state of a web application. It works based on both

single and multiple variables and shows an impressive

way against complex attacks to web applications. First the

approach describes the normal values for the application's

state variables in critical points of the application’s

components. Then, during the detection phase, it

monitors the application's execution to identify abnormal

states[21]. SQL rand [9] is a of Instruction-Set

Randomization. The SQL standard keywords are

manipulated by appending a random integer to them. The

attacker is not aware about that random integer. Thus if any

malicious user attempting to SQL injection attack would

immediately be thwarted as the injective codes in the

randomized query are treated as non- keywords.

IDS [6] use an Intrusion Detection System (IDS) to

detect SQLIAs, based on a machine learning technique. The

technique builds models of the typical queries and then

at runtime, queries that do not match the model would

be identified as attack. This tool detects attacks successfully

but it depends on training seriously. Else, many false

positives and false negatives would be generated.

In [10] Valeur et al. gave a learning-based Intrusion

Detection System (IDS) to detect SQLIA. The IDS is trained

using a set of typical application queries. The technique

builds statistical models of the typical queries and then

monitors the application at run-time to identify the queries

that do not match the model. However, the fundamental

limitation is that the success of such system completely

depends on the quality of the training set used. Poor training

set would result large number of false positive and false

negative.

Scott and Sharp, [11] propose a solution to provide an

application level security including SQLIA for web-based

applications. They use a security policy description

language (SPDL) to specify a set of validation constraints

and transformation rules to be applied to application

parameters as they flow from the web page to the

application server. The compiled SPDL codes are kept on a

security gateway which acts as application level firewall.

However, the developers are completely responsible for

this. They have to know not only which data needs to be

filtered, but also what patterns and filters need to apply to

data. Many testing techniques [12], [13], [14] have been

proposed to test whether the web applications are vulnerable

to SQLIA. In [12] the proposed technique is based on black-

box approach, whereas, [13], [14] describe white-box

approach.

Another approach in this category is SQL-IDS [8]

which focus on writing specifications for the web

application that describe the intended structure of SQL

statements that are produced by the application, and in

automatically monitoring the execution of these SQL

statements for violations with respect to these

specifications.

III. PROPOSED TECHNIQUE

This paper proposes a new technique, for preventing

database against SQL Injection. In the given approach there

is need of one extra column in U_account for saving the

key, which is generated at the key generator phase. When

the same user Logins, the key is again created by key

generator (permutations and combinations) and compared

by the saved keys of corresponding User, if both the keys

matches, the user input values are diverted towards dynamic

query generator for finally execution. But if the keys doesn’t

matches the link is diverted towards the Error page, which

reflects error page for attacker by hiding information and

unusable for hacker.

IV. ARCHITECTURE

Architecture of proposed technique consists of 4

components .These are Login form, Key generator and

comparator, service page and secured process. Shown in fig

1. And fig 2. Shows a key generator.

Figure.1 Key generator based Secure System

Figure.2 Key Generator

Sumit Dhariwal et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,525-528

© 2010, IJARCS All Rights Reserved 527

Here, the login form is just the user entry form for

username and password. Secured process is the authentic

actions happens after validating the user info. Key generator

and comparator is the main component which generates and

compares the saved and generated key. service page is

activated when the both keys does not matches and

,generates a error page.. Some of these error messages carry

some useful information about the Meta data. So, the

attacker flouted in the SQL statement with logical error

through which the attacker can able to know the Meta data

information. If the attacker is able to get the Meta data

information, then the attacker can insert/ delete/modify the

table information through SQL Injection. To avoid such

attack, a web service module is implemented. This module

get the error message from the database server, and makes it

as a generalized error message and send back to the

application server. So that the attacker wont get any

valuable information from the error message.

V. TECHNIQUE

A key generator and comparator has been created for

comparing the authenticity of queries .here two stored

procedures are used which checks the validity of queries if

they matches, means no sql-injection,the query is not

effected,Otherwise there is injection attack.Our system is

implemented using Microsoft Sql-Server as a DBMS.When

a user wants to login checking procedures starts

VI. RESULTS

Our concept has been checked on a number of

recoreds.Dummy records of tables has been used here ,table

consists of no. of records 150,300,450,600,750,900 was

tested and whose results are shown in fig[3].

Figure.3 Analysis

The Graph looks linear as there is very minute difference

of 1.5 ms and it doesnot puts any overhead on the existing

system.

VI. CONCLUSION

The proposed approach presents a new technique Key

generator based secured system to secure the authentication

process of the database. It uses username and password to

generate the key by permutations and combinations, and the

key is saved to check the login process of the respected

users .and the error page provides the safe technique to

generate the report. And if key is match secured access

performs the action.

VII. REFERENCES

[1] R. Ezumalai and G. Aghila. Combinatorial Approach for

Preventing SQL Injection Attacks. IACC, 2009.

[2] MeiJunjin. An approach for SQL Injection vulnerability

detection. IEEE,2009.

[3] Marco Cova, Davide Balzarotti. Swaddler: An Approach for

the Anomaly-based Detection of State Violations in Web

Applications. In Proceedings of the 10th Interational

Symposium on Recent Advances in Intrusion Detection

(RAID), (Queensland, Australia), September 5-7, 2007, pp.

63-86.

[4] D. Stuttard and M. Pinto, “The Web Application Hacker's

Handbook: Discovering and Exploiting Security Flaws”,

Wiley Publishing Inc., 2007

[5] Symantec. “Symantec Report on the Underground Economy”,

2008.

[6] F. Valeur, D. Mutz, and G. Vigna. A Leaing-Based

Approach to the Detection of SQL Attacks. In Proceedings

of the Conference on Detection of Intrusions and Malware

and Vulnerability Assessment (DIMVA), Vienna, Austria,

July 2005.

[7] M. Howard and D. LeBlanc, “Writing secure code”, Microsoft

Press, 2003

[8] R. McClure and I. Kruger, “Sql dom: Compile time checking

of dynamic sql statements,” in Proceedings of the 27th

International Conference on Software Engineering (ICSE 05),

St. Louis, Missouri, USA, May 2005.

[9] S. W. Boyd and A. D. Keromytis, “Sqlrand: Preventing sql

injection attacks,” in Proceedings of the 2nd Applied

Cryptography and Network Security (ACNS) Conference,

June 2004, pp. 292–302.

[10] F. Valeur, D. Mutz, and G. Vigna, “A learning-based

approach to the detection of sql attacks,” in Proceedings of the

Conference on Detection of Intrusions and Malware

[11] and Vulnerability Assessment (DIMVA), Vienna, Austria,

July 2005.

[12] D. Scott and R. Sharp, “Abstracting application-level web

security,” in Proceedings of the 11th International Conference

on the World Wide Web (WWW 2002), 2002, pp. 396–407.

[13] Y. Huang, S. Huang, T. Lin, and C. Tsai, “Web applica-tion

security assessment by fault injection and behavior

monitoring,” in Proceedings of the 11th International World

Wide Web Conference (WWW 03), May 2003.

[14] H. Shahriar and M. Zulkernine, “Music: Mutation-based sql

injection vulnerability checking,” in The Eighth Inter-national

Conference on Quality Software, 2008, pp. 77–86.

Sumit Dhariwal et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,525-528

© 2010, IJARCS All Rights Reserved 528

[15] Y. Kosuga, K. Kernel, M. Hanaoka, M. Hishiyama, and Y.

Takahama, “Sania: Syntactic and semantic analysis for

automated testing against sql injection,” in Twenty- Third

Annual Computer Security Applications Conference, 2007,

pp. 107–117.

[16] Konstantinos Kemalis and Theodoros Tzouramanis. SQL-

IDS: A Specifcation-based Approach for SQL Injection

Detection Symposium on Applied Computing. 2008, pp:

2153-2158 , Fortaleza, Ceara, Brazil. New York, NY, USA:

ACM.

[17] A. S. Christensen, A. M0ller, and M. I. Schwartzbach. Precise

Analysis of String Expressions. In Proc. 10th International

Static Analysis Symposium, SAS '03, volume 2694 of LNCS,

pp 1-18. Springer-Verlag, June 2003.

[18] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using

Parse Tree Validation to Prevent SQL Injection Attacks. In

International Workshop on Software Engineering and

Middleware (SEM), 2005.

[19] P.Grazie., PhD SQLPrevent thesis. University of British

Columbia (UBC) Vancouver, Canada.2008.

[20] C. Gould, Z. Su, and P. Devanbu. JDBC Checker:A Static

Analysis Tool for SQL/JDBC Applications. In Proceedings of

the 26th International Conference on Software Engineering

(ICSE 04) Formal Demos, pp 697–698, 2004.

[21] C. Gould, Z. Su, and P. Devanbu. Static Checking of

Dynamically Generated Queries in Database Applications. In

Proceedings of the 26th International Conference on Software

Engineering (ICSE 04).

[22] Shaukat Ali,Azhar Rauf and Huma Javed, An Authentication

Mechanism Against SQL Injection.In European Journal of

Scientific Research,pp 604-611,2009

Short Biodata of Authors:

Nikhil Patearia presently pursuing M.Tech in the

department of Computer Science & Engineering at Samrat Ashok

Technological Institute, Vidisha, M.P., India. The degree of B.E.

secured in Computer Science & Engineering at Truba Institute of

Engineering & Information Technology Bhopal, in 2009. Research

Interest includes Network Security, Data Mining and Artificial

Intelligence.

Mobile: +91-8989443679, E-mail: nikhil_sati29@rediffmail.com

Mr.Romil Rawat presently pursuing M.Tech in the

department of Information technology & Science at Samrat Ashok

Technological Institute, Vidisha, M.P., India. The degree of Research

Interest includes Network Security, Data Mining and Artificial

Intelligence.

Mobile: +91-9907708093, E-mail: rawat.romil@gmail.com

Mr.Sumit Dhariwal presently pursuing M.Tech in the

department of Information technology & Science at Samrat Ashok

Technological Institute, Vidisha, M.P., India. The degree of Research

Interest includes Network Security, Data Mining and Artificial

Intelligence.

Mobile: +91-9752070470, E-mail: sumitdhariwal22@rediffmail.com

