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Abstract—Neutrosophic relation database model has been developed for representing and manipulating three kinds of uncertain information in 

databases: fuzzy, incomplete and inconsistent. The neutrosophic set is a powerful general formal framework that has been recently proposed. 

However, the neutrosophic set needs to be specified from a technical point of view. In order to handle inconsistent situation, we propose the relation-

theoretic operations on them.  We define algebraic operators that are generalizations of the usual operators such as intersection, union, selection, and 

join on fuzzy relations.  We present an SQL–like SELECT statement construct for posing queries to total neutrosophic databases. The syntax and 

semantics of SELECT statement is defined for making it an effective tool for querying. 
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I. INTRODUCTION 

Essentially all the information in the real world is 
imprecise, here imprecise means fuzzy, incomplete and even 
inconsistent. There are many theories existing to handle such 
imprecise information, such as fuzzy set theory, probability 
theory, probability theory, intuitionistic fuzzy set theory, 
vague theory, etc. These theories can only handle one aspect 
of imprecise problem but not the whole in one framework. For 
example, fuzzy set theory can only handle fuzzy, vague 
information not the incomplete and inconsistent information. 

In this paper, we unify the above-mentioned theories under 

one framework. Under this framework, we can not only model 

and reason with fuzzy, incomplete information but also 

inconsistent information without danger of trivialization.  

Relational data model, proposed by Ted Codd's pioneering 

paper [2] usually takes care of only well-defined and 

unambiguous data. However, imperfect information is 

ubiquitous, almost all the information that we have about the 

real world is not certain, complete and precise [10]. Imperfect 

information can be classified as: incompleteness, imprecision, 

uncertainty, inconsistency.  

In order to represent and manipulate various forms of 

incomplete information in relational databases, several 

extensions of the classical relational model have been 

proposed [1, 3, 5, 8, 12, 13]. In some of these extensions, a 

variety of "null values" have been introduced to model 

unknown or not-applicable data values. Attempts have also 

been made to generalize operators of relational algebra to 

manipulate such extended data models [1, 3, 5, 6, 7].  

Probability, possibility and Dempster-Shafer theory have 

been proposed to deal with uncertainty. Possibility theory [8] 

is built upon the idea of a fuzzy restriction. Wong [4] proposes 

a method that quantifies the uncertainty in a database using 

probabilities. Carvallo and Pittarelli [9] also use probability 

theory to model uncertainty in relational databases systems. 

However, unlike incomplete, imprecise and uncertain 

information, inconsistent information has not enjoyed enough  

 

 

research attention. In fact, inconsistent information exists in a 

lot of applications. 

For example, in data warehousing application, 

inconsistency will appear when trying to integrate the data 

from many different sources. Another example is that in the 

expert system, there exist facts which are inconsistent with 

each other.  

We introduce neutrosophic relations and algebraic 

operators over neutrosophic relations that extend the standard 

operators such as selection, join, and union over vague 

relations. There are many potential applications of our new 

data model e.g.  in Web mining, Bioinformatics,  Decision 

Support System.  

In this paper, we present an extension of the SQL SELECT 

statement for querying such databases. The syntax of this 

extended statement is similar to that of the ordinary SELECT 

statement; the semantics that we propose is quite different. 

With our new extended semantics, the statement becomes an 

effective tool for querying neutrosophic relational data model   

The remainder of this paper is organized as follows. 

Section 2 presents a brief introduction of neutrosophy, 

neutrosophic sets. Section 3 gives a quick overview of total 

neutrosophic relations. Section 4 presents generalized algebra 

on neutropsophic relations with relational theoretic operators. 

Section 5 presents the syntax &new semantics of SQL-like 

SELECT statement for querying neutrosophic databases based 

on algebraic operators that are defined in section 4.  Section 6 

contains an example SELECT statement and a walk through 

the evaluation procedure for that query.  Section 7 presents the 

area of application where this can be applied in real life. 

Finally, Section 8 concludes the paper with some mention of 

related and future work directions.  
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II. NEUTROSOPHIC LOGIC AND NEUTROSOPHIC 

SETS 

A. Neutrosophic Logic: 

Neutrosophic logic was created by Florentin Smarandache 

(1995) [11] and is an extension/combination of the fuzzy 

logic, intuitionistic logic, paraconsistent logic, and the three-

valued logics that use an indeterminate value.                                                                                      

Definition 1 Neutrosophic Logic :A logic in which each 

proposition is estimated to have the percentage of truth in a 

subset T, the percentage of indeterminacy in a subset I, and the 

percentage of falsity in a subset F, is called Neutrosophic 

Logic.  T, I, F are standard or non-standard subsets of the 

nonstandard interval ]-0, 1+[, where ninf = inf T + inf I + inf F≥  
-0, and nsup = sup T + sup I + sup F≤  3+.   

 Definition 2 (Neutrosophic Set): Let X be a space of 

points (objects), with a generic element in X denoted by x. A 

neutrosophic set A in X is characterized by a truth-

membership function TA, an indeterminacy-membership 

function I
A 

and a falsity-membership function FA. TA(x), IA(x) 

and FA(x) are real standard or non-standard subsets of] -0, 1+ [. 

That is  

TA: X →] -0, 1+ [    (1)  

IA: X →] -0, 1+ [    (2)  

FA: X →] -0, 1+[    (3)  

There is no restriction on the sum of TA(x), IA(x) and FA(x) 

so -0≤sup TA(x)+sup IA(x) + sup FA(x) ≤3+.  

B. Operations with sets: 

Let S1 and S2 be two (unidimensional) real standard or 

non-standard subsets, then one defines [11]  

Addition of sets:   

S1 +S2 = {x|x=s1+s2 , where s1  S1and s2  S2},             

with inf S1+ S2  = inf S1 + inf S2 , sup S1  + S2  = sup S1  + 

sup S2;  

Subtraction of sets:  

 S1- S2 = {x|x= s1- s2, where s1  S1and s2  S2}.  

For real positive subsets (most of the cases will fall in this 

range) one gets         

inf S1- S2  = inf S1 – sup S2, sup S1- S2 = sup S1 – inf S2; 

Multiplication of sets:   

S1. S2  = {x|x= s1. s2, where s1  S1 and s2  S2}.  

For real positive subsets (most of the cases will fall in this 

range) one gets   

inf S1. S2 = inf S1. inf S2 , sup S1. S2   = sup S1.  sup S2;  

Division of a set by a number:  

Let k  R*, then S1  k = { x|x= s1/k, where s1  S1}. 

For all neutrosophic set operations: if, after calculations, 

one obtains numbers < 0 or > 1, one replaces them by –0 or 1+ 

respectively. 

Definition 3. (Complement) The complement of a 

neutrosophic set A is denoted by c(A) and is defined by  

Tc(A) (x) = {1+} – TA(x),   (4) 

Ic(A)I(x) = {1+} – IA(x) ,                             (5) 

Fc(A)(x) = {1+} – FA(x),                             (6) 

for all x in X.  

Definition 4. (Union) The union of two neutrosophic sets 

A and B is a neutrosophic set C, written as C = A  B, whose 

truth-membership, indeterminacy-membership and falsity-

membership functions are related to those of A and B by  

TC(x) = TA (x) + TB(x) - TA (x) × TB (x),   (7)  

IC(x) = IA (x) + IB (x) - IA (x) × IB (x),   (8)  

FC(x) = FA (x) + FB (x) - FA (x) × FB (x),   (9)   

for all x in X. 

Definition5. (Intersection) The intersection of two 

neutrosophic sets A and B is a neutrosophic set C, written as C 

= A ∩ B, whose truth-membership, indeterminacy-

membership and falsity-membership functions are related to 

those of A and B by  

TC(x) = TA (x) × TB(x),    (10)  

IC (x) = IA (x) × IB (x),    (11)  

FC(x) = FA (x) × FB (x),   (12) 

 for all x in X.  

III. TOTAL NEUTROSOPHIC RELATIONS 

In this section, we introduce neutrosophic relations. A 

tuple in a neutrosophic relation is assigned a measure 

  1.   

Definition 6 Belief factor  :The interpretation of this 

measure is that we believe with confidence   that the tuple is 

in the relation. 

In a neutrosophic relation R , R (t)+ is the belief factor 

assigned to t by R.  

Definition 7. Doubt factor: The interpretation of this 

measure is that we doubt with confidence  that the tuple is in 

the relation.  

In a neutrosophic relation R , R (t)- is the doubt factor 

assigned to t by R. 

The belief and doubt confidence factors for a tuple need 

not add to exactly 1. This allows for incompleteness and 

inconsistency to be represented. If the belief and doubt factors 

add up to less than 1, we have incomplete information 

regarding the tuple's status in the relation and if the belief and 

doubt factors add up to more than 1, we have inconsistent 

information regarding the tuple's status in the relation. 

In contrast to fuzzy relations where the grade of 

membership of a tuple is fixed, neutrosophic relations bound 

the grade of membership of a tuple to a subinterval [

 for the case 1. 

We now formalize the notion of a neutrosophic relation. 

Let a relation scheme (or just scheme) Σ be a finite set of 

attribute names, where for any attribute name A ∈Σ, dom(A) is 

a non-empty set of distinct values for A. A tuple on Σ is any 

total map t: Σ → ∪A∈Σ dom (A), such that t(A) ∈ dom(A), for 

each A ∈Σ.  

 Let 

  denotes the set of all tuples on any scheme . 

 be the set of all total neutrosophic relations on  . 

is the belief factor,   

 is the doubt factor , 

 be the set of all consistent neutrosophic relations on       

          .  

      be the set of all   neutrosophic relations on . 

Definition 8.  A neutrosophic relation R on scheme  is 

any subset of   [ 0 , 1]. 
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For any t  , we shall denote an element of R as 

 where is the belief factor assigned to 

t by R and  is the doubt factor assigned to t by R. Let  

 be the set of all   neutrosophic relations on . 

Definition 9.  A neutrosophic relation R on scheme  is 

consistent if 1, for all t  

Let be the set of all consistent neutrosophic relations 

on  . R is said to be complete if 1, for all t 

.  If R is both consistent and complete, i.e.

= 1, for all t then it is a total neutrosophic 

relation, and let be the set of all total neutrosophic 

relations on . 

For any t ∈τ(Σ), we shall denote an element of R as <t, 

R(t)+, R(t)->, where R(t)+ is the belief factor assigned to t by R 

and R(t)- is the doubt factor assigned to t by R. Note that since 

contradictory beliefs are possible, so R(t)+ + R(t)- could be 

greater than 1. Furthermore, R(t)+ + R(t)- could be less than 1, 

giving rise to incompleteness.  

As an example, suppose in the e-shopping environment, 

there are two items Item1and Item2, which are evaluated by 

customers for some categories of quality - Capability, 

Trustworthiness and Price. Let the evaluation results are 

captured by the following total neutrosophic relation 

EVAL_RESULT on scheme {Item_Name, Quality_Category} 

as shown in Table I:  

Table: 1 Eval Result 

ITEM_Name Quality_Category Evaluation 

Item1 Capability  
 

Item1 Trustworthiness  

 

Item1 Price  
 

Item2 Capability  
 

Item2 Price  
 

 

The above relation contains the information that the 

confidence of Item1 was evaluated “good” for category 

Capability is 0.9 and the doubt is 0.2. The confidence of Item1 

was evaluated “good” for category Trustworthiness is 1.0 and 

the doubt is 0.0. The confidence of Item1 was evaluated “poor” 

for category Price is 0.8 and the doubt is 0.1. Also, the 

confidence of Item2was evaluated “good” for category 

Capability is 1.0 and the doubt is 1.0 (similarly, the confidence 

of Item2was evaluated “poor” for category Capability is 1.0 

and the doubt is 1.0). The confidence of Item2was evaluated 

“good” for category Price is 0.8 and the doubt is 0.3. Note that 

the evaluation results of Item2for category Trustworthiness is 

unknown. The above information contains results of fuzziness, 

incompleteness and inconsistency. Such information may be 

due to various reasons, such as evaluation not conducted, or 

evaluation results not yet available, the evaluation is not 

reliable, and different evaluation results for the same category 

producing different results, etc.  

IV. ALGEBRA ON TOTAL NEUTROSOPHIC 

RELATIONS 

In this section, we briefly introduce relational theoretic 

operators (natural join, projection, product, selection) for the 

semantics of SELECT statement in queries used in 

Neutrosopic Search. These generalized operators maintain the 

belief system intuition behind neutrosophic relations. 

A. Relation-Theoretic Operators: 

We now define some generalized relation-theoretic 

algebraic operators (like join, product, selection, projection) 

on total neutrosophic relations to complete the semantics of 

SELECT statement. To reflect such generalizations a subscript  

„t‟ is placed aside on an ordinary relation operator to obtain 

corresponding total neutrosophic relational operator.  

Definition 10 Let R and S be neutrosophic relations on 

scheme . Then, 

The union operator can be obtained as follows: Given a 

tuple t, since we believed that it is present in the relation R 

with confidence R   and that it is present in the relation S 

with confidence S  , we can now believe that the tuple t is 

present in the “either-R-or- S" relation with confidence which 

is equal to the larger of R   and S  . Using the same 

logic, we can now believe in the absence of the tuple t from 

the “either-R-or-S" relation with confidence which is equal to 

the smaller (because t must be absent from both R and S for it 

to be absent from the union) of R   and S .  

(R  S)(t) =   max { R (t)+ , S(t)+ }, min  { R (t)- , S(t)- } 

〉, for any  t    ; 

Definition 11 Let R and S be neutrosophic relations on 

schemes and  , respectively. Then, the natural join 

(further for short called join) of R and S, denoted R   S, is a 

total neutrosophic relation on scheme   , given by  

(R   S)(t) =   min { R( (t) )+ , S( (t) )+ },  max { R 

( (t))- , S( (t))- } 〉, 
Where   is the usual projection of a tuple.  

Similar to the intersection operator, the minimum of the 

belief factors and the maximum of the doubt factors are used 

in the definition of the join operation. 

We now define the projection operator on total 

Neutrosophic relation.  

Definition 12 Let R be a neutrosophic relation on scheme  

and . Then, the projection of R onto , denoted 

by (R), is a total neutrosophic relation on scheme , given 

by 

( (R) ) (t)  =   max { R(u)+ | u  }, min { R(u)- | u 

 }〉 
The belief factor of a tuple in the projection is the 

maximum of the belief factors of all of the tuple's extensions 

onto the scheme of the input neutrosophic relation. Moreover, 

the doubt factor of a tuple in the projection is the minimum of 

the doubt factors of all of the tuple's extensions on to the 

scheme of the input neutrosophic relation. 

Definition 13 For any total Neutrosophic relation R and S, 

R S =  (R) (S).  

The product of total Neutrosophic relation R and S is 

essentially a join after renaming their attributes to make their 
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schemes disjoint. Let (R) be the total Neutrosophic relation 

in totality with the same tuples in R, but with attribute names 

of the form “R.A” for each attribute name A of R.  

We will now define the selection operator on total 

neutrosophic  relations. 

Definition 14 Let R be a total neutrosophic relation on 

scheme , and C be a condition on tuples of   denoted    

Then, the selection of R by C, denoted by  

(R ) is a total neutrosophic relation on scheme , given by 

( (R ) ) (t) = . 

In the generalized SELECT statement, we let the condition 

occurring in the where clause be infinite valued. The infinite 

values, except  or , arise essentially due to any 

nested subqueries. 

For any arithmetic expressions E1 and E2, comparisons 

such as E1  E2are simply 2-valued conditions 

 (   or )  . Let  be a subquery of the form (select 

…… from ……. where …….) occurring in the where clause 

of a SELECT statement. And let R be the neutrosophic 

relation on scheme  that the subquery  evaluates to. Then, 

conditions involving the subquery  evaluate as follows. 

1. The condition exists  

evaluates to  

= max {a} , a = R(t)+ , for all t ,  

 = min {b}, b = R(t)- , if R(t)+ + R(t)-  1, b = 1 – R(t)+  , 

if    R(t)+     + R(t)-  1  , for all t  . 

2. For any tuple t , the condition 

                      T in  

Evaluates to  (t). 

3.  If  contains exactly one attribute, then for any (scalar 

value) t , the condition 

t > any  

evaluates to , 

 = max {a} , a = R(k)+ , if t  k, for some k  R, (  = 

min {b}, b = R(k)-  , if  R(k)+  + R(k)-  1, 

B = 1 – R(k)+ , if R (k) ++ R (k)-  1 ) , if t k, for some k 

  R ;  

 = 0,  = 1, otherwise 

Note that conditions involving such operators never 

evaluate to the value  such that 

> 1. 

We complete our semantics for conditions by defining the 

not, and and or operators on them. Let C and D be any 

conditions, and value of C = <tc, fc> and value of D = <td, fd>. 

Then, the value of the condition not C is given by  

not C = <fc, tc > 

while the value of the condition C and D is given by  

C and D = <min { tc, td}, max{ fc, fd}> 

and that of the condition C or D is given by  

C or D = <max { tc, td}, min{ fc, fd}> 

The duality of and and or is evident from their formulas. 

The following algebraic laws exhibited by the above 

operators:  

 1. Double Complementation Law: not (not C) = C  

 2. Identity and Idempotence Laws:  

 C and <1, 0> = C and C = C  

C or <0, 1> = C or C = C  

 3. Commutativity Laws:  

C and D = D and C  

C or D = D or C  

             4. Associativity Laws:  

C and (D and E) = (C and D) and E  

C or (D or E) = (C or D) or E  

 5. Distributivity Laws:  

C and (D or E) = (C and D) or (C and E)  

C or (D and E) = (C or D) and (C or E)  

 6. De Morgan Laws:  

not (C and D) = (not C) or (not D)  

not (C or D) = (not C) and (not D)  

V. SYNTAX AND SEMANTICS OF SELECT 

QUERIES FOR TOTAL NEUTROSOPHIC RELATIONS. 

The most popular construct for information retrieval from 

most commercial systems is the SQL's SELECT statement. 

While the statement has many options and extensions to its 

basic form, here we  just present generalization for total 

neutrosophic relations. The basic form of the statement 

contains three clauses select, from and where, and has the 

following format: 

Select   A1,  A2 ,  …. Am     From R1 ,  R2  , …., Rn   Where C 

where 

1. A1,  A2 ,  ………. Am       is a list of attribute names whose 

values are to be retrieved by the query, 

2. R1 ,  R2  , ………., Rn    is a list of relation names required 

to process the query, and 

3. C is a boolean expression that identifies the tuples to be 

retrieved by the query. 

Without loss of generality, we assume that each attribute 

name occurs in exactly one relation, because if some attribute 

Ai  occurs in more than one relation, we require, instead of 

simply the attribute Ai, a pair of the form Rj .Ai  qualifying that 

attribute. 

The result of the SELECT statement is a relation with 

attributes  A1,  A2 ,  ………. Am    chosen from the attributes of   

R1 R2  ……….  Rn     for tuples that satisfy the Boolean 

condition C, i.e. 

(  (R1 R2  ……….  Rn   )) 

where  ,  and _ are the projection, selection and 

product operations, respectively, on ordinaryrelations. We 

retain the above syntax in the generalized SELECT statement 

for the total  neutrosophic relations. However, the relation 

names R1 ,  R2  , ………., Rn   now represent some neutrosophic 

relations and C is some infinite-valued condition. The result of 

the generalized SELECT statement is then the value of the 

algebraic expression: 

( R1 R2  ……….  Rn    )) 

Where , ,  are, respectively, the projection, 

selection and product operations on total neutrosophic 

relations.  Furthermore, the result of the generalized SELECT 

statement is also a total neutrosophic relation. 

VI. AWALKTHROUGH OF THE EVALUATION FOR 

AN EXAMPLE 

Let us now consider a query: 
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What items showed contradictory evaluation of some 

category of quality in the total neutrosophic relation EVAL as 

shown in TABLE II on scheme {ITEM_Name, 

Quality_Category} of the item-quality . 

Table: 2 Eval Result 

ITEM_Name Quality_Category Evaluation 

Item1 Capability  
 

Item1 Trustworthiness  
 

Item1 Price  
 

Item2 Capability  
 

Item2 Price  
 

Solution: 

A SELECT statement for this query is:  

Select Item_Name from EVAL_RESULT where not 

((Item_name, Quality_Category) in EVAL_RESULT)  

One possible evaluation method for the above query in 

ordinary 2-valued SQL is to produce the Item   attribute of 

those rows of EVAL_RESULT that satisfy the where 

condition. Since the where condition in the above case is 

exactly that row not be in EVAL_RESULT, in 2-valued logic 

the above query will produce an empty answer.  

The stepwise output is shown below : 

In neutrosophic logic, however, the where condition 

needsto be evaluated, to one of infinite possible values, for 

every possible row with attributes Σ = (Item_name, 

Quality_Category).  

The result is then combined with EVAL_RESULT 

according to the semantics of , on which is performed to 

produce the resulting total neutrosophic relation. 

 Therefore, for each of the 6 rows in τ(Σ), we first evaluate 

the where condition C is as shown in Table III:  

Table: 3 Relation Schema with Condition 

( Item_Name, 

Quality_Category) 

 C= not ((( Item_Name, 

Quality_Category) in EVAl_RESULT) 

( Item1, Capability  )  
 

( Item1, 

Trustworthiness) 
 

 

( Item1, Price  )  
 

( Item2, Capability  )  
 

( Item2, 

Trustworthiness ) 
 

 

( Item2, Price  )  

 

Now, (EVAL) according to the definition of evaluates 

to the total neutrosophic relation  is as shown in Table IV.  

(EVAL)  

Table: 4 Relation Schema with Select Clause 

ITEM_Name Quality_Catego

ry 

Evaluation 

Item1 Capability  

 

Item1 Trustworthiness  

 

Item1 Price  
 

Item2 Capability  
 

Item2 Price  
 

    

Finally, of the above is the total neutrosophic relation as 

shown in Table V: 
        ( (EVAL)) 

Table : 5 Relation Schema with Project Clause 

ITEM_Name Evaluation 

Item1  
 

Item2  
 

 

which is the result of the SELECT statement.  

Explanation :  

The result states that Item1 showed contradictory 

evaluation result for some category with confidence is 0.1 and 

doubt is 0.8, so it is safe to conclude that Item1 did not show 

contradictory evaluation result, but Item2 showed 

contradictory evaluation result for some category with 

confidence 1.0 and doubt is 0.0, the explanation is that Item2 

did show contradictory result for some category and did not 

show contradictory for other category at the same times. 

VII. APPLICATION 

Web services are playing an important role in e-business 

application integration and other application fields such as 

bioinformatics. So it is crucial for the success of both service 

providers as well as service consumers to provide and invoke 

the high quality of service (QoS) Web services. Since different 

application domains have different requirements for QoS it is 

impractical to use classical mathematical modeling methods to 

evaluate the QoS of semantic Web services. Our model is 

scalable to handle fuzzy, uncertain and inconsistent QoS 

metrics effectively. For example, capability of a Web service 

is fuzzy. It is unreasonable to use crisp values to describe it. 

So we can use several linguistic variables such as a "little bit 

low" and "a little bit high" to express the capability of 

services. 

VIII. CONCLUSIONS 

How to model and reason with fuzzy, incomplete and even 

inconsistent information is an important research topic. In this 

paper we have presented syntax & semantics for the SQL 
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SELECT statement for querying neutrosophic databases. We 

have presented a generalization of fuzzy relations, 

intuitionistic fuzzy relations (interval  valued fuzzy relations) 

and vague relations, called total neutrosophic relations, in 

which we allow the representation of confidence (belief and 

doubt) factors with each tuple. 

We introduced generalized operators on total neutrosophic 

relations. These generalized operators maintain the belief 

system intuition behind neutrosophic relations. We have given 

the syntax & extended semantics for the SELECT statement 

based on the extended algebraic operators (projection, 

selection and product) on neutrosophic relations. 

As the future work, we plan to extend this work to develop 

tuple-relational and domain-relational calculus for the total 

neutrosophic relations. 
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