
VOLUME 13 SPECIAL ISSUE 1, JUNE 2022 

International Journal of Advanced Research in Computer Science 

CASE STUDY 

Available Online at www.ijarcs.info 

International Conference On 

Multi-Disciplinary Application & Research Technologies (Icmart-2022) 

Date: 27-28 May 2022 

Organized by Department, Computer Science & Engineering, 

Geetanjali Institute of Technical Studies, Udaipur (Rajasthan) India 

© 2020-2022, IJARCS All Rights Reserved      10 

ISSN No. 0976-5697 

A CONTRASTIVE ANALYSIS OF SORTING ALGORITHMS IN DIFFERENT 

LOAD SCENARIOS 

 Dr. Mayank Patel Sheetal Sharma* 

 Associate Professor, dept. of CSE UG Scholar, dept. of CSE 

 Geetanjali Institute of Technical Studies Geetanjali Institute of Technical Studies 

 Udaipur, India Udaipur, India 

 mayank.patel@gits.ac.in sharmasheetal01761@gmail.com 

Nitesh Kumawat 

UG Scholar, dept. of CSE 

Geetanjali Institute of Technical Studies 

Udaipur, India 

niteshkumawat0015@gmail.com 

Abstract: Sorting algorithms are the very important data structure operation. As we have millions or trillions of data stored in our memories, it is 

very difficult of us to find a specific required data. To sort data is to arrange them in ascending or descending order so as the searching, locating 

or arranging of data becomes easy. Every sorting has some advantages and some disadvantages, like wise each sorting algorithm takes different 

time to sort the data. In this research paper we compared various sorting algorithm in respect to their execution time. The efficiency of every 

algorithm varies with the number of input and we have compared the efficiency of algorithm so that we can could which algorithm is best to use 

based on the load. The sorting algorithms are evaluated in JAVA. 

 

Keywords: Bubble; Heap; Insertion; Merge; Selection; Sorting Algorithm Evaluation 

 

1. Introduction 

 

Sorting is an important aspect of data structures and algorithms, 

they exist in a variety of forms but the well-known among 

them are of 5 major types which are being focused in this 

paper. It is important to investigate the behaviour of these 

algorithms on different number of inputs as they work 

differently depending on number of inputs supplied [1]. This 

comparative study will advance the level of under sting on 

these algorithms. The constraint we focus here is the number 

and variety of input supplied to the different sorting algorithms. 

 

2. Different Types of Sorting Algorithm 

 

Different types of sorting are viz selection sort, Insertion sort, 

Bubble Sort, Merge Sort and heap sort along with their 

complexities are briefly described below. 

2.1 Selection Sort 

Selection sort is an in-place comparison-based algorithm in 

which the list is divided into two parts, the sorted part at the 

left end and the unsorted part at the right end [2]. Initially, the 

sorted part is empty and the unsorted part is the entire list. The 

smallest element is selected from the unsorted array and 

swapped with the leftmost element, and that element becomes a 

part of the sorted array. This process continues moving 

unsorted array boundary by one element to the right. This 

algorithm is not suitable for large data sets as its average and 

worst-case complexities are of Ο (n2), where n is the number 

of items. 

2.2 Insertion Sort 

This is an in-place comparison-based sorting algorithm. Here, a 

sub-list is maintained which is always sorted [3]. For example, 

the lower part of an array is maintained to be sorted. An 

element which is to be 'inserted in this sorted sub-list, has to 

find its appropriate place and then it has to be inserted there. 

Hence the name, insertion sort. 

The array is searched sequentially and unsorted items are 

moved and inserted into the sorted sub-list (in the same array). 

This algorithm is not suitable for large data sets as its average 

and worst-case complexity are of Ο (n2), where n is the 

number of items. 

2.3 Bubble Sort 

Bubble sort is a simple sorting algorithm. This sorting 

algorithm is comparison-based algorithm in which each pair of 

adjacent elements is compared and the elements are swapped if 

they are not in order [4]. This algorithm is not suitable for large 

data sets as its average and worst-case complexity are of Ο (n2) 

where n is the number of items. 

2.4 Merge Sort 

Merge sort is a sorting technique based on divide and conquer 

technique [5]. With worst-case time complexity being Ο (n log 

n), it is one of the most respected algorithms. Merge sort first 

divides the array into equal halves and then combines them in a 

sorted manner. 



Sheetal Sharma et al, International Journal of Advanced Research in Computer Science, 13, Special Issue 1, June 2022,10-13 

International Conference On 

Multi-Disciplinary Application & Research Technologies (Icmart-2022) 

Date: 27-28 May 2022 

Organized by Department, Computer Science & Engineering, 

Geetanjali Institute of Technical Studies, Udaipur (Rajasthan) India 

© 2020-2022, IJARCS All Rights Reserved      11 

2.5 Heap Sort 

In computer science, heap sort is a comparison-based sorting 

algorithm. Heap sort can be thought of as an improved 

selection sort: like that algorithm, it divides its input into a 

sorted and an unsorted region, and it iteratively shrinks the 

unsorted region by extracting the largest element and moving 

that to the sorted region [6]. The improvement consists of the 

use of a heap data structure rather than a linear-time search to 

find the maximum. 

Although somewhat slower in practice on most machines than 

a well-implemented quicksort, it has the advantage of a more 

favourable worst-case O (n log n) runtime. Heap sort is an in-

place algorithm, but it is not a stable sort. 

 

3. Experimental Setup 

 

For evaluating the sorting algorithm, we opted java 

programming language. Since java is a platform independent 

language it is most widely used nowadays, therefore we may 

have tons of data stored for storing and displaying in sorted 

form in java platforms. 

 

We performed our analysis on five sorting algorithms that are 

Selection, Insertion, Bubble, Merge and Heap. The code of 

these algorithms is written in java and written to optimize the 

sorting of elements [7]. We experimented with different 

amount of data and observed the efficiency of the algorithms in 

different cases. Initially we started with applying with limited 

load to be sorted that is with 10, 50,100 elements. We observed 

that the algorithm in limited load or limited number of 

elements worked fine and the observed result was recorded for 

every algorithm. moving forward to to check the better 

efficiency the load of elements that is the number of elements 

were increased, now the algorithm was tested for moderate 

load that is 500,1000 elements. Like before the behavior of 

algorithms for different elements were different. The change in 

the results were observed and recorded. Likewise, we then 

observed the behavior and efficiency if the algorithm for high 

load of elements that is now the algorithm were tested for 

5000, 10000 elements. Therefore, we calculated the time for 

sorting in different algorithm in Nano seconds. All of the 

above-mentioned sorting was performed in java language. 

 

4. Result 

 

We performed the sorting on five algorithms. Behaviour of 

algorithms are recorded in tables. The table shows the time 

taken by each algorithm for sorting. The time is recorded in 

Nano seconds. The observed and recorded result of the sorting 

algorithms in different types of input are: 

4.1 Limited Load 

The limited load indicates the number of input elements. For 

this case we take 10, 50,100 elements for sorting. Table 1  

shows the time in nano seconds for limited load for different 

sorting algorithms. The fig. 1 shows the graphical analysis of 

different sorting in limited load. 

 

 

Table 1: Sorting algorithm’s execution time for limited load. 

 

Sorting 

Algorithms 

Number of Elements AVG 

(nSec) 10 50 100 

Selection 0.49688 4.1402 8.436178 4.357753 

Insertion 0.55034 4.170745 9.840375 4.85382 

Bubble 0.30503 4.02536 7.69706 4.00915 

Merge 1.211539 4.57714 6.401544 4.063408 

Heap 1.241475 4.168791 7.050591 4.153619 

 

 
Fig 1: Graphical analysis of different sorting algorithm in 

limited load. 

4.2 Moderate Load 

Now for further analysis, we increase the load of the input. We 

compared the algorithm for 100, 500, 1000 elements. The table 

2 shows the time in nano seconds for limited load for different 

algorithm. The fig 2 shows the graphical analysis of different 

sorting in moderate load. 

 
Fig 2: Graphical analysis of different sorting algorithm in 

moderate load. 

 



Sheetal Sharma et al, International Journal of Advanced Research in Computer Science, 13, Special Issue 1, June 2022,10-13 

International Conference On 

Multi-Disciplinary Application & Research Technologies (Icmart-2022) 

Date: 27-28 May 2022 

Organized by Department, Computer Science & Engineering, 

Geetanjali Institute of Technical Studies, Udaipur (Rajasthan) India 

© 2020-2022, IJARCS All Rights Reserved      12 

Table 2: Sorting algorithm’s execution time for moderate load 

 

Sorting 

Algorithm 

Number of Elements AVG 

(nSec) 100 500 1000 

Selection 8.436178 25.89322 45.23901 26.5228 

Insertion 9.840375 45.63206 80.12113 45.19786 

Bubble 7.69706 31.5683 47.70247 28.98928 

Merge 6.401544 37.60888 96.48499 46.8318 

Heap 7.050591 27.26145 47.02505 27.11236 

 

4.3 High Load 

For final analysis we increased the number of input and sorted 

for 1000,5000,10000 elements. The table (table no.3) shows 

the time in Nano seconds for limited load for different 

algorithm. The fig 3shows the graphical analysis of different 

sorting in high load 

 

Table 3: Sorting algorithm’s execution time for High load. 

Sorting 

Algorithms 

Selection 

Number of Elements AVG 

(nSec) 

155.7115 
1000 5000 10000 

45.23901 152.8092 269.0864 

Insertion 80.12113 97.88319 244.5345 140.8463 

Bubble 47.70247 195.9405 542.1678 261.9369 

Merge 96.48499 90.68691 273.445 153.539 

Heap 47.02505 107.8644 391.1215 182.0036 

 

 
Fig 3: Graphical analysis of different sorting algorithm in high 

load. 

4.4 Average Case 

For the better understanding of these algorithm, we take the 

average case of all limited load, moderate load and high 

load.by these average case study we can conclude that which 

algorithm is better and can be choose over the other. The 

average case shows average of all the types of input and we can 

finally conclude the aim of this paper by that case. The table 4 

shows the time in nano seconds for limited load for different 

algorithm. The fig 4 shows the graphical analysis of different 

sorting in average case. 

 

Table 4: Sorting algorithm’s execution time for all type of 

loads. 

 

Sorting 

Algorithm 

Limited Load Moderate 

Load 

High 

Load 

Selection 4.357752667 26.5228 155.7115 

Insertion 4.853819867 45.19786 140.8683 

Bubble 4.00915 28.98928 261.9369 

Merge 4.063407733 46.8318 153.539 

‘Heap 4.153619233 27.11236 182.0036 

 

 
Fig 4: Graphical analysis of different sorting algorithm in all 

types of loads. 

 

5. Conclusion 

 

In this research paper we compared various sorting algorithm 

in respect to their execution time. The efficiency of every 

algorithm varies with the number of input and we have 

compared the execution of algorithm so that we can could 

which algorithm is best to use. The sorting algorithms are 

evaluated in JAVA. From our experimental results we 

identified that in limited amount of load the bubble sort 

behaves optimal. But as the load increases to moderate load 

selection sort behaves better than others. In high load elements 

insertion sort performs satisfactorily. Practically we also 

identified that recursive method to sort algorithm takes more 

time for execution. 

 



Sheetal Sharma et al, International Journal of Advanced Research in Computer Science, 13, Special Issue 1, June 2022,10-13 

International Conference On 

Multi-Disciplinary Application & Research Technologies (Icmart-2022) 

Date: 27-28 May 2022 

Organized by Department, Computer Science & Engineering, 

Geetanjali Institute of Technical Studies, Udaipur (Rajasthan) India 

© 2020-2022, IJARCS All Rights Reserved      13 

6. References 

 

[1] Yan Weimin, Wu Weimin, "Data Structures" in, 

Beijing: Tsinghua University Press., pp. 263-278, 

2000. 

[2] Zhang Yiwen, Tan Ji, "Analysis and improvement on 

simple selection sort algorithm", Silicon Valle, no. 18, 

pp. 77-94, 2009. 

[3] Weik M.H. (2000) merge sort. In: Computer Science 

andCommunications Dictionary. Springer, Boston, 

MA 
[4] Kalicharan N. (2014) Advanced Sorting. In: 

Advanced Topics in Java. Apress, Berkeley, CA 

[5] Min Wang and Yunfei Li, “Designing on a Special 

Algorithm of Triple Tree Based on the Analysis of 

Data Structure”. 

[6] International Conference on Computer Education, 

Simulation and Modeling (CESM 2011), Proceedings, 

Part (Communications in Computer and Information 

Science),423-427.  

[7] Geng Guohua, Data Structure—C Language 

Description, Xi'an: Xi'an Electronic Science and 
Technology University Press, China, (2006), 228-241.  

[8] Xu Xiaokai. Simple Data Structure Tutorial. Tsinghua 

University Press, Beijing, (1995), 193–196. 

[9] Menaria, H.K., Nagar, P., Patel, M. (2020). Tweet 

Sentiment Classification by Semantic and Frequency 

Base Features Using Hybrid Classifier. In: Luhach, 

A., Kosa, J., Poonia, R., Gao, XZ., Singh, D. (eds) 

First International Conference on Sustainable 

Technologies for Computational Intelligence. 

Advances in Intelligent Systems and Computing, vol 

1045. Springer, Singapore. 

https://doi.org/10.1007/978-981-15-0029-9_9 
[10] K. C. Giri, M. Patel, A. Sinhal and D. Gautam, "A 

Novel Paradigm of Melanoma Diagnosis Using 

Machine Learning and Information Theory," 2019 

International Conference on Advances in Computing 

and Communication Engineering (ICACCE), 2019, 

pp. 1-7, doi: 10.1109/ICACCE46606.2019.9079975. 

[11] Patel, M., Badi, N., & Sinhal, A. (2019). The role of 

fuzzy logic in improving accuracy of phishing 

detection system. International Journal of Innovative 

Technology and Exploring Engineering, 8(8), 3162-

3164. 
[12] Patel, M., & Sheikh, R. (2019). Handwritten digit 

recognition using different dimensionality reduction 

techniques. International Journal of Recent 

Technology and Engineering, 8(2), 999-1002. 

[13] H. Gupta and M. Patel, "Study of Extractive Text 

Summarizer Using The Elmo Embedding," 2020 

Fourth International Conference on I-SMAC (IoT in 

Social, Mobile, Analytics and Cloud) (I-SMAC), 

2020, pp. 829-834, doi: 10.1109/I-

SMAC49090.2020.9243610. 

[14] H. Gupta and M. Patel, "Method Of Text 

Summarization Using Lsa And Sentence Based Topic 
Modelling With Bert," 2021 International Conference 

on Artificial Intelligence and Smart Systems (ICAIS), 

2021, pp. 511-517, doi: 

10.1109/ICAIS50930.2021.9395976. 

[15] Sen, S., Patel, M., Sharma, A.K. (2021). Software 

Development Life Cycle Performance Analysis. In: 

Mathur, R., Gupta, C.P., Katewa, V., Jat, D.S., Yadav, 

N. (eds) Emerging Trends in Data Driven Computing 

and Communications. Studies in Autonomic, Data-

driven and Industrial Computing. Springer, Singapore. 

https://doi.org/10.1007/978-981-16-3915-9_27 

[16] Ameta, U., Patel, M., Sharma, A.K. (2021). Scrum 
Framework Based on Agile Methodology in Software 

Development and Management. In: Mathur, R., 

Gupta, C.P., Katewa, V., Jat, D.S., Yadav, N. (eds) 

Emerging Trends in Data Driven Computing and 

Communications. Studies in Autonomic, Data-driven 

and Industrial Computing. Springer, Singapore. 

https://doi.org/10.1007/978-981-16-3915-9_28 

[17] Bissa, A., Patel, M. (2021). An Adjustment to the 

Composition of the Techniques for Clustering and 

Classification to Boost Crop Classification. In: Singh 

Pundir, A.K., Yadav, A., Das, S. (eds) Recent Trends 
in Communication and Intelligent Systems. 

Algorithms for Intelligent Systems. Springer, 

Singapore. https://doi.org/10.1007/978-981-16-0167-

5_13 

[18] Taunk, Dhruvika and Patel, Mayank, Feature 

Extraction for an Audio Discrimination between 

Speech and Music for Better Human and Computer 

Interaction (January 20, 2021). ICICNIS 2020, 

Available at 

SSRN: https://ssrn.com/abstract=3769769 or http://dx.

doi.org/10.2139/ssrn.3769769 

[19] Taunk, D., Patel, M. (2021). Hybrid Restricted 
Boltzmann Algorithm for Audio Genre Classification. 

In: Sheth, A., Sinhal, A., Shrivastava, A., Pandey, 

A.K. (eds) Intelligent Systems. Algorithms for 

Intelligent Systems. Springer, Singapore. 

https://doi.org/10.1007/978-981-16-2248-9_11 

[20] Min Wang, "Analysis on bubble sort algorithm 

optimization", 2010 International Forum on 

Information Technology and Applications, July 2010. 

[21] Kowalk W.P. (2011) Insertion Sort. In: Vöcking B. et 

al. (eds) Algorithms Unplugged. Springer, Berlin, 

Heidelberg 

 

 

 

https://doi.org/10.1007/978-981-16-3915-9_27
https://doi.org/10.1007/978-981-16-3915-9_28
https://doi.org/10.1007/978-981-16-0167-5_13
https://doi.org/10.1007/978-981-16-0167-5_13
https://ssrn.com/abstract=3769769
https://dx.doi.org/10.2139/ssrn.3769769
https://dx.doi.org/10.2139/ssrn.3769769

	1. Introduction
	2. Different Types of Sorting Algorithm
	2.1 Selection Sort
	2.2 Insertion Sort
	2.3 Bubble Sort
	2.4 Merge Sort
	2.5 Heap Sort

	3. Experimental Setup
	4. Result
	4.1 Limited Load
	4.2 Moderate Load
	4.3 High Load
	4.4 Average Case

	5. Conclusion
	6. References

