
DOI: http://dx.doi.org/10.26483/ijarcs.v11i5.6644

Volume 11, No. 5, September-October 2020

International Journal of Advanced Research in Computer Science

SURVEY REPORT

Available Online at www.ijarcs.info

© 2020-2022, IJARCS All Rights Reserved 1

ISSN No. 0976-5697

ECONOMIC IMPACT OF SOFTWARE PRODUCT LINE ENGINEERING
METHOD– A SURVEY

Adekola Olubukola Daniel
Computer Science Department

Babcock University, Ilisan Remo, Ogun State,
Nigeria

Omotosho Olawale J.
Computer Science Department

Babcock University, Ilisan Remo, Ogun State
Nigeria

Olaniyan Oluwabunmi Omobolanle

Computer Science Department
Redeemer University, Ede, Osun State

Nigeria

Abstract: Software Engineering has to do with the art of design, development and maintenance of software products that
adequately meet user’s need. The key market requirements this field tries to meet are basically time to deliver, product cost and
quality. With these goals in mind, software engineering researches had experienced rigorous changes in time and in space
especially in the area of “software re-use”. Software Product Line Engineering (SPLE) leverages on building reusable components
to achieve massive re-use. It is about designing systems for, and with reuse. In traditional software engineering, requirements and
software architectures are engineered based on individual product alone but a product line approach requires the software expert to
do same for a family of related products. Therefore, common assets are built for these related products while variable assets are
also discovered which will lead to production of each specific product. This process, as it were, does not come cheap at first.
There are surrounding economic, social and other consequences.
This work proposes to survey the economic impact of adopting software product line engineering methods in software production.
This will help software developers make sound business case as well as appropriate judgments in terms of decision making.

Keywords: Common assets, Market requirement, Software Engineering, Software Product Line Engineering, variable assets

I. INTRODUCTION

Product Line Engineering (PLE) was born to increase
economy of scale. Originally, this concept used to be a
dependable instrument to the manufacturing and engineering
industries such as automobiles. But today, it has also become
a virile tool for researchers and industrialists to work hand in
hand in order to increase software quality (as regards time to
deliver and product itself and to reduce software
development costs. Hence, as this concept burrows into the
software industries we are ushered into what is described as
Software Product Line Engineering (SPLE).

Traditional software engineering is geared towards
building an individual product alone while Systems and
software product line engineering is the engineering of a
portfolio of related products using a shared set of
engineering assets and an efficient means of production. The
implication here is that assets are engineered to be shared
across your product line. It is a move away from traditional
product-centric development patterns.

Two important aspects in product line include
identifying product commonality and deriving product
variability. That is, Systems are described by features they
have in common (commonality or the core assets) and those
that separate them (variable assets or variability).

In simple language, designers employing this technique
have reuse as first thing in mind [1]. Product line proactively

combines development for re-use and development with re-
use. Therefore, a software product line model describes a set
of products in the same domain (family of products) instead
of a single software system.

In traditional software engineering, software architecture
is evaluated with respect to the requirements of the
individual product alone. Whereas a product line approach
requires the software expert to consider requirements for a
family of related / similar systems and the relationship
between those requirements [2].

With the conventional software engineering approaches,
there are definitely some measures of reuse among the
products but it’s usually not systematic. Going along with
the usual programming methods that leverage on reuse of
subroutines, modules, objects and component based systems
where these artifacts are copied from one another for reuse,
things do not still scale very well. Software product line
dwells primarily on planned reuse. This is familiarly called
opportunistic reusability during software development. It
seems to become a novel pace ahead in the field of
components reusability. Software product lines characterize
an original and emergent concept in software engineering.
This approach is based on a development process including
both developments for reuse and with reuse [3]. Indeed, a
new product is not actually executed but more integrated in
a Product Line PL, adding new necessary components,

Adekola Olubukola Daniel et al, International Journal of Advanced Research in Computer Science, 11 (5), September-October 2020,1-5

© 2020-2022, IJARCS All Rights Reserved 2

reusing common assets, and using preplanned variation
mechanisms as inheritance.
On the economic impact of SPLE, commonly, large and
stabilized companies are the ones that opt for SPLE methods
because of the expenses involved. This is because they are
the ones who can easily support important initial investment
and wait for a long term return on investment. Whereas,
small firms are not usually enduring or patient enough to go
the miles required and pay the initial dues.

When a company develops multiple products in the same

domain, it benefits from organizing its software
development activity as a product line. A product-line
provides a platform (also known as a core asset base) shared
by a set of related products that are developed by an
organization. The shared platform identifies points of
commonality and variation. Products are created on top of
the platform by reusing its core assets, while reducing the
effort that goes towards developing assets that are unique to
the product. The motivation for a product line is reducing
the cost of developing new products while increasing their
quality and reducing the time to market. Product line
approach helps to manage product diversity and reuse more
systematically. In other words, products built using a
product line approach will share a common base, which
allows a company to manage customer-specific variations
more systematically.

It is often observed that somewhere between 50% and

90% of development effort is spent on creating software that
does not differentiate a company from its competitors. Only
the remainder differentiates a company from its competitors
[4]. The three major variables used to model the economics
of product lines are distinctly time (taken to develop a
product or a system), quality (of the system), and cost (of
production and product).

II. HIGHLIGHT OF MAJOR SOFTWARE PRODUCT

LINES DEVELOPMENT PROCESSES

The general process of product lines majorly hinges on
reusability of requirements, architecture and components.
The development processes is subdivided into two main
phases - Domain Engineering and Application Engineering.

Domain Engineering: The primary target is
identification and determination of the common features and
the variability of a product line, the derivation of reference
architecture and the realization of generic components and
the associating quality assurance. Core assets are engineered
through domain analysis, domain design and domain
implementation processes.

Application Engineering: Focus on realization of the
customized products, using the core assets and the specific
variabilities peculiar to individual systems. A differentiation
of product is established by systematic binding of variation
points with the predefined variants. This phase is composed
of three processes; application requirements, application
design and application coding.

Figure.1: Software product lines process [5]

Domain analysis produces a set of reference
requirements reusable in defining an application
requirements and integrating new requirements. The domain
design defines a reference architecture used to develop
applications. And the domain implementation generates
reusable components used in optimizing applications coding
time. A back and forth traceability is established between the
reference requirements, the reference architecture and the
reusable components to promote product line changes and
updates management. A feedback /adaptation process is used
at the application engineering level to revise the domain
design and the domain implementation [3].

III. MOTIVATIONS FOR PRODUCT LINE ENGINEERING

The following depicts the key motivations for developing
software through the application of product line engineering
approach.
1. Reduction in Development Costs: Embarking on all-

inclusive engineering practices as product line must
have an underlying viable economic justification.
Reduction of development cost is a vital motive for
bringing in product line engineering. Artifacts derived
as core assets are massively are reused in several
different kinds of systems which dramatically mean
substantial reduction in cost of producing many
individual systems.

2. Products Quality Improvement: As core assets are
built from consideration of requirements from related
products, they become standardized artifacts which are
eventually used in the production of many products.
Since it is not a matter of an individual system
development, the artifacts are subjected to extensive
quality assurance which necessitate a significantly
higher chance of detecting faults and correcting them
and consequently increasing the quality of all products.

3. Boost in Time to Market/Deliver: Time to market for
traditional approach of single-product development is
assumed to be roughly constant - which is basically the
time to develop the product in question. Employing
product line engineering initially has a longer time to
market because multiple related products are put on the
line while common artifacts are built. After this while,
the time to market is considerably and drastically

Adekola Olubukola Daniel et al, International Journal of Advanced Research in Computer Science, 11 (5), September-October 2020,1-5

© 2020-2022, IJARCS All Rights Reserved 3

reduced as many engineered or manufactured artifacts
are now readily reusable for each new product.

4. Reduction in Maintenance Effort: This is
synonymous to what is obtainable in object-orientation
methodology where features like inheritance ease code
modification and extensibility such that a change or
correction made at super class level naturally flows
down to the sub classes. Whenever an artifact is
modified for the purpose of error correction or quality
improvement, the changes can be propagated to all
products in which the artifact is used. This, of course,
goes a long way in reducing maintenance effort. Hence,
the same techniques that lead to massive reuse also lead
to extensibility and maintainability.

5. Improvement in Cost Estimation: A software house
can focus its marketing efforts on those products it
could easily roll out within the product line. More so,
estimating costs for products realized within the product
line is relatively straightforward and does not include
much challenge. Over and above, the SPLE approach
provides a lofty basis for cost estimation.

Figure 2: Sketch showing the competitive advantage of SPLE- starting off
tends to be demanding and costly at the initial stage but on the long run
there is a discontinuous jump as shown in the graph.

IV. CLASSIFICATION OF SOFTWARE PRODUCT LINE

BENEFITS

Software product line paradigm comes with a variety of
benefits classified into three reasonable types:
Organizational benefits, software engineering benefits and
business benefits.
1. Organizational benefits: benefits like a better
domain’s comprehension, facility to train people, high
quality product and customer’s trust.
2. Software engineering benefits: advantages such
as all-round reusability counting from requirements and
their components, better analysis of requirements, control of
software quality, standardized coding and design patterns,
removal of redundant implementations and complete
reusable documentations.
3. Business benefits: a huge save in production,
maintenance and test costs. Also, budget and time planning
improvements are quite promising.

V. REVIEW OF SOME RELATED WORKS

Economics of Software Product Development Collectives
[6]
This work retraced the evolution of software product
development, how it is organized and then proposed
imminent into the economic drive for combined or
communal work between the developers, which involves
relevant companies joining a software product development
group. He identified three factors affecting the economics
of collectives (level of contribution, number of members,
and diversity of use), and then built up a model that links
those factors to three economic outcomes (time, quality, and
cost). The problem identified here is that this work did not
consider the costs it will take to make changes to the
organization for it to be more effective to create and sustain
a software product line.

REARM: A Reuse-Based Economic Model for Software
Reference Architectures [7]
REARM presented a practical economic model to perform
cost-benefit analysis on the adoption of software reference
architectures as a key asset for optimizing architectural
decision-making.
This is also considered an economic model to translate
expected data (i.e., metrics) into monetary terms which is
used as a basis for analyzing the economic value of a
reference architecture of which any organization that
practices this will recognize a return on their investment
within few years. The gap here is that the work did not
address the effects of maintenance and evolution over time.

New Methods in Software Product Line practice:
Examining the benefits of next-generation SPL Methods
[5].
This research work had its major objective rested on varying
tools and techniques for software development from
focusing on developing individual products but rather a
product family. The methodology adopted entails software
mass customization (to eliminate labor-intensive application
engineering), minimally invasive transitions (to eliminate
the adoption barrier) and bounded combinatorics (to extends
the scalability of product line portfolios. The sole benefit of
the work so far include improvement in software re-use,
increased time to market and above all standardized quality.

Incremental Return on Incremental Investment:
Engenio’s Transition to Software Product Line Practice
[8]
This research work dwelt on making transition to software
product line practice in order to keep pace with growing
business demand for its products. Methodology employed
include staging an incremental transition, then reinvesting the
returns partially or fully to fuel the next incremental steps in
the transition. The relevance of this is to avoid the typical
upfront adoption barrier.

VI. COST FUNCTIONS ON SOFTWARE

PRODUCT LINE ENGINEERING

Adekola Olubukola Daniel et al, International Journal of Advanced Research in Computer Science, 11 (5), September-October 2020,1-5

© 2020-2022, IJARCS All Rights Reserved 4

In the past work done by Clements, P., et al (2005), cost and
benefit functions were introduced to describe the constituent
aspects of the overall economic impacts. This is to relate
how much a particular software product line paradigm will
cost an organization and to showcase the relative what
benefits compared to building these products singly. The
four basic cost functions introduced to compute estimates
for economic effects include:

1. Cost Of Organization, Corg(): function that shows

how much it cost an organization to adopt the product
line approach for its products. This cost can include
reorganization, process improvement, training, and
other essential organizational repairs [9].

2. Cost Of Core Asset Base, Ccab(): function that shows
how much it costs to build up a core asset base
appropriate to satisfy a particular scope. The core asset
base also includes non-asset base such as plans,
schedules, budgets, the scope definition, and various
kinds of documentation. It will also consider the costs
of performing a commonality/variability analysis,
defining the product line’s scope, designing and then
evaluating generic software architecture; and
developing the software so designed [9].

3. Cost Of Unique Parts, Cunique(): function that
shows how much it costs to build up the unique parts of
both software and hardware of a product that are not
based on assets in the core asset base [9].

4. Cost Of Reusing Core Assets, Creuse(): function that
explains how much it costs to build a product reusing
core assets from a core asset base [10].

Cost of Building Products Using Product Line
The following equation represents the cost of building a
single product line containing n products.
Cost of building a product line = Corg() + Ccab() + Ʃ

(Cunique (product1) + Creuse (product1)) [9].

Cost of Building Products In A Stand-Alone (Cprod)
Cprod is the cost of building a product in a stand-alone
fashion. The cost of building n products independently
is show in the following equation:
Cost of building n products

= Cprod(producti) [9].

The economic benefits for building n products implementing
product line compared to building them independently could
be expressed as:

Cost of Building n Products in a Stand-alone – Cost of
building n product as a product line + Benefits achieved
from product line approach [9].

Some tangible set of benefit functions include Research and
Development investment, Productivity and quality, Long-
run Time to market gain, Employees career development
opportunities, etc.

VII. SUMMARY

Software product lines (SPL) methodology is a paradigm
shift from the traditional software engineering method of
producing software on the basis of a single product per time
to manufacturing of families of products. The underlying
motive is to achieve a better way of evolving software
products that could give an organization competitive edge in
the areas of meeting market requirements, time, cost and
quality. SPLE leverages of maximizing reusability by
building core assets as software artifacts which is the back-
bone of the so-called industrial / massive reuse. Various
products evolve by applying the variant components on the
core artifacts. Adoption of this methodology does not come
cheap at first. Issues like staff training and restructuring
might have to be dealt with rigorously as well. In fact,
employees who are rigid to change might be lost along the
line. In all, the comparative advantages of adopting this
approach are well-worth it on the overall. There tend to be a
discontinuous jump in the benefits offered when the overall
economic impact is evaluated. SPLE provision is far beyond
the common practices in traditional software engineering
where developers practice code reuse majorly by copying
functions, modules or taking reusability advantages in
Object-oriented design(implementation of inheritance,
polymorphism etc.). It is about of reuse of artifacts that were
generated purposely built for reusability as the original goal
of the SPLE paradigm.

VIII. CONCLUSION

In the technology driven world we now live, the size and
complexity of software systems together with critical time-
to-market needs demand new software engineering
approaches to software development. Notable among these
approaches is the use of Software Product Line Engineering
(SPLE) which is becoming widely studied and adopted in
research and practice. The motivations behind SPLE is to
systematically reuse knowledge and software elements when
developing concrete software for new systems and thereby
harvest potential savings through reduced cycle times, cost,
risk and increased quality to help with the evolution of a set
of systems and to achieve product standardization.
Although the adoption of an SPLE might have plenty of
benefits for an organization, it also implies several
challenges; among them is the need for an initial cost
investment. SPLE goes a long way in attempting to
eliminate copying of defects as the case is with the
traditional software engineering approach (most times when
a component is copied any existing defect is copied along).
Moreover, in the case of error correction, the
communication and coordination that has to occur for a
portfolio of n products is proportional to n raised to the
power of 2 (n2) in the traditional approach. Tracing to fix
errors become more problematic. Consequently, this implies
that delivering 5 products is like engineering 25 and so on.
But with SPLE, engineers work on assets shared by the
product family and things get done in good time achieving
standardized quality product and eventual cost gain in terms
of product development and product cost.

Adekola Olubukola Daniel et al, International Journal of Advanced Research in Computer Science, 11 (5), September-October 2020,1-5

© 2020-2022, IJARCS All Rights Reserved 5

IX. REFERENCES
[1] Pohl, Klaus, Böckle Günter, & Frank van der Linden. (2005).

Software Product Line Engineering – Foundations,
Principles, and Techniques. Springer, Berlin, Heidelberg,
New York

[2] Adekola O.D, & Awodele O. (2014), Enhancing Software
Development through Software Product Line: Developing
Product Family rather than Individual Products. International
Journal of Advanced Studies in Computer Science and
Engineering. IJASCSE, Vol. 3, No.1; ISSN : 2278 7917

[3] Patrick Heymans & Jean-Christophe Trigaux. (2003).
Software Product Lines:State of the art, FUNDP - Equipe
LIEL, Institut d’Informatique Rue Grandgagnage, 21 B -
5000 NAMUR (Belgique)

[4] Ali, M., Babar, M., Schmid, K. (2009). A comparative
survey of economic models for software product lines. In:
Software Engineering and Advanced Applications. pp. 275-
278.

[5] Charles W. K. (2006). New Methods in Software Product
Line practice. Examining the benefits of next-generation

SPL Methods. Association of Computing Machinery, vol. 49,
no. 12, 37 – 40

[6] Michael Weiss (2011), Economics of Software Product
Development Collectives. Technology Innovation
Management Review. October 2011: 13-18.

[7] Silverio M.F., Claudia A., Xavier F., Helena M.M., :
REARM: A Reuse-Based Economic Model for Software
Reference Architectures : GESSI Research Group,
Universitat Politècnica de Catalunya, Barcelona, Spain

[8] William A. H., Charles W. K., & Joseph G. M. (2006).
Incremental Return on Incremental Investment: Engenio’s
Transition to Software Product Line Practice. Association of
Computing Machinery, 2,13

[9] Clements, P., McGregor, J., Cohen, S. (2005). The structured
intuitive model for product line economics (SIMPLE). Tech.
rep., DTIC Document.

[10] Clements, P., and Northrop, L. (2003). A Framework for
Software Product Line Practice - Version 4.1 [online].
Carnegie Mellon, Software Engineering Institute URL:
http://www.sei.cmu.edu/plp/framework.html, Pittsburgh,
USA.

