
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 461

ISSN No. 0976-5697

C-Queued Technique against SQL injection attack
Sumit Dhariwal*
M.Tech Scholar,

Department of Information Technology,

SATI Vidisha M.P, India
sumitdhariwal22@rediffmail.com

Romil Rawat

M.Tech scholar,
Department Of Information Technology

SATI Vidisha M.P
rawat.romil@gmail.com

Nikhil Patearia
M.Tech Scholar,

Department of Computer Science & Engineering,
SATI Vidisha M.P, India

nikhil_sati29@rediffmail.com

Abstract: Web application is the great need of modernization, with the increase of web application grow, attacks have been manufactured. Among all
attacks, SQL Injection is a most disastrous threat which destroys and even gains the complete accessibility of backend applications. Queries which
are made dynamically after the user supplied input is highly susceptible to Injection .By providing the Single quotes, double quotes, double dashes,
semicolon, tautology and other vulnerabilities inputs he could misconfigure or modify the contents of the underlying database of a web
application.

We proposed a concept to detect SQL injection attacks by Parsing the SQL Query into tokens (chunks of SQL queries). When attacker is
making SQL injection he will use attacking tricks in his input. Our method consists of parsing of original query and a query with injection separately,
the tokens are formed they all make a Circular-Link-List for which every token is an element of the circular link list. Two circular-link-lists resulting
from both original query and a query with injection are obtained and their node-to-node is compared to detect whether there is injection or not. By
checking the list-node cycle address and node-to-node comparison, the result would be made that, there is injection or not.

Keywords: Database security, SQL injection, Authentication Introduction.

I. INTRODUCTION

Today's modem web era, expects the organization to
concentrate more on web application security. This is the
major challenge faced by all the organization to protect their
precious data against malicious access or corruptions.
Generally the program developers show keen interest in
developing the application with usability rather than
incorporating security policy rules. Input validation issue is a
security issue if an attacker finds that an application makes
unfounded assumptions about the type, length, format, or
range of input data. The attacker can then supply a malicious
input that compromises an application [1]. When a network
and host level entry points are fully secured; the public
interfaces exposed by an application become the only source
of attack.

The cross site scripting attacks, SQL Injections attacks and
Buffer Overflow are the major threat in the web application
security through this input validation security issues [11][1][2]
Especially SQL Injection attacks breach the database
mechanism such as Integration, Authentication, Availability '
and authorization [8][4]. The root cause of such prevalent
SQL injection vulnerabilities is that web applications and
intrusion detection systems use only limited set of attack
patterns for evaluation [9], [10], [11], [12]. Sophisticated
attacks that employ evasion techniques can easily circumvent
most of the detection mechanism employed today [8][5]. In
addition, even if the injected code is intercepted before

execution, administrators are often presented with information
that does not identify clearly the association between the
commands that were attempted, the assets that were at risk, the
threats that were imposed, and the countermeasures he/she has
at disposal.

SQL injection is a bypassing technique through the
unauthenticated user, he gets the access to most secure and the
key of profile security, and the database could be changed,
updated, or modified by intruder.

Our concept focuses on the entry point where an intruder
could bypass towards the database. Here the original query
and the query which is generated after the user input is
compared. Here tokens are created of both the queries original
query and dynamic query. And after tokenization circular
linked-lists are created of both the queries, here node to node
comparison is made and list node –cycle address is compared
if it is found same ,there is no SQL-Injection otherwise there
is Injection that is vulnerability is present.

II. RELATED WORK

With the reference [3][1], a SQL Injection attack occurs
when input from a user includes SQL keywords so that the
dynamically-generated SQL query changes the intended
function of the SQL query in the application.

Sumit Dhariwal et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,461-464

© 2010, IJARCS All Rights Reserved 462

A. Positive Tainting and Syntax Aware:-
In this approach valid input strings are initially provided to

the [13] system for detection of SQLIA. At runtime, it
categorizes input strings and propagates the untrusted or other-
than-trusted markings based on the initialization. After that, a
‘syntax aware evaluation’ is performed for evaluating the
propagated strings. Thus, based on the evaluation, if untrusted
strings are found, such queries are restricted from passing into
the database server for processing. During initialization of the
trusted strings, it performs identification and marking based on
inputs. The strings are categorized as: (i) hard coded strings,
(ii) strings implicitly created by Java and (iii) strings
originated from external sources. In case of syntax-aware
evaluation [6][7], it performs syntax evaluation at the database
interaction point. Syntax defines the trust policies which are
the functions defined by the web programmer. Functions
perform pattern matching and if the result of matching gives
positive outcome, the tool allows the query to be executed on
the database server. Following issues are there in this method -
(i) Initialization of trusted strings are developers dependent
and (ii) Persistent storage of trusted strings may cause second
order attack [1].

B. Context Sensitive String Evaluation (CSSE):
The basic idea behind this approach is to find out the root

cause [14] of SQLIA. The root cause is the origin of the data
(information about the data, termed as metadata) i.e., user-
provided or developer-provided. Thus, any data provided by
the user is marked as untrusted and data provided by the
applications are termed as trusted. The untrusted metadata are
used for syntactic analysis based on ‘Context Sensitive String
Evaluation (CSSE)’. Injection vulnerabilities may also occur
due to programming flaws during developments.

C. Program Query Language (PQL):
 A PQL is developed especially for web application

programmers to [15] retrieve attack related queries. It also
incorporates a static technique which finds the solutions to
such attack related queries. The static analyser finds all
potential matches conservatively using context-sensitive as
well as flow-insensitive analysis. This static result guides the
runtime or dynamic analysis. A PQL is a pre-defined grammar
based language. It has query variables (arguments), statements
(primitive, compound), sub queries (recursive event sequences
or recursive object relations) reacting to match (print or abort
etc.). A static checker and optimizer, translates by PQL into
queries. The translation of the PQL into ‘datalog’ (another
more expressive language) provides sufficient support to
programs to resolve the attack related queries.

D. Parse tree Evaluation Based on Grammar:
The basic idea of this method is to block those queries

generated [16] from user input, which defy the syntactic
structure of the query, as defined by the developer. SQL
queries generated at runtime are parsed based on a pre-defined
grammar. Runtime SQL generated is parsed based on the
grammar. Special literals ‘(|’ and ‘|)’ are used to mark the
beginning and end of each input string. Each such string
within markers-pairs is matched with the augmented grammar

constructed for the purpose. If the query parses successfully, it
meets the syntactic constraints and is declared as legitimate.
Otherwise, it is declared as illegitimate and is blocked. A
major issue of this method is that an attacker may manipulate
the input string by entering the marking symbol Q |)Q . Thus
the syntactical confinement of the string surrounding with
Q(|Q and Q|)Q may be affected.

E. Static Analysis:
It combined with automatic reasoning has been proposed

in [7]. This technique verifies that the SQL queries generated
in the application usually do not contain a tautology and
effective only in such cases.

F. Dynamic Analysis:
A free tool called Paros [8] automatically scans for SQL

injection vulnerabilities with pre-defined attack codes. The
Paros checks the contents of HTTP response messages to
determine whether an SQL injection attack was successful or
not.

G. Combined Static and Dynamic Analysis:
In [9], authors check SQL queries at runtime to see if they

conform to a model of expected SQL queries. This approach
uses a secret key to discover user inputs in the SQL queries.
Thus, the security of the approach relies on attackers not being
able to discover the key.

III. PROPOSED TECHNIQUE

Our technique consists of implementation of a method that
detects vulnerable input. The special character and symbols
which is the key-of-success of SQL-Injection attack, attack is
thoroughly observed and marked these are double dashes,
single quote, double quote, semicolon, bracket, and space.
Tokens are so created cantains the prior steps of syntax
analysis, and semantic analysis. The tokens of original query
and SQL-injected query are created. All the created tokens are
grouped to form the Circular-linked-list of original query and
Circular-linked-list of SQL-injected query with a proper
indexing.

The node-to-node comparison of circular linked-list and
list-node cycle address of both the queries are compared ,if
they matches ,that ‘s means there is no injection ,Otherwise
there is SQL-Injection
Original query= select * from Utable where user_id=u_input;

 Circular Linked list of original Query

 Figure 1: Original Query

 Tokens(Node) of Original query

Node[0]= select* from .
Node[1]=Utable.
Node[2]=Where.
Node[3]=user_id.

Sumit Dhariwal et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,461-464

© 2010, IJARCS All Rights Reserved 463

Node[4]=u_input.
Sql-Injected query= select * from Utable where

user_id=u_input OR 1=1;
Circular Linked list of Sql-Injected query

Figure 2: SQL-injected Query

Tokens(Node) of SQL-Injected query.

Node[0]= select* from .
Node[1]= Utable.
Node[2]= Where.
Node[3]= user_id.
Node[4]= u_input.

Node[5]= OR.
Node[6]= 1.
Node[7]= =.
Node[8]= 1.

The indexing of original query is from node[0] to node[4]
and there is node-address cycle from

Node[0] node[4] and

 Node[4] node [0]
And in the SQL-Injected query the indexing is from

node[0] to node[8] and node address cycle from.
Node[0] node[8] and

 Node[8] node[0]

Here if the link address cycle breaks and the node [index]
is found to be mismatched the sql injection vulnerability is
clearly predicted with the actual entry point of insertion and
the fraud values with their signature it is the best way where
the Injection is clearly found.

And by One-to-One node comparison of both queries it is
clearly predicted that the node dta does not matched which
100% ensures the SQL-injection is there,
Here, we have used 2-Level security design.
a. For node to node comparison
b. List node cycle address

The both level ensures the successful prediction of SQL-
Injection vulnerability.

IV. METHODOLOGY

The circular linked list of SQL query has been developed
for evaluating the proposed technique .the system has been
implemented on Microsoft sql-server as DBMS and java as
front end language.here two stored procedures are created for
comparing the tokens of original original query and user
entered query,if both matches ,means no injection,otherwise
there is sql-injection.every time user enters tokens are
generated, when user logins into database.

A. Testing:
The proposed technique has been tested on a table having

no. Of records.Dummy data table has been used,table consist
of records of 100,200,300,400,500,600.

Figure 3: No. of records in user_ account table

Here, the graph looks linear that means there is very little
difference of 1.4ms of extra time, it puts very little overhead
on the existing system and seems negligible.

V. CONCLUSION

To apply SQL-Injection attack on web application, the
attacker must have to use the defined special symbols .for
analysing and removing SQL-Injection vulnerability we have
a unique and most secure techniques. In this technique
circular-linked-lists of original query and SQL-Injected query,
which are constructed by the tokens of both query, followed
by SQL grammar, javaCC, syntax analysis and semantic
analysis, by comparing the node-to-node of circular linked-list
and list node cycle address checking, SQL-Injection can be
detected and eliminated. Here 2-level security is used for
100% ensuring the correctness and validness of SQL queries.
It is also best way to find the Injection signature of the
attacked SQL queries.

VI. REFERENCES

[1]. NTAGWABIRA Lambert and Kang Song Lin. Use of Query
Tokenization to detect and prevent SQL Injection Attacks
(2010).

[2]. R. Ezumalai and G. Aghila. Combinatorial Approach for
Preventing SQL Injection Attacks. IACC, 2009.

[3]. MeiJunjin. An approach for SQL Injection vulnerability
detection. IEEE, 2009.

[4]. Ke Wei, M. Muthuprasanna and Suraj Kothari.Preventing SQL
Injection Attacks in Stored Procedures. IEEE, 2006.

[5]. Nuno Antunes and Marco Vieira. Detecting SQL Injection
vulnerabilities in web services. IEEE, 2009.

Sumit Dhariwal et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,461-464

© 2010, IJARCS All Rights Reserved 464

[6]. G. Wassermann and Z. Su, “An Analysis Framework for
Security in Web Applications,” Proc. FSE Workshop on
Specification and Verification of Component-Based Systems,
pp. 70–78, 2008.

[7]. Paros, Parosproxy.org. http://www.parosproxy.org/.
[8]. Z. Su and G. Wassermann, “The Essence of Command

Injection Attacks in Web Applications,” Proc. Annual
Symposium on Principles of Programming Languages (POPL),
pp. 372– 382, 2006.

[9]. A. S. Ofer Maor, “Sql injection signatures evasion,” White
Paper, Imperva Inc., 2005. [Online]. Available:
http://www.imperva.com/application defense center/white
papers/ sql injection signatures evasion.html

[10]. D. Litchfield, “Data-mining with sql injection and inference,”
Technique Report, an NGSSoftware Insight Security Research
(NISR) Publication, 2005. [Online].
Available: http://www.ngssoftware.com/research/papers/sqlinfe
rence.pdf

[11]. S. Boyd and A. D. Keromytis, “Sqlrand: Preventing sql
injection attacks,” in American Conference on Neutron
Scattering, College Park, Maryland, USA, 6-10 June 2004, pp.
202–302.

[12]. B. W. W. G. T. Buehrer and P. A. G. Sivilotti, “Using parse
tree validation to prevent sql injection attacks,” in International
Workshop on Software Engineeringand Middleware, Lisbon,
Portugal, September 2005.

[13]. William G.J. Halfond, Alessandro Orso and Panagiotis
Manolios. Using Positive Tainting and Syntax-Aware
Evaluation to Counter SQL Injection Attacks.
SIGSOFT’06/FSE-14, November 5-11, 2006, Portland, Oregon,
USA.

[14]. Tadeusz Pietraszek and Dhris Vanden Berghe. Defending
against Injection Attacks through Context-Sensitive String
Evaluation. Proceedings of Recent Advances in Intrusion
Detection (RAID2005).

[15]. Finding Application Errors and Security Flaws Using PQL: a
Program Query Language. OPSLA’05, October 16-20, 2005,
San Diego, California, USA.

[16]. Z.Su and G. Wassermann. The Essence of Command Injection
Attacks in Web Application. In the 33rd Annual Symposium on
Principles of Programming languages, pages 372-382, Jan.
2009.

Short Biodata of Authors:

Nikhil Patearia presently pursuing M.Tech in the
department of Computer Science & Engineering at Samrat Ashok
Technological Institute, Vidisha, M.P., India. The degree of B.E.
secured in Computer Science & Engineering at Truba Institute of
Engineering & Information Technology Bhopal, in 2009. Research
Interest includes Network Security, Data Mining and Artificial
Intelligence.
Mobile: +91-8989443679, E-mail: nikhil_sati29@rediffmail.com

Mr.Romil Rawat presently pursuing M.Tech in the
department of Information technology & Science at Samrat Ashok
Technological Institute, Vidisha, M.P., India. The degree of Research

Interest includes Network Security, Data Mining and Artificial
Intelligence.
Mobile: +91-9907708093, E-mail: rawat.romil@gmail.com

Mr.Sumit Dhariwal presently pursuing M.Tech in the
department of Information technology & Science at Samrat Ashok
Technological Institute, Vidisha, M.P., India. The degree of Research
Interest includes Network Security, Data Mining and Artificial
Intelligence.
Mobile: +91-9752070470, E-mail: sumitdhariwal22@rediffmail.com

http://www.ngssoftware.com/research/papers/sqlinference.pdf�
http://www.ngssoftware.com/research/papers/sqlinference.pdf�

	INTRODUCTION
	PROPOSED TECHNIQUE
	METHODOLOGY
	CONCLUSION
	REFERENCES

