
DOI: http://dx.doi.org/10.26483/ijarcs.v10i3.6408

Volume 10, No. 3, May-June 2019

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 54

ISSN No. 0976-5697

OVERVIEW OF TLS CERTIFICATE REVOCATION MECHANISMS

Jayanth Rajakumar
Student, Department of Electronics
and Communication Engineering

R.V. College of Engineering
Bangalore, Karnataka, India

Subrahmanya K.N.
Assistant Professor, Department of Electronics

and Communication Engineering
RV College of Engineering
Bangalore, Karnataka, India

Abstract: TLS Certificates are the backbone of the World Wide Web’s Public Key Infrastructure. In case of a compromise of private
cryptographic keys, it is vital to have the ability to revoke certificates before their validity period expires. This paper describes and contrasts the
two major mechanisms for certificate revocation – Certificate Revocation Lists (CRLs) and Online Certificate Status Protocol (OCSP). It is
found that modern web clients and browsers such as Google Chrome do not perform stringent checking of certificate revocation status, leaving
users open to attackers who use revoked certificates to spoof web sites and services. A browser extension is proposed and implemented for
Google Chrome that checks CRL and OCSP status and notifies the user. It can also automatically navigate away from the page if the certificate
is found to be revoked. The extension is created using JavaScript and uses a background process written in Python to handle the revocation
checking. It is found to be able to complete CRL and OCSP requests for common websites in under a second, and under 200 milliseconds for
locally cached responses.

Keywords: TLS, SSL, HTTPS, X.509, Digital Certificates, Certificate Revocation

I. INTRODUCTION

Transport Layer Security (TLS) and its predecessor Secure
Sockets Layer (SSL) secure a large proportion of the websites
we visit on the Internet. From looking up information to
conducting bank transactions, TLS ensures that users’ private
data is not intercepted by unauthorized parties. TLS relies on
the Public Key Infrastructure (PKI) defined by the X.509
standard in order to provide authentication and to facilitate
encryption. Web servers use X.509 certificates to prove their
identity to clients such as web browsers. Certificates are issued
to web domain owners by well-known authorities called
Certificate Authorities (CAs) and are typically valid for a
period of a few months to years. In order to maintain the
security of the PKI, it is necessary for the CAs to be able to
revoke the certificates before they expire.

The most common reason for this is when the private key

corresponding to the certificate gets stolen or compromised. In
such situations, the CA can be notified and requested to revoke
the certificate. Several mechanisms exist for the client to be
made aware that the server certificate has been revoked, the
most common ones being Certificate Revocation Lists (CRL)
and Online Certificate Status Protocol (OCSP). However, it is
seen that a large number of clients, including web browsers,
either do not respect the revocation status or do not check it in
the first place. The commonly stated reasons for this are the
high cost associated with checking the revocation status and the
fact that CAs are not diligent in updating revocations.
Unfortunately, this leaves users vulnerable to attackers who use
revoked certificates to spoof their identity and intercept users’
data.

This paper first discusses the working of digital certificates

and how they are used to prove the authenticity of web servers
on the internet. Next the two major methods of revocation –
OCSP and CRL are described in detail, and their pros and cons

are discussed. Finally, the paper proposes a web browser
extension which independently performs revocation checking
and notifies the user, optionally redirecting away from the
offending website if its certificate is found to be revoked.

II. DIGITAL CERTIFICATES

A digital certificate is a document used to prove ownership
of a public key. During the handshake phase of the TLS
protocol, the server sends its certificate to the client to
authenticate itself. The certificate also serves as a means of
sharing the public key and the algorithm to be used in order to
exchange the symmetric secret key for the application phase of
the TLS session.

On the Web, certificates are purchased by web server

owners from companies called Certificate Authorities (CAs),
which digitally sign the certificates that they issue. CAs possess
a self-signed certificate called root certificate that is implicitly
trusted by clients such as browsers and operating systems.
During a TLS handshake, the client must validate the incoming
server certificate against the list of Root CAs by verifying its
digital signature [1]. Next it uses the public key present on the
certificate to encrypt and send the symmetric key which is used
for the actual data transfer.

The de facto standard for digital certificates on the internet

is X.509, which is defined in RFC 5280 along with the web’s
PKI [2]. Some of the fields present in an X.509 certificate
include Serial Number, Subject, Issuer, Validity, Public Key
and Signature. In addition, there are optional fields called
extensions which provide optional information such as the
intended usage of the certificate, the domains where the
certificate can be used and where to obtain revocation
information. The subject includes the details of the domain
where the company is used, while the Issuer refers to the details
of the CA which issued the certificate. The issuer is also
responsible for appending the signature field, which is the hash

Jayanth Rajakumar et al, International Journal of Advanced Research in Computer Science, 10 (3), May-June 2019, 54-59

© 2015-19, IJARCS All Rights Reserved 55

of the certificate encrypted with the issuer’s private key. When
a client has to verify the certificate, it does so by decrypting the
signature using the issuer’s public key and comparing it with
the observed hash. Since only the issuer is assumed to be in
possession of the private key, matching hashes indicates that
the certificate’s contents are exactly as they were when the CA
issued them.

The X.509 standard allows for a chain of certificates where

the root certificate is signed by an CA intermediate certificate,
which in turn is signed by a CA’s root certificate. For security
reasons, only the intermediate keys are used in the day to day
operation of the CA to issue certificates, and the root
certificate’s private key is kept offline. In the event of a key
compromise, only the certificates issued by a particular
intermediate certificate will be affected.

When a CA issues a certificate for a website, it ensures that

the entity requesting the certificate actually controls the domain,
in a process called Domain Validation (DV). This is typically
done by having the claimed domain owners publish a random
string (nonce) on the domain address or publish a DNS TXT
record. For more stringent verification, Extended Validation
(EV) certificates are used. To obtain an EV certificate, a
domain owner must be able to prove their legal existence as a
company. An EV certificate cannot be applied to more than one
domain or subdomain. When a website is using an EV
certificate, the browser shows the issuer’s name prominently
next to the address bar, indicating that the website is to be
trusted.

III. CERTIFICATE REVOCATION

CAs allow for certificate owners to request the certificates
to be revoked before their validity has been expired. Reasons
for doing so can include – compromise of the private key,
closure of the company operating the website or errors in the
issued certificate. The CAs respond to the requests by marking
the certificate as revoked. This does not stop web servers from
continuing to use the revoked certificate. Y. Liu et al. [3] found
that 1% of the certificates surveyed were being advertised in
spite of being revoked. Clients must be made aware of the
revocation when validating the certificate during the TLS
handshake, and refuse the connection. There are two major
methods of conveying the revocation status from the certificate
authority to the clients – Certificate Revocation List (CRL) and
Online Certificate Revocation Protocol (OCSP).

A. CRL

A CRL is a file issued by a CA with a list of certificates
issued by them that have been revoked [2]. It specifies the
serial number of the revoked certificate, the reason for
revocation, and the time when the certificate was revoked (such
as key compromise, CA compromise or cessation of operation
of the subject). The time when the CRL was issued is indicated,
as well as the time of the next update. The file is signed using
the issuer’s private key, similar to the certificate itself.

In order to verify a certificate’s revocation status, a client

must download the CRL file of the CA from a URL specified
as an extension in the certificate. If the server certificate’s serial
number is present, then it is found to be revoked. Additionally,
the CRL’s signature may be verified to ensure that the list is
authentic.

Since CRLs are large and require the download of
information related to all the certificates issued by a CA, they
are very inefficient. To reduce the size of the data to be

downloaded, delta CRLs can be used [2]. Delta CRLs contain
only updates to previously distributed CRL information. This
reduces network load and processing times. The location of a
delta CRL is specified as an extension to the base CRL, called
Freshest CRL. The base CRL can be cached on the client
machine, and subsequently only the delta CRLs are
downloaded. However, delta CRLs are rarely used in practice.

CRLs introduce a dependency on the CA server and are

prone to being affected by its slowdowns and down times. But
since CRLs are typically valid for a period of a few weeks, they
may be cached by the client and used to verify different
certificates issued by the same domain.

B. OCSP

OCSP is a protocol for determining the status of a
certificate without requiring the use of CRLs [4]. Figure 1
shows the flow of the protocol. A client sends a HTTP request
to a dedicated OCSP responder maintained by the certificate
issuer. The domain name of the responder is obtained from an
extension in the server certificate. The response to the request
indicates if the certificate is good, revoked or has an unknown
status, and this can be used to make a decision on whether or
not the web domain is to be trusted. Responses are optionally
signed using the issuer’s private key, similar to certificates and
CRLs.

An OCSP request contains the serial number of the

certificate, the hash of the issuer’s domain name and the hash
of the issuer’s public key, in the specified ASN.1 format. The
encoded requests are converted to base-64 representation and
sent to the responder as part of a GET request. The response,
when decoded, gives the status of the certificate as good,
revoked or unknown, as well as the time when the status will be
updated next (NextUpdate).

 The “good” state indicates that no certificate with the
requested serial number is currently revoked.

 The “revoked” state indicates that the certificate is no
longer to be trusted, and clients typically consider the
certificate validation as failed and terminate the
handshake.

 The “unknown” state indicates that the revocation
status could not be verified, usually because the
responder does not serve the issuer of the certificate.
In this case, the client can choose to accept the
certificate, reject the certificate or try to verify it using
CRLs.

Figure 1. Working of OCSP

Compared to CRLs, OCSP suffers from privacy issues

since it involves transmitting the request in plaintext, and

Jayanth Rajakumar et al, International Journal of Advanced Research in Computer Science, 10 (3), May-June 2019, 54-59

© 2015-19, IJARCS All Rights Reserved 56

potentially revealing the sites being visited. To solve this issue,
the concept of OCSP stapling (depicted in Figure 2) was
introduced [5]. An extension called Certificate Status was
added to the certificates, which can be used by bandwidth
constrained clients to obtain the certificate status without
having to contact the responder on their own, saving roundtrips
and resources. Web servers periodically poll the CA’s OCSP
responder to retrieve the response and send it directly to the
client during the handshake.

In order to use OCSP stapling, clients must include a Status

Request extension in their ClientHello message. This causes the
server to return the revocation status immediately after its
Certificate message, in the same format as regular OCSP. Since
the response has limited validity and is signed by the CA,
clients can validate it before trusting it.

However, the issue with stapling is that if an attacker gets

hold of the certificate and the private key, they can simply
ignore the Status Request and refuse to staple the status
response. To ensure that the server always returns a status
response, the Must-Staple extension is used [6].

For this system to work, the CAs must include the Must-

Staple extension in the server’s certificate at the time of issuing
it. When clients receive this certificate during the handshake,
they must recognize the extension, and terminate the
connection unless the revocation status is also transmitted by
the server. So, in the case of a website’s private key being
stolen, the attacker is forced to send the OCSP response
obtained from the responders. When the web domain owner
detects the attack and asks the CA to revoke the certificate, the
attacker will have no option but to send the revoked status to
the client, which drops the connection.

Figure 2. OCSP Stapling

C. OCSP vs CRL

Both OCSP and CRL have their advantages and
disadvantages. CRLs are updated only every 7-14 days, hence
recently revoked certificates may not be included. But this
allows clients to keep a cached copy of CRLs for longer and
use them for subsequent connections to the same server, which
reduces the latency caused by contacting the CA in the middle
of the handshake. If a client has the resources to cache a large
number of CRL responses, and the initial performance hit when
a new CRL is downloaded is acceptable, then revocation
checking can be performed extremely quickly and reliably
while also providing privacy.

OCSP is light weight compared to CRL as the size of

information retrieved is smaller. It also delivers more up to date
information as OCSP responders are updates more often that
CRL distribution points. However, it is susceptible to a variety

of security flaws, such as replay attacks and man-in-the-middle
attacks. The CA’s infrastructure responsible for handling the
OCSP requests tends to be poor with high latency [7]. The
privacy of the user is also compromised, as the browser must,
by design, reveal to the CA what domain is being accessed.

Most OCSP client implementations tend to have a soft-fail

behaviour – if a response is not received in time, then the
connection proceeds instead of being terminated as in hard-fail
behaviour. The most common internet browser, Google
Chrome, does not support OCSP. Instead, it relies on a limited
implementation of CRL which often does not correctly identify
revoked certificates.

OCSP with Must-Staple is theoretically the most secure and

accurate way for clients to obtain revocation status. However,
its adoption remains low. Out of the 1 million top domains on
the web, only 0.01% have the Must-Staple extension in their
certificates. [8]. Most web browsers also do not check if the
response was actually included with the certificate. OCSP
stapling is often poorly implemented by server software, which
can lead to users getting locked out of websites even when the
certificate is valid.

Thus, there are many factors such as privacy, reliability,

latency and accuracy which must be considered before picking
a method for revocation. If OCSP with Must-Staple sees
widespread adoption by both servers and clients, then it would
have an edge over the other mechanisms.

D. Certificate Transparency

Both OCSP and CRL do not address the situation where a
CA is compromised and taken over by an attacker. If someone
possesses the private key of the CA, they can issue certificates
in the name of any domain and use them for malicious
purposes. There is no mechanism to keep track of the
certificates issued for a domain. To address this issue, the
Certificate Transparency (CT) protocol was created by Google
[9].

It uses Certificate Logs, which are publicly available

records of certificates that CAs can write to. Logs can be
queried for cryptographic proof that a particular certificate has
been logged. There are ‘Monitor’ servers which periodically
communicate with the Log servers to watch for unauthorized
certificates. TLS clients have ‘Auditor’ software which checks
the consistency of the logs, as well as verifies if a particular
certificate is in the chain. If a browser finds that a CA’s
certificate has not been logged to the system, then the
connection may be dropped.

When a CA submits their certificate to the CT logs, it

receives a Signed Certificate Timestamp (SCT) in response,
which states that the certificate will be added within a particular
period of time. The SCT is sent by the web site to the clients
while making a TLS connection. This can be done through a
X.509 certificate extension, a TLS message extension, or along
with the stapled OCSP response. The client verifies the
signature on the SCT to verify that it came from a legitimate
log, and whether it was issued for the same certificate that was
received from the server.

CT can also be used by website administrators to keep track

of all the certificates issued for their domains. If a third party
compromises a CA and obtains a certificate for that domain,

Jayanth Rajakumar et al, International Journal of Advanced Research in Computer Science, 10 (3), May-June 2019, 54-59

© 2015-19, IJARCS All Rights Reserved 57

then it can be observed through the public logs and the
appropriate action can be taken.

E. Revocation checking in modern browsers

Y. Liu et al. [3] created a test suite to thoroughly test the
revocation checking behavior of various web browsers. It was
found that no browser by default checks revocation status for
all certificates in the chain. Many browsers do not check the
status at all or treat an unknown status as good (soft fail
behavior).

Google Chrome on OS X does not check any revocation

information for regular certificates. For Extended Validation
certificates, it checks OCSP and CRL, but if the OCSP returns
a revoked status, then instead of dropping the connection it
attempts to check the CRL instead. This means that users are
left vulnerable to attackers using revoked certificates,
especially since Google Chrome is the most commonly used
browser in the world. Other browsers like Firefox and Opera
vary slightly in what certificates they check the status for, but
none of them have a strict process. Most mobile browsers,
which serve a lot of internet traffic today, do not even have the
option of revocation checking.

In 2013, Google introduced a proprietary revocation

mechanism called CRLSets [10] in Google Chrome. CRLSets
are small sets of revoked certificates maintained by Google
which are automatically pushed to the browser and used to
validate web servers’ certificates. By limiting the CRLSet file
to 250 kilobytes, the process of validation is quick without
consuming a lot of network or processor resources. However,
this means that it can only include a subset of all the revoked
certificates on the web. Y. Liu et al. [3] found that only 0.35%
of the revoked certificates in their dataset appeared in
Chrome’s CRLSet. This means that the system is largely
ineffective.

IV. GOOGLE CHROME EXTENSION FOR REVOCATION

CHECKING

As discussed in the previous version, Google Chrome is
particularly lax when it comes to checking server certificates
for revocation. Users have no way of knowing for sure whether
the site they are browsing has had its certificate revoked or not.
This section proposes a browser extension to independently
check the OCSP and CRL revocation status of any HTTPS
pages visited and display the result to the user. The user can
configure the extension to check CRL, OCSP or both. If the
certificate is found to be revoked, then the extension can
immediately redirect away from the page.

A. Design

Google Chrome’s JavaScript extensions API does not
provide access to the TLS certificate of the page being
downloaded. It also does not allow the TLS handshake to be
paused to perform any custom operations. Hence a Python
based approach is proposed, as shown in Figure 3. Python has a
wide variety of libraries and can make independent TLS
connections to the web server and get its certificate for
verification.

When a new page starts loading, the JavaScript browser
extension sends a HTTP GET request to a Python server
running on localhost. The request contains the domain address
of the website visited. The Python program performs its own
handshake with the website and retrieves the X.509 certificate.

From the extensions, the CRL distribution URL and the OCSP
responder can be obtained. The CRL file can be downloaded
from the URL, and the serial number of the server certificate
verified against it. Also, a HTTP request can be sent to the
OCSP responder to get the revocation status. After verifying
the status, the response is returned to the JavaScript extension,
and action can be taken depending on the user’s preference.

Figure 3. Block diagram of the proposed system

B. Working

 JavaScript Extension: This is a lightweight extension
that extracts the hostname from HTTPS pages visited.
It is based on [11] which uses a third party server to
display certificate validation level. Once any webpage
starts loading, it creates a HTTP GET request to
localhost:8000 with the URL as the hostname of the
visited page. Once the response is received, it changes
icon of the extension to indicate if the certificate is
valid or revoked. A popup window is displayed when
the icon is clicked. This icon shows the certificate’s
organization name, the issuer’s organization name as
well as the revocation status.

 It provides options for the user to choose between
CRL, OCSP and both, as shown in Figure 4. This
preference is sent as a header in the GET request. The
user can also specify the page should be redirected
when a revoked certificate is observed. Hard fail
behaviour can be configured, where an unresponsive
responder is treated as a revoked certificate.

Figure 4. Options window of the extension

 Python Server: It is a HTTP server running locally on
port 8000 (chosen arbitrarily). The reason for choosing
this design is that it the server can be easily moved to

Jayanth Rajakumar et al, International Journal of Advanced Research in Computer Science, 10 (3), May-June 2019, 54-59

© 2015-19, IJARCS All Rights Reserved 58

another machine on a local network. This allows the
revocation checking software to be shared by all the
devices on the network.
Once the GET request is obtained from the extension,
the Python program makes a TLS connection to the
hostname and retrieves the certificate chain of the web
server. By parsing the ASN.1 fields, details such as
serial number, subject name and organization can be
obtained. The CRL distribution points and the OCSP
responder hostname can be retrieved.

 If the user has requested CRL verification, the CRL
file is downloaded to the local storage and parsed to
read the serial numbers. The serial numbers are placed
into a Python Set object which provides fast lookup
using hash tables. By checking if the serial number is
present in the set, it can be ascertained if the certificate
is revoked. The HTTP response is created in the form
of a Json array consisting of the subject and
organization names and the revocation status. After
sending the response, the set object is serialized and
saved to the disk (CRL Cache) along with the
NextUpdate field value. For subsequent requests, the
server checks the disk for the file first. If it is found and
still valid, then this saves the bandwidth of
downloading the file again, as well as the processing
time of traversing it.

 If OCSP was requested, then an OpenSSL request is
created using the certificate chain and send to the
responder. The OCSP response directly indicates the
revocation status, and this is sent back to the browser
extension in the form of a Json string. Since the OCSP
response is generally valid for a few days, the response
file is saved to disk. On subsequent connections, if the
response is still valid, there is no need to send a request
to the responder again. This cache system helps to
improve the response time of the system.

V. RESULTS AND DISCUSSION

The browser extension was installed on Google Chrome
version 74 on macOS and the Python server was started up in
the background from the command line. The revocation status
was observed from the extension’s icon on the address bar.

A. Browser Screenshots

Figure 5 shows the browser extension’s popup window
for google.com when the CRL and OCSP checks are successful.

Figure 5. Extension popup window on successful verification

Figure 6 shows the window when visiting the website

https://revoked.ecert.gov.hk/, which has a revoked certificate.

Here the ‘Redirect to blank page’ option was turned off, and
only OCSP check was performed.

Figure 6. Extension popup window when the certificate is revoked

B. Extension Response Time

Quick revocation checking is important for a better user
experience. The time taken for the Python server to process the
GET request was measured from the JavaScript extension by
noting the time stamp before and after the request. Five
different websites were chosen from the top ten most visited
websites on the Internet [12]. The average response time for
checking OCSP, OCSP Cache, CRL and CRL Cache was
calculated for these websites over five trials. The graph of the
results is shown in Figure 7. It was found that downloading a
fresh CRL and processing it takes the most amount of time,
but is still within a second. Checking the previously
downloaded CRL or OCSP from the local cache (assuming a
cache hit) is the fastest, with response times less than 200
milliseconds. OCSP response time is in between the other
cases.

This analysis reinforces that fact that caching revocation

responses locally is a good way to speed up connections and
improve the user experience.

Figure 7. Average response times of the extension measured for five websites

C. Future Work

There are many improvements that can be made to the
extension to extend its functionality. The current
implementation only checks the revocation status of the server
(leaf) certificate, and behaves identically for EV and non-EV
certificates. Literature survey shows that different browsers
perform revocation checks differently depending on the
certificate validation type, position in the chain and user
preferences [3].

0

100

200

300

400

500

600

700

Google Facebook Wikipedia Yahoo Amazon

m
ill
is
ec
o
n
d
s

Average response time for popular websites

OCSP OCSP Cache CRL Cache CRL

Jayanth Rajakumar et al, International Journal of Advanced Research in Computer Science, 10 (3), May-June 2019, 54-59

© 2015-19, IJARCS All Rights Reserved 59

The extension can be modified to support different browsers
and offer the checks that are missing. For example, Google
Chrome on Windows only checks CRLSet for non-EV leaf
certificates. As CRLSet is severely limited in terms of number
of revoked certificates covered, the extension can perform
OCSP or CRL for both the leaf and the intermediate certificate
to protect against compromised CAs. For EV certificates, there
is no need for any additional checks as Chrome performs them
by default.

To improve cache performance even further, a limited

number of most recently accessed revocation check results can
be kept in memory instead of on the disk. If it is not found in
memory, then the disk can be checked, or else it has to be
fetched again.

VI. CONCLUSION

This paper studied how TLS certificates are revoked and
the mechanisms that are used to convey the revocation status to
web clients – CRL and OCSP. OCSP with Must-Staple
extension was found to be the most secure method of checking
revocation, but it is not widely adopted. Server software
developers, browser developers and website administrators
need to upgrade to use the latest developments in revocation
protocols.

To improve users’ security, a Google Chrome Extension

was proposed and implemented to verify the CRL and OCSP
status. The response time of the extension for a few select
websites was analysed and it was found that caching responses
gives the best results.

VII. REFERENCES

[1] M. Nia, A. Sajedi and A. Jamshidpey, "An Introduction to
Digital Signature Schemes", In Proceeding of National
Conference on Information Retrieval, 2011

[2] D. Cooper et al. “Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL)
Profile”, Internet Engineering Task Force RFC 5280, May
2008.

[3] Y. Liu et al., "An End-to-End Measurement of Certificate
Revocation in the Web's PKI", Proceedings of the 2015
ACM Conference on Internet Measurement Conference -
IMC '15, 2015. DOI: 10.1145/2815675.2815685

[4] S. Santesson, A. Malpani and C. Adams, “X.509 Internet
Public Key Infrastructure Online Certificate Status
Protocol - OCSP”, Internet Engineering Task Force RFC
6960, June 2013.

[5] D. Eastlake, “Transport Layer Security (TLS) Extensions:
Extension Definitions”, Internet Engineering Task Force
RFC 6066, January 2011.

[6] P. Hallam-Baker, “X.509v3 Transport Layer Security
(TLS) Feature Extension”, Internet Engineering Task
Force RFC 7633, October 2015

[7] L. Zhu, J. Amann and J. Heidemann, "Measuring the
Latency and Pervasiveness of TLS Certificate
Revocation", Passive and Active Measurement, pp. 16-29,
2016. DOI: 10.1007/978-3-319-30505-9_2

[8] T. Chung et al., "Is the Web Ready for OCSP Must-
Staple?", Proceedings of the 2018 ACM Conference on
Internet Measurement Conference - IMC '18, 2018. DOI:
10.1145/3278532.3278543

[9] B. Laurie, A. Langley, E. Kasper, “Certificate
Transparency”, Internet Engineering Task Force RFC
6962, June 2013.

[10] A. Langley, "Revocation checking and Chrome's CRL",
2019 , [Online]. Available at
https://www.imperialviolet.org/2012/02/05/crlsets.html.

[11] Y. Li, "certificate-info", GitHub, 2019. [Online].
Available: https://github.com/blupig/certificate-info

[12] "Keyword Research, Competitor Analysis, & Website
Ranking", Alexa Internet, 2018. [Online]. Available at
https://www.alexa.com

