
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 424

ISSN No. 0976-5697

Answering imprecise queries in Total Neutrosophic Databases

Meena Arora*
CSE Department

JSS Academy of Technical Education,

Noida, INDIA

Meena23dec@gmail.com

Dr. U.S.Pandey
Delhi University

Delhi, INDIA

Uspandey1@gmail.com

Abstract—Neutrosophic relation database model has been developed for representing and manipulating three kinds of uncertain information in

databases: fuzzy, incomplete and inconsistent. The neutrosophic set is a powerful general formal framework that has been recently proposed.

However, the neutrosophic set needs to be specified from a technical point of view. In order to handle inconsistent situation, we propose the relation-

theoretic operations on them. We define algebraic operators that are generalizations of the usual operators such as intersection, union, selection, and

join on fuzzy relations. We present an SQL–like SELECT statement construct for posing queries to total neutrosophic databases. The syntax and

semantics of SELECT statement is defined for making it an effective tool for querying.

Keywords- component; Total neutrosophic relation, Neutrosophic sets, Doubt factor, Belief factor.

I. INTRODUCTION

Essentially all the information in the real world is
imprecise, here imprecise means fuzzy, incomplete and even
inconsistent. There are many theories existing to handle such
imprecise information, such as fuzzy set theory, probability
theory, probability theory, intuitionistic fuzzy set theory,
vague theory, etc. These theories can only handle one aspect
of imprecise problem but not the whole in one framework. For
example, fuzzy set theory can only handle fuzzy, vague
information not the incomplete and inconsistent information.

In this paper, we unify the above-mentioned theories under

one framework. Under this framework, we can not only model

and reason with fuzzy, incomplete information but also

inconsistent information without danger of trivialization.

Relational data model, proposed by Ted Codd's pioneering

paper [2] usually takes care of only well-defined and

unambiguous data. However, imperfect information is

ubiquitous, almost all the information that we have about the

real world is not certain, complete and precise [10]. Imperfect

information can be classified as: incompleteness, imprecision,

uncertainty, inconsistency.

In order to represent and manipulate various forms of

incomplete information in relational databases, several

extensions of the classical relational model have been

proposed [1, 3, 5, 8, 12, 13]. In some of these extensions, a

variety of "null values" have been introduced to model

unknown or not-applicable data values. Attempts have also

been made to generalize operators of relational algebra to

manipulate such extended data models [1, 3, 5, 6, 7].

Probability, possibility and Dempster-Shafer theory have

been proposed to deal with uncertainty. Possibility theory [8]

is built upon the idea of a fuzzy restriction. Wong [4] proposes

a method that quantifies the uncertainty in a database using

probabilities. Carvallo and Pittarelli [9] also use probability

theory to model uncertainty in relational databases systems.

However, unlike incomplete, imprecise and uncertain

information, inconsistent information has not enjoyed enough

research attention. In fact, inconsistent information exists in a

lot of applications.

For example, in data warehousing application,

inconsistency will appear when trying to integrate the data

from many different sources. Another example is that in the

expert system, there exist facts which are inconsistent with

each other.

We introduce neutrosophic relations and algebraic

operators over neutrosophic relations that extend the standard

operators such as selection, join, and union over vague

relations. There are many potential applications of our new

data model e.g. in Web mining, Bioinformatics, Decision

Support System.

In this paper, we present an extension of the SQL SELECT

statement for querying such databases. The syntax of this

extended statement is similar to that of the ordinary SELECT

statement; the semantics that we propose is quite different.

With our new extended semantics, the statement becomes an

effective tool for querying neutrosophic relational data model

The remainder of this paper is organized as follows.

Section 2 presents a brief introduction of neutrosophy,

neutrosophic sets. Section 3 gives a quick overview of total

neutrosophic relations. Section 4 presents generalized algebra

on neutropsophic relations with relational theoretic operators.

Section 5 presents the syntax &new semantics of SQL-like

SELECT statement for querying neutrosophic databases based

on algebraic operators that are defined in section 4. Section 6

contains an example SELECT statement and a walk through

the evaluation procedure for that query. Section 7 presents the

area of application where this can be applied in real life.

Finally, Section 8 concludes the paper with some mention of

related and future work directions.

Meena Arora et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,424-429

© 2010, IJARCS All Rights Reserved 425

II. NEUTROSOPHIC LOGIC AND NEUTROSOPHIC

SETS

A. Neutrosophic Logic:

Neutrosophic logic was created by Florentin Smarandache

(1995) [11] and is an extension/combination of the fuzzy

logic, intuitionistic logic, paraconsistent logic, and the three-

valued logics that use an indeterminate value.

Definition 1 Neutrosophic Logic :A logic in which each

proposition is estimated to have the percentage of truth in a

subset T, the percentage of indeterminacy in a subset I, and the

percentage of falsity in a subset F, is called Neutrosophic

Logic. T, I, F are standard or non-standard subsets of the

nonstandard interval]-0, 1+[, where ninf = inf T + inf I + inf F≥
-0, and nsup = sup T + sup I + sup F≤ 3+.

 Definition 2 (Neutrosophic Set): Let X be a space of

points (objects), with a generic element in X denoted by x. A

neutrosophic set A in X is characterized by a truth-

membership function TA, an indeterminacy-membership

function I
A

and a falsity-membership function FA. TA(x), IA(x)

and FA(x) are real standard or non-standard subsets of] -0, 1+ [.

That is

TA: X →] -0, 1+ [(1)

IA: X →] -0, 1+ [(2)

FA: X →] -0, 1+[(3)

There is no restriction on the sum of TA(x), IA(x) and FA(x)

so -0≤sup TA(x)+sup IA(x) + sup FA(x) ≤3+.

B. Operations with sets:

Let S1 and S2 be two (unidimensional) real standard or

non-standard subsets, then one defines [11]

Addition of sets:

S1 +S2 = {x|x=s1+s2 , where s1 S1and s2 S2},

with inf S1+ S2 = inf S1 + inf S2 , sup S1 + S2 = sup S1 +

sup S2;

Subtraction of sets:

 S1- S2 = {x|x= s1- s2, where s1 S1and s2 S2}.

For real positive subsets (most of the cases will fall in this

range) one gets

inf S1- S2 = inf S1 – sup S2, sup S1- S2 = sup S1 – inf S2;

Multiplication of sets:

S1. S2 = {x|x= s1. s2, where s1 S1 and s2 S2}.

For real positive subsets (most of the cases will fall in this

range) one gets

inf S1. S2 = inf S1. inf S2 , sup S1. S2 = sup S1. sup S2;

Division of a set by a number:

Let k R*, then S1 k = { x|x= s1/k, where s1 S1}.

For all neutrosophic set operations: if, after calculations,

one obtains numbers < 0 or > 1, one replaces them by –0 or 1+

respectively.

Definition 3. (Complement) The complement of a

neutrosophic set A is denoted by c(A) and is defined by

Tc(A) (x) = {1+} – TA(x), (4)

Ic(A)I(x) = {1+} – IA(x) , (5)

Fc(A)(x) = {1+} – FA(x), (6)

for all x in X.

Definition 4. (Union) The union of two neutrosophic sets

A and B is a neutrosophic set C, written as C = A B, whose

truth-membership, indeterminacy-membership and falsity-

membership functions are related to those of A and B by

TC(x) = TA (x) + TB(x) - TA (x) × TB (x), (7)

IC(x) = IA (x) + IB (x) - IA (x) × IB (x), (8)

FC(x) = FA (x) + FB (x) - FA (x) × FB (x), (9)

for all x in X.

Definition5. (Intersection) The intersection of two

neutrosophic sets A and B is a neutrosophic set C, written as C

= A ∩ B, whose truth-membership, indeterminacy-

membership and falsity-membership functions are related to

those of A and B by

TC(x) = TA (x) × TB(x), (10)

IC (x) = IA (x) × IB (x), (11)

FC(x) = FA (x) × FB (x), (12)

 for all x in X.

III. TOTAL NEUTROSOPHIC RELATIONS

In this section, we introduce neutrosophic relations. A

tuple in a neutrosophic relation is assigned a measure

 1.

Definition 6 Belief factor :The interpretation of this

measure is that we believe with confidence that the tuple is

in the relation.

In a neutrosophic relation R , R (t)+ is the belief factor

assigned to t by R.

Definition 7. Doubt factor: The interpretation of this

measure is that we doubt with confidence that the tuple is in

the relation.

In a neutrosophic relation R , R (t)- is the doubt factor

assigned to t by R.

The belief and doubt confidence factors for a tuple need

not add to exactly 1. This allows for incompleteness and

inconsistency to be represented. If the belief and doubt factors

add up to less than 1, we have incomplete information

regarding the tuple's status in the relation and if the belief and

doubt factors add up to more than 1, we have inconsistent

information regarding the tuple's status in the relation.

In contrast to fuzzy relations where the grade of

membership of a tuple is fixed, neutrosophic relations bound

the grade of membership of a tuple to a subinterval [

 for the case 1.

We now formalize the notion of a neutrosophic relation.

Let a relation scheme (or just scheme) Σ be a finite set of

attribute names, where for any attribute name A ∈Σ, dom(A) is

a non-empty set of distinct values for A. A tuple on Σ is any

total map t: Σ → ∪A∈Σ dom (A), such that t(A) ∈ dom(A), for

each A ∈Σ.

 Let

 denotes the set of all tuples on any scheme .

 be the set of all total neutrosophic relations on .

is the belief factor,

 is the doubt factor ,

 be the set of all consistent neutrosophic relations on

 .

 be the set of all neutrosophic relations on .

Definition 8. A neutrosophic relation R on scheme is

any subset of [0 , 1].

Meena Arora et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,424-429

© 2010, IJARCS All Rights Reserved 426

For any t , we shall denote an element of R as

 where is the belief factor assigned to

t by R and is the doubt factor assigned to t by R. Let

 be the set of all neutrosophic relations on .

Definition 9. A neutrosophic relation R on scheme is

consistent if 1, for all t

Let be the set of all consistent neutrosophic relations

on . R is said to be complete if 1, for all t

. If R is both consistent and complete, i.e.

= 1, for all t then it is a total neutrosophic

relation, and let be the set of all total neutrosophic

relations on .

For any t ∈τ(Σ), we shall denote an element of R as <t,

R(t)+, R(t)->, where R(t)+ is the belief factor assigned to t by R

and R(t)- is the doubt factor assigned to t by R. Note that since

contradictory beliefs are possible, so R(t)+ + R(t)- could be

greater than 1. Furthermore, R(t)+ + R(t)- could be less than 1,

giving rise to incompleteness.

As an example, suppose in the e-shopping environment,

there are two items Item1and Item2, which are evaluated by

customers for some categories of quality - Capability,

Trustworthiness and Price. Let the evaluation results are

captured by the following total neutrosophic relation

EVAL_RESULT on scheme {Item_Name, Quality_Category}

as shown in Table I:

Table: 1 Eval Result

ITEM_Name Quality_Category Evaluation

Item1 Capability

Item1 Trustworthiness

Item1 Price

Item2 Capability

Item2 Price

The above relation contains the information that the

confidence of Item1 was evaluated “good” for category

Capability is 0.9 and the doubt is 0.2. The confidence of Item1

was evaluated “good” for category Trustworthiness is 1.0 and

the doubt is 0.0. The confidence of Item1 was evaluated “poor”

for category Price is 0.8 and the doubt is 0.1. Also, the

confidence of Item2was evaluated “good” for category

Capability is 1.0 and the doubt is 1.0 (similarly, the confidence

of Item2was evaluated “poor” for category Capability is 1.0

and the doubt is 1.0). The confidence of Item2was evaluated

“good” for category Price is 0.8 and the doubt is 0.3. Note that

the evaluation results of Item2for category Trustworthiness is

unknown. The above information contains results of fuzziness,

incompleteness and inconsistency. Such information may be

due to various reasons, such as evaluation not conducted, or

evaluation results not yet available, the evaluation is not

reliable, and different evaluation results for the same category

producing different results, etc.

IV. ALGEBRA ON TOTAL NEUTROSOPHIC

RELATIONS

In this section, we briefly introduce relational theoretic

operators (natural join, projection, product, selection) for the

semantics of SELECT statement in queries used in

Neutrosopic Search. These generalized operators maintain the

belief system intuition behind neutrosophic relations.

A. Relation-Theoretic Operators:

We now define some generalized relation-theoretic

algebraic operators (like join, product, selection, projection)

on total neutrosophic relations to complete the semantics of

SELECT statement. To reflect such generalizations a subscript

„t‟ is placed aside on an ordinary relation operator to obtain

corresponding total neutrosophic relational operator.

Definition 10 Let R and S be neutrosophic relations on

scheme . Then,

The union operator can be obtained as follows: Given a

tuple t, since we believed that it is present in the relation R

with confidence R and that it is present in the relation S

with confidence S , we can now believe that the tuple t is

present in the “either-R-or- S" relation with confidence which

is equal to the larger of R and S . Using the same

logic, we can now believe in the absence of the tuple t from

the “either-R-or-S" relation with confidence which is equal to

the smaller (because t must be absent from both R and S for it

to be absent from the union) of R and S .

(R S)(t) = max { R (t)+ , S(t)+ }, min { R (t)- , S(t)- }

〉, for any t ;

Definition 11 Let R and S be neutrosophic relations on

schemes and , respectively. Then, the natural join

(further for short called join) of R and S, denoted R S, is a

total neutrosophic relation on scheme , given by

(R S)(t) = min { R((t))+ , S((t))+ }, max { R

((t))- , S((t))- } 〉,
Where is the usual projection of a tuple.

Similar to the intersection operator, the minimum of the

belief factors and the maximum of the doubt factors are used

in the definition of the join operation.

We now define the projection operator on total

Neutrosophic relation.

Definition 12 Let R be a neutrosophic relation on scheme

and . Then, the projection of R onto , denoted

by (R), is a total neutrosophic relation on scheme , given

by

((R)) (t) = max { R(u)+ | u }, min { R(u)- | u

 }〉
The belief factor of a tuple in the projection is the

maximum of the belief factors of all of the tuple's extensions

onto the scheme of the input neutrosophic relation. Moreover,

the doubt factor of a tuple in the projection is the minimum of

the doubt factors of all of the tuple's extensions on to the

scheme of the input neutrosophic relation.

Definition 13 For any total Neutrosophic relation R and S,

R S = (R) (S).

The product of total Neutrosophic relation R and S is

essentially a join after renaming their attributes to make their

Meena Arora et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,424-429

© 2010, IJARCS All Rights Reserved 427

schemes disjoint. Let (R) be the total Neutrosophic relation

in totality with the same tuples in R, but with attribute names

of the form “R.A” for each attribute name A of R.

We will now define the selection operator on total

neutrosophic relations.

Definition 14 Let R be a total neutrosophic relation on

scheme , and C be a condition on tuples of denoted

Then, the selection of R by C, denoted by

(R) is a total neutrosophic relation on scheme , given by

((R)) (t) = .

In the generalized SELECT statement, we let the condition

occurring in the where clause be infinite valued. The infinite

values, except or , arise essentially due to any

nested subqueries.

For any arithmetic expressions E1 and E2, comparisons

such as E1 E2are simply 2-valued conditions

 (or) . Let be a subquery of the form (select

…… from ……. where …….) occurring in the where clause

of a SELECT statement. And let R be the neutrosophic

relation on scheme that the subquery evaluates to. Then,

conditions involving the subquery evaluate as follows.

1. The condition exists

evaluates to

= max {a} , a = R(t)+ , for all t ,

 = min {b}, b = R(t)- , if R(t)+ + R(t)- 1, b = 1 – R(t)+ ,

if R(t)+ + R(t)- 1 , for all t .

2. For any tuple t , the condition

 T in

Evaluates to (t).

3. If contains exactly one attribute, then for any (scalar

value) t , the condition

t > any

evaluates to ,

 = max {a} , a = R(k)+ , if t k, for some k R, (=

min {b}, b = R(k)- , if R(k)+ + R(k)- 1,

B = 1 – R(k)+ , if R (k) ++ R (k)- 1) , if t k, for some k

 R ;

 = 0, = 1, otherwise

Note that conditions involving such operators never

evaluate to the value such that

> 1.

We complete our semantics for conditions by defining the

not, and and or operators on them. Let C and D be any

conditions, and value of C = <tc, fc> and value of D = <td, fd>.

Then, the value of the condition not C is given by

not C = <fc, tc >

while the value of the condition C and D is given by

C and D = <min { tc, td}, max{ fc, fd}>

and that of the condition C or D is given by

C or D = <max { tc, td}, min{ fc, fd}>

The duality of and and or is evident from their formulas.

The following algebraic laws exhibited by the above

operators:

 1. Double Complementation Law: not (not C) = C

 2. Identity and Idempotence Laws:

 C and <1, 0> = C and C = C

C or <0, 1> = C or C = C

 3. Commutativity Laws:

C and D = D and C

C or D = D or C

 4. Associativity Laws:

C and (D and E) = (C and D) and E

C or (D or E) = (C or D) or E

 5. Distributivity Laws:

C and (D or E) = (C and D) or (C and E)

C or (D and E) = (C or D) and (C or E)

 6. De Morgan Laws:

not (C and D) = (not C) or (not D)

not (C or D) = (not C) and (not D)

V. SYNTAX AND SEMANTICS OF SELECT

QUERIES FOR TOTAL NEUTROSOPHIC RELATIONS.

The most popular construct for information retrieval from

most commercial systems is the SQL's SELECT statement.

While the statement has many options and extensions to its

basic form, here we just present generalization for total

neutrosophic relations. The basic form of the statement

contains three clauses select, from and where, and has the

following format:

Select A1, A2 , …. Am From R1 , R2 , …., Rn Where C

where

1. A1, A2 , ………. Am is a list of attribute names whose

values are to be retrieved by the query,

2. R1 , R2 , ………., Rn is a list of relation names required

to process the query, and

3. C is a boolean expression that identifies the tuples to be

retrieved by the query.

Without loss of generality, we assume that each attribute

name occurs in exactly one relation, because if some attribute

Ai occurs in more than one relation, we require, instead of

simply the attribute Ai, a pair of the form Rj .Ai qualifying that

attribute.

The result of the SELECT statement is a relation with

attributes A1, A2 , ………. Am chosen from the attributes of

R1 R2 ………. Rn for tuples that satisfy the Boolean

condition C, i.e.

((R1 R2 ………. Rn))

where , and _ are the projection, selection and

product operations, respectively, on ordinaryrelations. We

retain the above syntax in the generalized SELECT statement

for the total neutrosophic relations. However, the relation

names R1 , R2 , ………., Rn now represent some neutrosophic

relations and C is some infinite-valued condition. The result of

the generalized SELECT statement is then the value of the

algebraic expression:

(R1 R2 ………. Rn))

Where , , are, respectively, the projection,

selection and product operations on total neutrosophic

relations. Furthermore, the result of the generalized SELECT

statement is also a total neutrosophic relation.

VI. AWALKTHROUGH OF THE EVALUATION FOR

AN EXAMPLE

Let us now consider a query:

Meena Arora et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,424-429

© 2010, IJARCS All Rights Reserved 428

What items showed contradictory evaluation of some

category of quality in the total neutrosophic relation EVAL as

shown in TABLE II on scheme {ITEM_Name,

Quality_Category} of the item-quality .

Table: 2 Eval Result

ITEM_Name Quality_Category Evaluation

Item1 Capability

Item1 Trustworthiness

Item1 Price

Item2 Capability

Item2 Price

Solution:

A SELECT statement for this query is:

Select Item_Name from EVAL_RESULT where not

((Item_name, Quality_Category) in EVAL_RESULT)

One possible evaluation method for the above query in

ordinary 2-valued SQL is to produce the Item attribute of

those rows of EVAL_RESULT that satisfy the where

condition. Since the where condition in the above case is

exactly that row not be in EVAL_RESULT, in 2-valued logic

the above query will produce an empty answer.

The stepwise output is shown below :

In neutrosophic logic, however, the where condition

needsto be evaluated, to one of infinite possible values, for

every possible row with attributes Σ = (Item_name,

Quality_Category).

The result is then combined with EVAL_RESULT

according to the semantics of , on which is performed to

produce the resulting total neutrosophic relation.

 Therefore, for each of the 6 rows in τ(Σ), we first evaluate

the where condition C is as shown in Table III:

Table: 3 Relation Schema with Condition

(Item_Name,

Quality_Category)

 C= not (((Item_Name,

Quality_Category) in EVAl_RESULT)

(Item1, Capability)

(Item1,

Trustworthiness)

(Item1, Price)

(Item2, Capability)

(Item2,

Trustworthiness)

(Item2, Price)

Now, (EVAL) according to the definition of evaluates

to the total neutrosophic relation is as shown in Table IV.

(EVAL)

Table: 4 Relation Schema with Select Clause

ITEM_Name Quality_Catego

ry

Evaluation

Item1 Capability

Item1 Trustworthiness

Item1 Price

Item2 Capability

Item2 Price

Finally, of the above is the total neutrosophic relation as

shown in Table V:
 ((EVAL))

Table : 5 Relation Schema with Project Clause

ITEM_Name Evaluation

Item1

Item2

which is the result of the SELECT statement.

Explanation :

The result states that Item1 showed contradictory

evaluation result for some category with confidence is 0.1 and

doubt is 0.8, so it is safe to conclude that Item1 did not show

contradictory evaluation result, but Item2 showed

contradictory evaluation result for some category with

confidence 1.0 and doubt is 0.0, the explanation is that Item2

did show contradictory result for some category and did not

show contradictory for other category at the same times.

VII. APPLICATION

Web services are playing an important role in e-business

application integration and other application fields such as

bioinformatics. So it is crucial for the success of both service

providers as well as service consumers to provide and invoke

the high quality of service (QoS) Web services. Since different

application domains have different requirements for QoS it is

impractical to use classical mathematical modeling methods to

evaluate the QoS of semantic Web services. Our model is

scalable to handle fuzzy, uncertain and inconsistent QoS

metrics effectively. For example, capability of a Web service

is fuzzy. It is unreasonable to use crisp values to describe it.

So we can use several linguistic variables such as a "little bit

low" and "a little bit high" to express the capability of

services.

VIII. CONCLUSIONS

How to model and reason with fuzzy, incomplete and even

inconsistent information is an important research topic. In this

paper we have presented syntax & semantics for the SQL

Meena Arora et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,424-429

© 2010, IJARCS All Rights Reserved 429

SELECT statement for querying neutrosophic databases. We

have presented a generalization of fuzzy relations,

intuitionistic fuzzy relations (interval valued fuzzy relations)

and vague relations, called total neutrosophic relations, in

which we allow the representation of confidence (belief and

doubt) factors with each tuple.

We introduced generalized operators on total neutrosophic

relations. These generalized operators maintain the belief

system intuition behind neutrosophic relations. We have given

the syntax & extended semantics for the SELECT statement

based on the extended algebraic operators (projection,

selection and product) on neutrosophic relations.

As the future work, we plan to extend this work to develop

tuple-relational and domain-relational calculus for the total

neutrosophic relations.

IX. REFERENCES

[1]. D. Maier. “The Theory of Relational Databases” . Computer

Science Press , Rockville, Maryland, 1983.

[2]. E.F. Codd. “A relational model for large shared data banks”.

Communications of the ACM, Volume -13, Number 6, Pages

377-387, June 1970.

[3]. E.F. Codd. “ Extending the database relational model to

capture more meaning”. ACM Transactions of Database

Systems, Volume 4, Number 4, Pages: 397-434, December

1979.

[4]. E. Wong.” A statistical approach to incomplete information in

database systems ”. ACM Trans. on Database Systems, Volume

7, Pages 470-488, 1982.

[5]. J. Biskup. “ A foundation of codd‟s relational operations”.

ACM Trans. Database Syst. Volume 8, Number 4, Pages: 608-

636, Dec. 1983.

[6]. K.C. Liu and R. Sunderraman. “Indefinite and may be

information in relational databases”. ACM Transaction on

Database Systems, Volume 15, Number 1: Pages 1-39, 1990.

[7]. K.C. Liu and R. Sunderraman. “A generalized relational model

for indefinite and may be information”. IEEE Transaction on

Knowledge and Data Engineering, Volume 3, Number 1 Pages:

:65-77, 1991.

[8]. L. A. Zadeh.” Fuzzy sets as the basis for a theory of

possibility”. Fuzzy Sets and Systems, Volume 1, Pages: 1-27,

1978.

[9]. R. Cavallo and M. Pottarelli. “The theory of probabilistic

databases” in Proceedings of the 13th Very Large Database

Conference, pages 71 -81, 1987.

[10]. S. Parsons. “Current approaches to handling imperfect

information in data and knowledge bases”. IEEE Trans.

Knowledge and Data Engineering, Volume 3, Pages: 353 -372,

1996.

[11]. Smarandache, F. (1999). ―A Unifying Field in Logics.

Neutrosophy: Neutrosophic Probability, Set and Logic‖.

Rehoboth: American Research Press.

[12]. W. Lipski. “On semantic issues connected with incomplete

information databases”. ACM Trans. Database Syst. Volume 4,

Number 3, Pages: 262-296, Sept. 1979.

[13]. W. Lipski. “ On databases with incomplete information”.

Journal of the Association for Computing Machinery, Volume

28, Issue 1, Pages 41 -70, 1981.

