
DOI: http://dx.doi.org/10.26483/ijarcs.v14i1.6949

Volume 14, No. 1, January-February 2023

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2023-2025, IJARCS All Rights Reserved 5

ISSN No. 0976-5697

SECURE SOFTWARE DEVELOPMENT LIFECYCLE: A CASE FOR ADOPTION

IN SOFTWARE SMES

Wisdom Umeugo
Ph.D. Candidate

School of Computer and Information Sciences

University of the Cumberlands, Kentucky, USA

Abstract: Software is widely deployed and used for managing critical daily domestic, social, and economic activities. Due to software’s

economic value, software is a high-value target of malicious actors and a primary source of many information security vulnerabilities. Software
must be engineered to be secure because of its value. Traditional approaches to software security treat software as an addon and have been
proven inadequate at producing secure software. Practicing the secure software development lifecycle (SSDLC) is recommended in academic
literature. Software SMEs must adopt and practice the SSDLC for increased security of published software. This paper explores the SSDLC and
makes a case for its adoption with the goal of informing security decision-makers of Software SMEs.

Keywords: software security; application security; secure software; secure software development lifecycle; ssdlc; ssdlc adoption

I. INTRODUCTION

Software is increasingly pervasive, finding applications in
every domain of human society [1], [2]. Due to the high
dependence on software across the public and private sectors,
assurance is needed that software will perform dependably in
all circumstances [3]. Traditional approaches to securing
software mainly focus on host, perimeter, and network security
using intrusion detection and prevention systems, firewalls, and
anti-malware [4]. These approaches fail to incorporate adequate
protection into the software during its development and have
proven inadequate at providing software assurance [3], [4]. A
move to a software development lifecycle (SDLC) with
security incorporated in every phase has been repeatedly
advocated [4]–[6]. The commonly used term for this security-
infused software development lifecycle is “Secure SDLC”
(SSDLC). Software SMEs are the dominant publishers of
software. Therefore, attempts at improving the security of
released software must ensure that software SMEs adopt and
practice the SSDLC. This research explores the SSDLC, its
requirements, and its adoption challenges by software small
and medium enterprises (SMEs).

II. SECURE SOFTWARE

The primary goal of software security is to guarantee the
confidentiality, integrity, and availability of software
components and data [4]. Confidentiality entails protecting
software from unauthorized access [3]. Protecting software
integrity refers to preventing the unauthorized modification of
software components through tampering, corruption, and
destruction [3]. Guaranteeing software availability requires
ensuring that the software and the service or the data it provides
are functional and accessible to authorized parties when needed
[3]. The goal of software assurance is to ensure high
confidence in software’s freedom from exploitable
vulnerabilities during the software’s lifecycle [7]. Therefore,
software must be secure throughout its lifecycle to achieve high
software assurance. Security must thus be integrated into all

stages of the SDLC [4]. For software to be considered secure,
its risks must be managed, and it must be engineered to
incorporate software security principles and properties from the
early stages of its lifecycle [3], [8].

A. Secure Software Principles

Various software security principles guiding the design of
software security solutions and processes have been published
in the literature. White [9] identified and described eight
commonly cited software security design principles in the
literature. These are summarized as follows: (a) Open design:
security should be dependent on implementation and not the
design, which should not be hidden; (b) Fail-safe defaults: if
the software fails, it should fall back to a secure default; (c)
Least privilege: only the minimum set of privileges required to
perform any action should be granted in any situation (d)
Economy of mechanism: keep security designs and
implementation as simple, understandable and straightforward
as possible; (e) Separation of privilege: two or more
independent conditions should be met to execute a security-
sensitive activity successfully; (f) Complete mediation:
authorization must be checked for every access request or to
perform any action; (g) Least common Mechanism:
mechanisms for accessing resources should not be shared
between users and (h) Psychological acceptability: security
features and controls should be usable. Alenezi and Almuairfi
[10] included four more principles specified by the Open Web
Application Security Project (OWASP): (a) Use whitelisting
permission model: deny by default and explicitly specify what
is permitted; (b) Detect intrusion: keep and monitor security-
related access log entries; (c) Do not trust infrastructure:
assume uncertainty about the operating environment, and (d)
Do not trust external services: assume external services and
systems the software communicates with are always insecure.

B. Characteristics of Secure Software

From a software assurance perspective, the software is

secure when free from vulnerabilities, exhibits withstanding

security properties under malicious attack, and is of correct

design and implementation [3], [11]. Secure software’s ability

Wisdom Umeugo, International Journal of Advanced Research in Computer Science, 14 (1), Jan-Feb 2023,5-12

© 2023-2025, IJARCS All Rights Reserved 6

to exhibit attack tolerance depends on its inherent engineering

to recognize attack patterns, resist misuse, and tolerate and

recover from failures or errors [3]. Software must be

engineered with the software security principles and properties

from the start of its lifecycle to be secure [3], [11]. According

to [3], when a fault is encountered in secure software, the

software fails to secure defaults and recovers securely. This is

important in safety-critical software, where faults can seriously
impact life and property [3].

III. REQUIREMENTS FOR DEVELOPING SECURE

SOFTWARE

Secure software requires an organized security-focused
effort using effective security processes and tools [12], [13].
Integrating security into the SDLC requires staff with expertise,
such as software security architects, and enforcing software
security policies and controls [13]. Thus, secure software
development involves software engineering and security
engineering efforts supported by effective management policies
and practices [13], [14].

A. Proper Management Structure

A management structure emphasizing software security is

needed to oversee the SSDLC [13]. Ransome and Misra [13]

and Rindell et al. [15] recommended that the management of

the SSDLC be placed under the software quality assurance

office because including security in quality assurance will

ensure it is emphasized during development.

B. Knowledgeable staff

Knowledgeable staff must oversee and implement security

processes in the SSDLC [13]. The presence of security experts

is influential in implementing secure software practices [16].

In addition to skilled software engineers who implement

security into the product, security staff capable of thinking like

adversaries and identifying and mitigating vulnerabilities in
software should be involved [13]. Software security architects,

engineers, and security champions are the common staff roles

in the SSDLC. Software security architects and engineers are

experts in software security. They perform security

requirements analysis, risk analysis, security engineering,

security testing, and security sign-off during each phase of the

SSDLC [13]. Security champions are generally software

engineering team members with backgrounds in or passion for

software security who volunteer to help oversee SDLC

security practices in the team they belong to [13].

C. Security policies

Security policies are governance tools for creating,

implementing, and maintaining security processes [17].

Security policies provide high-level guidelines for managing

security processes [17]. Software security processes typically

involve various activities. For example, risk management

includes identifying, analyzing, and mitigating risk [18].

D. Secure Software Frameworks and Maturity Models

Secure software frameworks and maturity models are

required to guide the implementation, operation, and

maturation of SSDLC practices. Various industry-standard

software security maturity models and secure software

development frameworks exist that identify, catalog, and
organize software security processes and their related

activities. Examples of frameworks that guide the

implementation of software security-related processes are

Microsoft Security development lifecycle (SDL), the

Comprehensive, Lightweight Application Security Process

(CLASP), and the Team Software Process for Secure Software

Development (TSP-Secure) [3], [19].

E. Software security tools

Software security tools are also required when developing

secure software to help ease and automate various software

security tasks [13]. The quality and accuracy of the security

tools are essential as they affect software developers’

motivation to use them [20]. For example, Jamil et al. [20]

reported that developers were demotivated from using Static

Application Security Testing (SAST) tools by their high false-

positive rates. Typical application security tools identified in

the literature include vulnerability scanners, SAST, dynamic
application security testing tools (DAST), fuzzing tools, and

penetration testing tools [13], [21].

IV. SECURE SOFTWARE DEVELOPMENT LIFECYCLE

Software of all sizes and complexity must be dependable,
and dependability is best achieved when software is

engineered to be secure from the start [3]. An SSDLC where

security processes are infused into all phases of the SDLC is

critical to reducing security vulnerabilities in developed

software [3], [8], [22]. Various authors recommend that the

SSDLC should be risk-driven and that risk management

activities should drive security activities at each phase of the

SSDLC [3], [8], [23]. A summary of the security activities at

each stage of the SDLC is depicted in Fig. 1.

Figure 1. The Secure Software Development Lifecycle

A. Planning Phase

In the Planning phase of the SSDLC, a security assessment

is made of the software’s basic concept to determine the

security objectives and profile [13]. A risk management

framework is chosen, and preliminary risk management is

conducted to inform stakeholders early of risks inherent to the

Wisdom Umeugo, International Journal of Advanced Research in Computer Science, 14 (1), Jan-Feb 2023,5-12

© 2023-2025, IJARCS All Rights Reserved 7

software project's security and success [8]. Security training

and awareness, general and tailored to specific roles, are also

conducted in the planning phase [8].

B. Requirements definition phase

In the requirements definition phase of the SSDLC,

security requirements are gathered and documented using

requirement engineering techniques [8]. Security requirements

include confidentiality, integrity, availability, authentication,

authorization, session management, configuration, and

environmental requirements [11]. These requirements are

obtained from the preliminary threat models, available use

cases, security policies, operational documents, and

stakeholder requirements elicitation techniques [8]. Further

threat modeling is performed at this phase to create misuse
cases that demonstrate potential security exploits by threat

actors and to define the expected behavior of the software

under these circumstances [8].

C. Architecture and design phase

In the architecture and design phase of the SSDLC, a
secure architecture for the software is designed by software

security architects from the requirements and translated into

lower-level implementable designs for developers [8]. The

security architecture and controls are determined based on the

risk mitigation plan [13]. Ruggieri et al. [24] recommended

that security principles be incorporated into the design and that

the design should be externally reviewed. Additional threat

modeling and attack surface evaluation may be performed on

the design until the design leaves an acceptable level of

residual risk unaddressed [11].

D. Development Phase

In the development phase of the SSDLC, the secure design

is translated into programming language code and

configuration by software developers [8]. A secure

programming language is chosen and used by software

developers to implement security features. Several authors

recommended that software developers practice defensive

programming and follow secure coding guidelines for
implementing misuse cases and reducing the software attack

surface [8], [25]. Secure coding guidelines are general, such as

OWASP Secure Coding Practices, or specific to a

programming language [25]. Examples of programming

language-specific secure coding guidelines are MISRA-C and

CERT SEI-C for the C programming language, MISRA-C++

for C++, and CERT SEI-Java for Java [25]. Manual and

automated code analysis is also performed during the

development stage. Manual code analysis in the security

context involves performing code vulnerability checks during

peer code reviews [10]. Automated code analysis at the
development stage is performed using static analysis tools that

scan the code for vulnerabilities without executing the code

[11], [13], [26].

E. Testing phase

In the Testing phase of the SSDLC, security tests specified

by security architects and engineers are executed with the help
of software quality assurance testers [13]. Security testing is

conducted to verify software resilience under attack and is

often called attack surface validation [11]. Security tests

include Dynamic Application Security Testing (DAST),

Interactive Application Security Testing (IAST), Fuzz testing,

Vulnerability scanning, and Penetration testing [13], [21].

F. Operations and Maintenance phase

In the Operations and Maintenance phase of the SSDLC,
the security team performs a final security review of the

software’s release candidate [11], [13]; Certified third-party

testers may be required to audit the software before release,

especially when the software must pass some external

certification and regulatory requirements [11]. The security

architect signs off on the release candidate if the final security

review is passed or fails with acceptable residual risk [11]. The

production environment and network are hardened with

minimum baseline security configurations, and the software is

installed or deployed [11]. Vulnerability management, bug

bounties, and secured DevOps pipelines are also implemented

and updated at this stage.

V. SECURE SOFTWARE FRAMEWORKS

Absolute Software security is impossible due to many

factors; however, the number of vulnerabilities can be

drastically reduced by following secure software standards,
practices, and recommendations for developing secure

software [27]. These standards and industry best practices are

maintained by various organizations such as the ISO, IEEE,

NIST, and the U.S department of defense (DOD) [27].

Organizations developing software can adopt an industry-

standard framework for implementing security over the entire

SDLC. A brief review of the most cited frameworks is given

as follows.

A. Comprehensive Lightweight Application Security

Process (CLASP)

The Comprehensive Lightweight Application Security

Process (CLASP) is a process for introducing security into the

early stages of the SDLC [28]. CLASP is a comprehensive

collection of methods, practices, roles, and resources for

applying repeatable and measurable security to software

development [3], [28]. CLASP provides views that are

perspectives to approach CLASP, such as views based on best
practices, roles in the framework, activity implementation, and

vulnerability intended to be mitigated [28]. CLASP is

designed to help individual developers develop secure

software and for organizations to build secure software

practices [27]. CLASP appears to no longer be updated by

OWASP but is still widely referenced in current literature.

B. Security Assurance Maturity Model (SAMM)

OWASP developed the Security Assurance Maturity

Model (SAMM) as a self-assessment model to guide the

application, evaluation, and improvement of software security

practices throughout the SDLC [29]. SAMM is prescriptive

and flexible, allowing organizations to determine their target

software security maturity level [29]. SAMM categorizes 15

software security practices into five software development

business functions: governance, design, implementation,

verification, and operations [29]. Each security practice

contains a set of security-related activities structured into three
maturity levels with associated success metrics [29]. Based on

SAMM documentation, organizations first assess their

software security posture and maturity level, then define their

security targets and their target software security maturity

level to apply SAMM. The SAMM implementation roadmaps

are then used to achieve the targeted software security

maturity level by implementing prescribed activities [29]

Wisdom Umeugo, International Journal of Advanced Research in Computer Science, 14 (1), Jan-Feb 2023,5-12

© 2023-2025, IJARCS All Rights Reserved 8

C. Building Security in Maturity Model (BSIMM)

The Building Security in Maturity Model (BSIMM) is a
descriptive model of activities for evaluating and assessing

software security initiatives [30]–[32]. BSIMM comprises 122

software security activities grouped into 12 practices and

organized into four domains: governance, intelligence, secure

software development (SSDL), and deployment [33]. BSIMM

is best used as a yardstick for measuring other secure software

development frameworks or comparing an organization’s

software security initiatives against others [30]–[32].

D. Microsoft Security Development Lifecycle

Microsoft [34] describes its Security Development

Lifecycle (SDL) as a secure software framework to integrate

security and privacy into all phases of the SDLC. According to

Microsoft (n.d.) [34], the goal of SDL is to ensure the

development of secure software that meets compliance

requirements at a reduced cost. Microsoft [34] further

described the SDL as a cost-effective security optimization

model for building security into the SDLC from scratch based
on five capability areas that map roughly to stages in the

SDLC: (a) Training, policy, and organizational capabilities,

(b) Requirements and design, (c) Implementation, (d)

Verification, (e) Release and response. Each of the capability

areas contains recommended security-related activities. The

SDL advocates the creation of security advisors and security

champion roles for accountability in the early stages of the

SDLC. The SDL is an adaptable and process-agnostic guide to

map security activities and security-related deliverables into

all phases of the SDLC [3].

E. Microsoft Security Development Lifecycle Agile

According to Microsoft, agile software development

practices focus on rapidly creating features, leaving security in

the backseat, thus posing a challenge to integrating SDL [35].

For this reason, Microsoft released the Security Development

Lifecycle Agile (SDL-agile) as a guide for integrating SDL

into agile Software development practices [36]. According to

Microsoft, to successfully incorporate SDL into agile, the SDL
activities must be reorganized to fit agile methods [35]. Also,

any SDL activity performed to develop a feature must be lean

or just enough for that feature. SDL-agile adapts SDL

activities into three categories: activities performed once at the

start of the project, activities completed in every sprint, and

bucket activities which are optional activities performed in a

sprint [36]. SDL-agile recommends performing threat

modeling and final security review in addition to the standard

implementation activities of the SDL in each sprint [36].

VI. THE COSTS OF FIXING SOFTWARE SECURITY

INCIDENTS

Exploited and unexploited vulnerabilities in released

software have consequences for the organization due to high

costs and efforts to fix them [11], [13], [37]. One of the

reasons authors have consistently advocated using the SSDLC
is to reduce the number of vulnerabilities and the associated

costs to fix them. Paul [11] estimated that the cost of fixing

security bugs at the production stage of the SDLC is as much

as 30 times the cost of fixing the same bug at the requirements

stage. It is, therefore, more cost-effective to identify and fix

vulnerabilities early in the SDLC [37].

The costs of fixing security incidents in deployed software

are incurred in the form of service downtime, data breaches,

punitive fines, loss of developer productivity, development

cycle interruptions due to work on security patches,

vulnerability scope creeps, and legal, customer trust, and

reputation issues [2], [13], [38]. The impact and costs of

exploited software vulnerabilities vary based on the industry,

affected users, impacted resources, and the type and severity

of the vulnerability [38]. The greater the sensitivity or

importance of the industry and the perceived severity by the
affected users, the greater the costs to fix the vulnerability

[38]. For example, financial software caters to the sensitive

finance industry and can severely impact client finances if

vulnerable financial software is exploited [38].

Exploited software vulnerabilities can also lead to bad

publicity, public relations crisis, and legal liabilities that can

financially impact the software publisher. Anwar et al. [38]

reported that vulnerabilities reported in the press hurt the

affected organization’s stock price. The large punitive

settlement, stock price drop, and reputation damage Equifax

suffered due to its 2017 data breach discussed earlier is an
example of the high costs of software vulnerability in released

software. Another software vulnerability exploits with a high

remediation cost was the SolarWinds hack reported in

December 2020 [39]. The estimated costs to SolarWinds in

USD included $25 million in cyber insurance and

cybersecurity improvements, $90 million in client indemnity,

$90 million in forensics and incident response, and $100

billion in software and system recovery [39]. In addition,

SolarWind’s stock plummeted as much as 25 percent as its

reputation fell, and customers lost trust in its products [40].

vulnerabilities in high-consequence software such as

national security systems, banking software, and medical
software can have a catastrophic impact if exploited because

they may result in the loss of life, health, and financial well-

being of impacted individuals [3]. Early discovery and

remediation of vulnerabilities protects users, saves the

organization money, and frees developers to focus on features

rather than security patching [41].

VII. SSDLC ADOPTION CHALLENGES IN SMES

Tuape and Ayalew [42] estimated that 95 percent of

software publishers are SMEs. According to the OECD office

for SME and entrepreneurship performance [43], compared to

large enterprises, SMEs are generally characterized by lower

capital, productivity levels, technology adoption,

internationalization, and research-centered innovation than

large enterprises. Software SME SSDLC adoption remains

inadequate. Alghamdi [44] revealed that only 51 percent of
software SMEs that develop software in-house adopted secure

software practices during all phases of the SDLC. The reasons

noted for the low SSDLC adoption in software SMEs are

summarized as follows.

1) Security is still viewed as an addon: The traditional

view of security as a secondary feature and addon prevents

adequate security from being built into software during

development [5], [13].

2) Complexity and cost: SSDLC is complex and costly to

implement and practice leading to management overhead and

lack of management support [14], [44], [45].

3) Widespread adoption of the agile model: The agile

model focuses on quickly developing usable software, making

the incorporation of security practices in all stages of the agile

SDLC challenging [46], [47].

Wisdom Umeugo, International Journal of Advanced Research in Computer Science, 14 (1), Jan-Feb 2023,5-12

© 2023-2025, IJARCS All Rights Reserved 9

4) Reliance on developers for security: Software SMEs

rely more heavily on developers than processes [48]. Security

in the SDLC is thus being left to developers, who usually do

not have the security expertise to adequately manage and

implement secure software practices [13], [49].

5) Lack of Developer acceptance of secure software

practices: Developers may not be motivated to accept the

SSDLC. According to Assal and Chiasson [50], amotivation

reasons cited by developers included a perceived lack of

security competence due to a lack of resources and inadequate

support. Other contributors to developer amotivations include

a lack of interest from induced passiveness or exclusion from

security responsibilities, optimistic bias against attack, the

erroneous perception that exploits have negligible impact, and

personal philosophical resistance [50]. Assal and Chiasson

[50] also noted that developers’ security motivations were

more significant in larger enterprises than in SMEs.

6) Complexity of existing SSDLC frameworks: Most

software security guidelines and secure software frameworks

are more suited to software development in large enterprises

than for SMEs [44], [46].

7) SDLC methodology Constraints: The SDLC

methodology practiced presents constraints to implementing

the SSDLC. As mentioned earlier, agile development is now

widespread in the software industry for building various types

and scales of software [12], [51]. Agile SDLC has a notable

incompatibility with security practices consistently highlighted

by various authors [47], [52]–[54]. Microsoft’s

acknowledgment of this incompatibility led to the release of

the previously discussed SDL-agile framework. There is also a

lack of industry-standard practical frameworks for

incorporating the SSDLC in the less popular SDLC models

like the crystal method, the big bang model, extreme

programming, prototyping, and rapid application development.

8) Poor software security awareness and education: Lack

of software security awareness and education hinders SME

SSDLC adoption [55]. Poor security awareness also impacts

developers’ acceptance of security practices. Witschey et al.

[56] showed that developer security training and exposure to

tools positively impacted the developer’s intention to adopt

security tools.

9) Lack of security policies and strong security culture:

Similar to the adoption of security practices, security policies,

and strong security culture are important requirements for

successful software security practices adoption.

VIII. CONCLUSION

Ensuring that published software is secure remains an

important ongoing topic. Software must be built with the

assurance that it can withstand misuse and malicious attack.

Software has to be engineered from the start to be secured to

achieve a high level of security assurance. Adopting the

SSDLC enables software to be designed, developed and

deployed securely. Both the software itself and threats evolve,

introducing new exploitable vulnerabilities. The easy

distribution and widespread use of software make fixing

vulnerabilities expensive and the costs of exploits higher for

software SMEs. Efforts should be made to increase software
SME SSDLC adoption. Future work should further explore the

reasons for the inadequate SSDLC adoption in SMEs and

identify potential practical remedies that can be implemented

by SME software security decision-makers and government

policymakers.

IX. REFERENCES

[1] R. A. Khan and S. U. Khan, “A preliminary structure of
software security assurance model,” in Proceedings of the
13th International Conference on Global Software
Engineering, New York, NY, USA, May 2018, pp. 137–
140, doi: 10.1145/3196369.3196385.

[2] E. Venson, R. Alfayez, M. M. F. Gomes, R. M. C.
Figueiredo, and B. Boehm, “The impact of software
security practices on development effort: an initial
survey,” in 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement
(ESEM), Sep. 2019, pp. 1–12, doi:
10.1109/ESEM.2019.8870153.

[3] U.S. Department of Homeland Security, “Security in the
softwarelifecycle: Making software development
processes—and software produced by them—more
secure. DRAFT Version 1.2. ,” 2006, Accessed: Jan. 28,
2023. [Online]. Available:
http://www.cert.org/books/secureswe/SecuritySL.pdf.

[4] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas,
“Systematic mapping study on security approaches in
secure software engineering,” IEEE Access, vol. 9, pp.
19139–19160, 2021, doi:
10.1109/ACCESS.2021.3052311.

[5] H. Al-Matouq, S. Mahmood, M. Alshayeb, and M. Niazi,
“A maturity model for secure software design: A
multivocal study,” IEEE Access, vol. 8, pp. 215758–
215776, 2020, doi: 10.1109/ACCESS.2020.3040220.

[6] R. Fujdiak et al., “Managing the secure software
development,” in 2019 10th IFIP International Conference
on New Technologies, Mobility and Security (NTMS),
Jun. 2019, pp. 1–4, doi: 10.1109/NTMS.2019.8763845.

[7] W. J. R. Nichols and T. Scanlon, “DoD Developer’s
Guidebook for Software Assurance,” 2018.

[8] M. Alenezi and S. Almuairfi, “Security risks in
thesoftware development lifecycle,” IJSEA, vol. 8, no. 3,
pp. 7048–7055, Sep. 2019.

[9] C. A. White, “Root causes of insecure internet of things
and holistically addressing them,” in 2020 International
Conference on Computational Science and Computational
Intelligence (CSCI), Dec. 2020, pp. 1066–1074, doi:
10.1109/CSCI51800.2020.00198.

[10] M. Alenezi and S. Almuairfi, “Essential activities for
secure software development,” IJSEA, vol. 11, no. 2, pp.
1–14, Mar. 2020, doi: 10.5121/ijsea.2020.11201.

[11] M. Paul, Official (ISC)2 guide to the CSSLP CBK.
Auerbach Publications, 2013.

[12] M. G. Jaatun and D. Soares Cruzes, “Care and feeding of
your security champion,” in 2021 International
Conference on Cyber Situational Awareness, Data
Analytics and Assessment (CyberSA), Jun. 2021, pp. 1–7,
doi: 10.1109/CyberSA52016.2021.9478254.

[13] J. Ransome and A. Misra, Core Software Security.
Auerbach Publications, 2018.

[14] N. Davis, W. Humphrey, S. T. Redwine, G. Zibulski, and
G. McGraw, “Processes for producing secure software,”
IEEE Secur. Privacy Mag., vol. 2, no. 3, pp. 18–25, May
2004, doi: 10.1109/MSP.2004.21.

[15] K. Rindell, J. Ruohonen, and S. Hyrynsalmi, “Surveying
secure software development practices in finland,” in
Proceedings of the 13th International Conference on
Availability, Reliability and Security - ARES 2018, New

Wisdom Umeugo, International Journal of Advanced Research in Computer Science, 14 (1), Jan-Feb 2023,5-12

© 2023-2025, IJARCS All Rights Reserved 10

York, New York, USA, Aug. 2018, pp. 1–7, doi:
10.1145/3230833.3233274.

[16] S. L. Kanniah and M. N. Mahrin, “Secure software
development practice adoption model: A delphi study.,”
Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), vol. 10, no. 2, pp. 71–75, 2018.

[17] M. H. Sharif, R. Datta, and M. Valavala, “Identifying
Risks and Security Measures for E-Commerce
Organizations.,” Int. J. Eng. Appl. Sci. Technol, vol. 4,
no. 5, 2019.

[18] A. Asadoorian, M. Alberto, and M. L. Ali, “Creating and
using secure software,” in 2020 11th IEEE Annual
Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), Oct. 2020, pp.
0786–0792, doi: 10.1109/UEMCON51285.2020.9298046.

[19] J. C. Núñez, A. C. Lindo, and P. G. Rodríguez, “A
preventive secure software development model for a
software factory: a case study.,” IEEE Access, vol. 8, pp.
77653–77665, 2020.

[20] A. M. Jamil, L. ben Othmane, A. Valani, M. Abdelkhalek,
and A. Tek, “The current practices of changing secure
software: An empirical study,” in Proceedings of the 35th
Annual ACM Symposium on Applied Computing, New
York, NY, USA, Mar. 2020, pp. 1566–1575, doi:
10.1145/3341105.3373922.

[21] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford,
“Security during application development: an application
security expert perspective,” in Proceedings of the 2018
CHI Conference on Human Factors in Computing
Systems - CHI ’18, New York, New York, USA, Apr.
2018, pp. 1–12, doi: 10.1145/3173574.3173836.

[22] F. Mateo Tudela, J.-R. Bermejo Higuera, J. Bermejo
Higuera, J.-A. Sicilia Montalvo, and M. I. Argyros, “On
combining static, dynamic and interactive analysis
security testing tools to improve OWASP top ten security
vulnerability detection in web applications,” Appl. Sci.,
vol. 10, no. 24, p. 9119, Dec. 2020, doi:
10.3390/app10249119.

[23] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas,
“Systematic literature review on security risks and its
practices in secure software development,” IEEE Access,
vol. 10, pp. 5456–5481, 2022, doi:
10.1109/ACCESS.2022.3140181.

[24] M. Ruggieri, T.-T. Hsu, and M. L. Ali, “Security
considerations for the development of secure software
systems,” in 2019 IEEE 10th Annual Ubiquitous
Computing, Electronics & Mobile Communication
Conference (UEMCON), Oct. 2019, pp. 1187–1193, doi:
10.1109/UEMCON47517.2019.8993081.

[25] T. E. Gasiba and U. Lechner, “Raising secure coding
awareness for software developers in the industry.,” 2019
IEEE 27th International Requirements Engineering
Conference Workshops (REW), p. 141, 2019.

[26] M. Noman, M. Iqbal, and A. Manzoor, “A survey on
detection and prevention of web vulnerabilities,” ijacsa,
vol. 11, no. 6, 2020, doi:
10.14569/IJACSA.2020.0110665.

[27] R. Trifonov, O. Nakov, G. Pavlova, S. Manolov, G.
Tsochev, and P. Nakov, “Analysis of the principles and
criteria for secure software development,” in 2020 28th
National Conference with International Participation
(TELECOM), Oct. 2020, pp. 125–128, doi:
10.1109/TELECOM50385.2020.9299567.

[28] Cybersecurity & Infrastructure Security Agency,
“Introduction to the CLASP Process | CISA,”
Cybersecurity & Infrastructure Security Agency, Jul. 03,
2013. https://www.cisa.gov/uscert/bsi/articles/best-
practices/requirements-engineering/introduction-to-the-
clasp-

process#:%7E:text=Comprehensive%2C%20Lightweight
%20Application%20Security%20Process,guided%20by%
20formalized%20best%20practices. (accessed Feb. 05,
2022).

[29] OWASP Software Assurance Maturity Model, “OWASP
SAMM,” OWASP SAMM. OWASP software assurance
maturity model. https://owaspsamm.org/ (accessed Jan.
28, 2023).

[30] K. Bernsmed, M. G. Jaatun, and P. H. Meland, “Safety
Critical Software and Security - How Low Can You Go?,”
in 2018 IEEE/AIAA 37th Digital Avionics Systems
Conference (DASC), Sep. 2018, pp. 1–6, doi:
10.1109/DASC.2018.8569579.

[31] G. McGraw, “Software security and the building security
in maturity model (BSIMM).,” Journal of Computing
Sciences in Colleges, vol. 30, no. 3, pp. 7–8, 2015.

[32] M. Shaikh, P. H. Ali Qureshi, M. Shaikh, Q. A. Arain, A.
Zubedi, and P. Shaikh, “Security paradigms in SDLC
requirement phase — A comparative analysis approach,”
in 2021 International Conference on Engineering and
Emerging Technologies (ICEET), Oct. 2021, pp. 1–6, doi:
10.1109/ICEET53442.2021.9659614.

[33] BSIMM, “Software Security Framework .”
https://www.bsimm.com/framework.html (accessed Feb.
27, 2022).

[34] Microsoft, “Microsoft Security Development Lifecycle
Practices.” https://www.microsoft.com/en-
us/securityengineering/sdl/practices (accessed Oct. 28,
2022).

[35] Microsoft Learn, “Agile SDL: Streamline Security
Practices For Agile Development | Microsoft Learn,” Sep.
10, 2019. https://learn.microsoft.com/en-us/archive/msdn-
magazine/2008/november/agile-sdl-streamline-security-
practices-for-agile-development (accessed Jan. 28, 2023).

[36] M. G. Jaatun, “Architectural risk analysis in agile
development of cloud software,” in 2019 IEEE
International Conference on Cloud Computing
Technology and Science (CloudCom), Dec. 2019, pp.
295–300, doi: 10.1109/CloudCom.2019.00050.

[37] D. Raghuvanshi, “Introduction to Software Testing.,”
International Journal of Trend in Scientific Research and
Development (IJTSRD), vol. 4, no. 3, pp. 797–800, 2020.

[38] A. Anwar et al., “Measuring the cost of software
vulnerabilities,” ICST Transactions on Security and
Safety, vol. 7, no. 23, p. 164551, Jun. 2020, doi:
10.4108/eai.13-7-2018.164551.

[39] R. Alkhadra, J. Abuzaid, M. AlShammari, and N.
Mohammad, “Solar Winds Hack: In-Depth Analysis and
Countermeasures,” in 2021 12th International Conference
on Computing Communication and Networking
Technologies (ICCCNT), Jul. 2021, pp. 1–7, doi:
10.1109/ICCCNT51525.2021.9579611.

[40] L. Sterle and S. Bhunia, “On solarwinds orion platform
security breach,” in 2021 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications,
Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/IOP/SCI), Oct. 2021,
pp. 636–641, doi: 10.1109/SWC50871.2021.00094.

[41] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M.
Mazurek, “Hackers vs. testers: A comparison of software
vulnerability discovery processes,” in 2018 IEEE
Symposium on Security and Privacy (SP), May 2018, pp.
374–391, doi: 10.1109/SP.2018.00003.

[42] M. Tuape and Y. Ayalew, “Factors affecting development
process in small software companies,” in 2019
IEEE/ACM Symposium on Software Engineering in

Wisdom Umeugo, International Journal of Advanced Research in Computer Science, 14 (1), Jan-Feb 2023,5-12

© 2023-2025, IJARCS All Rights Reserved 11

Africa (SEiA), May 2019, pp. 16–23, doi:
10.1109/SEiA.2019.00011.

[43] OECD, “SME Performance - OECD.”
https://www.oecd.org/cfe/smes/smeperformance.htm
(accessed Mar. 01, 2022).

[44] F. Alghamdi, “Motivational company’s characteristics to
secure software,” in 2020 3rd International Conference on
Computer Applications & Information Security (ICCAIS),
Mar. 2020, pp. 1–5, doi:
10.1109/ICCAIS48893.2020.9096815.

[45] D. Geer, “Are companies actually using secure
development life cycles?,” Computer, vol. 43, no. 6, pp.
12–16, Jun. 2010, doi: 10.1109/MC.2010.159.

[46] T. D. Oyetoyan, D. S. Cruzes, and M. G. Jaatun, “An
Empirical Study on the Relationship between Software
Security Skills, Usage and Training Needs in Agile
Settings,” in 2016 11th International Conference on
Availability, Reliability and Security (ARES), Aug. 2016,
pp. 548–555, doi: 10.1109/ARES.2016.103.

[47] I. A. Tøndel, D. S. Cruzes, M. G. Jaatun, and G. Sindre,
“Influencing the security prioritisation of an agile
software development project,” Computers & Security,
vol. 118, p. 102744, Jul. 2022, doi:
10.1016/j.cose.2022.102744.

[48] A. Tosun, A. Bener, and B. Turhan, “Implementation of a
software quality improvement project in an SME: A
before and after comparison,” in 2009 35th Euromicro
Conference on Software Engineering and Advanced
Applications, Aug. 2009, pp. 203–209, doi:
10.1109/SEAA.2009.52.

[49] Z. A. Maher, A. Shah, S. Chandio, H. M. Mohadis, and N.
H. B. A. Rahim, “Challenges and limitations in secure
software development adoption - A qualitative analysis in
Malaysian software industry prospect,” IJST, vol. 13, no.
26, pp. 2601–2608, Jul. 2020, doi:
10.17485/IJST/v13i26.848.

[50] H. Assal and S. Chiasson, “Motivations and amotivations
for software security.,” SOUPS Workshop on Security
Information Workers (WSIW). USENIX Association, p.
1, 2018.

[51] M. Choras et al., “Measuring and Improving Agile
Processes in a Small-Size Software Development
Company,” IEEE Access, vol. 8, pp. 78452–78466, 2020,
doi: 10.1109/ACCESS.2020.2990117.

[52] C. M. M. Bezerra, S. C. B. Sampaio, and M. L. M.
Marinho, “Secure agile software development: policies
and practices for agile teams,” in Quality of information
and communications technology: 13th international
conference, QUATIC 2020, faro, portugal, september 9–
11, 2020, proceedings, vol. 1266, M. Shepperd, F. Brito e
Abreu, A. Rodrigues da Silva, and R. Pérez-Castillo, Eds.
Cham: Springer International Publishing, 2020, pp. 343–
357.

[53] F. Moyón, D. Méndez, K. Beckers, and S. Klepper, “How
to Integrate Security Compliance Requirements with
Agile Software Engineering at Scale?,” in Product-
Focused Software Process Improvement: 21st
International Conference, PROFES 2020, Turin, Italy,
November 25–27, 2020, Proceedings, vol. 12562, M.
Morisio, M. Torchiano, and A. Jedlitschka, Eds. Cham:
Springer International Publishing, 2020, pp. 69–87.

[54] D. Ionita, C. van der Velden, H.-J. K. Ikkink, E. Neven,
M. Daneva, and M. Kuipers, “Towards Risk-Driven
Security Requirements Management in Agile Software
Development,” in Information systems engineering in
responsible information systems: caise forum 2019, rome,
italy, june 3–7, 2019, proceedings, vol. 350, C. Cappiello
and M. Ruiz, Eds. Cham: Springer International
Publishing, 2019, pp. 133–144.

[55] M. Deschene, “Embracing security in all phases of the
software development life cycle: A Delphi study,”
Undergraduate thesis, 2016.

[56] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C.
Mayhorn, and T. Zimmermann, “Quantifying developers’
adoption of security tools,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2015, New York, New York,
USA, Aug. 2015, pp. 260–271, doi:
10.1145/2786805.2786816.

Wisdom Umeugo, International Journal of Advanced Research in Computer Science, 14 (1), Jan-Feb 2023,5-12

© 2023-2025, IJARCS All Rights Reserved 12

FIGURES

Figure 1 The secure software development lifecycle

	I. Introduction
	II. secure software
	A. Secure Software Principles
	B. Characteristics of Secure Software

	III. Requirements for developing secure software
	A. Proper Management Structure
	B. Knowledgeable staff
	C. Security policies
	D. Secure Software Frameworks and Maturity Models
	E. Software security tools

	IV. Secure software development lifecycle
	A. Planning Phase
	B. Requirements definition phase
	C. Architecture and design phase
	D. Development Phase
	E. Testing phase
	F. Operations and Maintenance phase

	V. Secure Software Frameworks
	A. Comprehensive Lightweight Application Security Process (CLASP)
	B. Security Assurance Maturity Model (SAMM)
	C. Building Security in Maturity Model (BSIMM)
	D. Microsoft Security Development Lifecycle
	E. Microsoft Security Development Lifecycle Agile

	VI. The Costs of Fixing Software Security Incidents
	VII. SSDLC adoption Challenges in SMEs
	1) Security is still viewed as an addon: The traditional view of security as a secondary feature and addon prevents adequate security from being built into software during development [5], [13].
	2) Complexity and cost: SSDLC is complex and costly to implement and practice leading to management overhead and lack of management support [14], [44], [45].
	3) Widespread adoption of the agile model: The agile model focuses on quickly developing usable software, making the incorporation of security practices in all stages of the agile SDLC challenging [46], [47].
	4) Reliance on developers for security: Software SMEs rely more heavily on developers than processes [48]. Security in the SDLC is thus being left to developers, who usually do not have the security expertise to adequately manage and implement secure ...
	5) Lack of Developer acceptance of secure software practices: Developers may not be motivated to accept the SSDLC. According to Assal and Chiasson [50], amotivation reasons cited by developers included a perceived lack of security competence due to a ...
	6) Complexity of existing SSDLC frameworks: Most software security guidelines and secure software frameworks are more suited to software development in large enterprises than for SMEs [44], [46].
	7) SDLC methodology Constraints: The SDLC methodology practiced presents constraints to implementing the SSDLC. As mentioned earlier, agile development is now widespread in the software industry for building various types and scales of software [12],...
	8) Poor software security awareness and education: Lack of software security awareness and education hinders SME SSDLC adoption [55]. Poor security awareness also impacts developers’ acceptance of security practices. Witschey et al. [56] showed that d...
	9) Lack of security policies and strong security culture: Similar to the adoption of security practices, security policies, and strong security culture are important requirements for successful software security practices adoption.

	VIII. Conclusion
	IX. References
	FIgures

