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Abstract: Due to deficiency of information, the membership functions and probability distribution of a random fuzzy variable cannot be ob-

tained explicitly. It is a challenging work to find an appropriate membership function and an appropriate probability distribution when certain 

partial information about a random fuzzy variable is given, such as expected value or moments. This paper solves such problems for the 

maximum entropy of discrete random fuzzy variables with certain constraints. A genetic algorithm is designed to solve the general maximum 

entropy model for discrete random fuzzy variables, which is illustrated by some numerical experiments. 
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I INTRODUCTION 

We usually meet many uncertain phenomena because 

“uncertainty is absolute and certainty is relative” in the real 

world. In these uncertain events, fuzziness and randomness 

are two basic types of uncertainty. Probability theory is a 

branch of mathematics for studying the behavior of random 

phenomena. The study of probability theory was started by 

Pascal and Fermat (1654), and an axiomatic foundation of 

probability theory was given by Kolmogoroff (1933) in his 

Foundations of Probability Theory. Credibility theory is a 

branch of mathematics for studying the behavior of fuzzy 

phenomena. The study of credibility theory was started by 

Liu and Liu (2002), and an axiomatic foundation of credi-

bility theory was given by Liu (2004) in his Uncertainty 

Theory. Sometimes, fuzziness and randomness simulta-

neously appear in a system. In order to describe this phe-

nomena, a random fuzzy variable was proposed by Liu [12] 

as a fuzzy element taking “random variable” values. In ad-

dition, a hybrid variable was introduced by Liu [13] as a 

tool to describe the quantities with fuzziness and random-

ness. Fuzzy random variable and random fuzzy variable are 

instances of hybrid variable. In order to measure hybrid 

events, a concept of chance measure was introduced by Li 

and Liu [14]. 

Entropy is use to provide a quantitative measurement 

of the degree of uncertainty, which has widely been applied 

in transportation [19]&[20], risk analysis [22], signal 

processing [21] and economics [25]. Since the Shannon 

entropy of random variables was proposed by Shannon [6], 

Jaynes [15] provided the maximum entropy principle of 

random variables when some constraints were given. Fuzzy 

entropy was first initialized by Zadeh [7] to quantify the 

fuzziness, who defined the entropy of a fuzzy event as a 

weighted Shannon entropy. Up to now, fuzzy entropy has 

been studied by many researchers such as De Luca and 

Termini [4], Kaufmann [5], Yager [17], Kosko [16], Pal and 

Pal [10], Bhandari and Pal [1], Pal and Bezdek [11]. How-

ever, those definitions of entropy characterize the uncer-

tainty resulting primarily from the linguistic vagueness ra-

ther than resulting from information deficiency, and va-

nishes when the fuzzy variable is an equipossible one. In 

order to measure the uncertainty of fuzzy variables, Liu [9] 

suggested that an entropy of fuzzy variables should meet at 

least three basic requirements: (i) minimum; (ii) maximum; 

(iii) universality. In order to meet those requirements, Li 

and Liu [8] provided a new definition of fuzzy entropy to 

characterize the uncertainty resulting from information de-

ficiency which is caused by the impossibility to predict the 

specified value that a fuzzy variable takes and provided the 

maximum entropy principle of fuzzy variables. In order to 

measure the uncertainty of hybrid variables, Li X, and Liu 

B [14] provided the concept of hybrid entropy. However, 
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given some constraints, for example, expected value and 

variance, there are usually multiple compatible membership 

functions and probability distributions. Which membership 

functions and probability distributions shall we take? Be-

cause fuzziness and randomness simultaneously appear in a 

system, we can not get the maximum entropy of hybrid 

variables through Euler-Lagrange equation. For fuzzy va-

riables, Li and Liu [2] gave an analytical method to find the 

maximum entropy membership function of continuous 

fuzzy variables and Gao and You [3] gave an analytical 

method to find the maximum entropy membership function 

of discrete fuzzy variables. On the basis of their work we 

promote their ideas to solve the problem for maximum en-

tropy functions of discrete random fuzzy variables in this 

paper. 

The organization of our work is as follows: In section 

2, some basic concepts and results on random fuzzy va-

riables are reviewed. In section 3, we introduce some con-

straints. In sections 4 and 5, an effective genetic algorithm 

is introduced to solve general maximum entropy models for 

discrete random fuzzy variables and some computational 

experiments are given in illustration of it. Finally, the con-

clusion is given in the last section. 

II. PRELIMINARIES 

    Let ξ  be a fuzzy variable with the membership func-

tion ( )xµ  which satisfies the normalization condition, 

i.e., ( )sup 1
x

xµ = . In the setting of credibility theory, 

the credibility measure for fuzzy event { }Bξ ∈  deduced 

from ( )xµ  is given by  

{ } ( ) ( )
1

Cr sup 1 sup
2 cx B x B

B x xξ µ µ
∈ ∈

� �
∈ = + −� �

� �
                           

(2.1) 

Where B  is any subset of the real numbers R , and 
c

B  

is the complement of set B . Conversely, for a fuzzy varia-

ble ξ , its membership function can be derived from the 

credibility measure by 

( ) { }( )2Cr 1,x x x Rµ ξ= = ∧ ∈                                

(2.2) 

Definition 2.1 (X.Li, B.Liu [23]) A random fuzzy variable 

is a function from a credibility space ( ), ,CrPΘ  to the 

set of random variables defined on a probability space 

( ), , PrAΩ . 

In the following, we give some examples of random 

fuzzy variables. 

Example 2.1 (Uniformly distributed random fuzzy variable) 

A random fuzzy variable ξ  is said to be uniform if for 

each θ , ( )ξ θ  is a uniformly distributed random va-

riables, i.e., ( ) ( ) ( )~ ,U X Yξ θ θ θ� �	 
 , with X  and 

Y  are fuzzy variables defined on the space Θ  such that 

X Y≤ .  

Example 2.2 (Normally distributed random fuzzy variable) 

A random fuzzy variable ξ  is said to be normal if for 

eachθ , ( )ξ θ  is a normally distributed random variable, 

i.e., ( ) ( ) ( )( ),N X Yξ θ θ θ∈ , with X  and Y  are 

fuzzy variables defined on the space Θ  such that 0Y > . 

A normally distributed random fuzzy variable is usually 

denoted as ( ),N X Yξ ∈ , and the fuzziness of random 

fuzzy variable ξ  is said to be characterized by fuzzy vec-

tor ( ),X Y . 

Example 2.3 (Exponentially distributed random fuzzy va-

riable) A random fuzzy variable ξ  is said to be exponen-

tial if for eachθ , ( )ξ θ  is an exponentially distributed 

random variable whose density function is defined as 

( ) ( )
( ) ( )( )

0, 0

exp , 0

t
f t

X X t t
ξ θ θ θ

<��
= 

− ≥��

                     (2.3) 

with X  is a positive fuzzy variable defined on the space 
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Θ . An exponentially distributed random fuzzy variables is 

often denoted by ( )~ exp Xξ , and the fuzziness of ran-

dom fuzzy variable ξ  is said to be characterized by fuzzy 

variable X . 

Generally, let ξ  be a random fuzzy variable. The 

fuzziness of ξ  is said to be characterized by fuzzy varia-

ble X , if for each θ ∈Θ , the distribution of random va-

riable ( )ξ θ  is determined by the parameter ( )X θ . 

Definition 2.2 (Li and Liu [18]) Let 

( ) ( ), ,Cr , ,PrP AΘ × Ω  be a chance space. Then a 

chance measure of an event Λ  is defined as 

{ }

{ } ( ){ }( )

{ } ( ){ }( )

{ } ( ){ }( )

{ } ( ){ }( )

sup Cr Pr ,

sup Cr Pr 0.5

Ch
1 sup Cr Pr ,

sup Cr Pr 0.5

c

if

if

θ

θ

θ

θ

θ θ

θ θ

θ θ

θ θ

∈Θ

∈Θ

∈Θ

∈Θ

� ∧ Λ
�
�

∧ Λ <��
Λ = 

− ∧ Λ�
�
� ∧ Λ ≥
��

                   (2.4) 

In fact, chance measure may be defined in different 

ways. For example, we may employ the following chance 

measure, 

{ } ( ) ( ){ }( ) ( ) ( ){ }( )1
sup Pr 1 sup Pr

2

c
Ch

θ θ

µ θ θ µ θ θ
∈Θ ∈Θ

� �Λ = × Λ + − × Λ� �
� �

      (2.5) 

Where ( ) { }( )2 1Crµ θ θ= ∧ .  

Theorem 2.1 (Li X, Liu B [24]) Let 

( ) ( ), ,Cr , ,PrP AΘ × Ω  be a chance space and Ch  a 

chance measure. Then for any event Λ , we have 

{ } ( ){ }( ) { } ( ){ }( )sup Cr Pr sup Cr Pr 0.5c

θ θ

θ θ θ θ
∈Θ ∈Θ

∧ Λ ∨ ∧ Λ ≥

(2.6)

{ } ( ){ }( ) { } ( ){ }( )sup Cr Pr sup Cr Pr 1c

θ θ

θ θ θ θ
∈Θ ∈Θ

∧ Λ + ∧ Λ ≤

            (2.7) 

Proof: It follows from the basic properties of probability 

and credibility that 

{ } ( ){ }( ) { } ( ){ }( )sup Cr Pr sup Cr Pr c

θ θ

θ θ θ θ
∈Θ ∈Θ

∧ Λ ∨ ∧ Λ

 

{ } ( ){ } ( ){ }( )( )sup Cr Pr Pr c

θ

θ θ θ
∈Θ

≥ ∧ Λ ∨ Λ  

{ }sup Cr 0.5 0.5
θ

θ
∈Θ

≥ ∧ =  

and  

{ } ( ){ }( ) { } ( ){ }( )sup Cr Pr sup Cr Pr c

θ θ

θ θ θ θ
∈Θ ∈Θ

∧ Λ + ∧ Λ

 

      

{ } ( ){ } { } ( ){ }( )
1 2

1 1 2 2
,

sup Cr Pr Cr Pr c

θ θ

θ θ θ θ
∈Θ

= ∧ Λ + ∧ Λ

 

       

{ } { }( ) ( ){ } ( ){ }( )
1 2

1 2sup Cr Cr sup Pr Pr c

θ θ θ

θ θ θ θ
≠ ∈Θ

≤ + ∨ Λ + Λ

 

        1 1 1≤ ∨ = . 

Example 2.4: Let 1 2, , , mη η η�  be random variables, 

and let 1 2, , , mu u u�  be nonnegative numbers with 

1 2 1mu u u∨ ∨ ∨ =� . Then 

1 1

2 2

 with membership degree 

 with membership degree 

    

 with membership degree m m

u

u

u

η

η
ξ

η

�
�
�

= 
�
��

�
                     

(2.8) 

is clearly a random fuzzy variable. If 1 2, , , mη η η�  have 

probability density functions 1 2, , , mφ φ φ� , respectively, 

then for any Borel set B  of real numbers, 

{ }
( ) ( )

( ) ( )

1 1

1 1

max ,         if  max 0.5
2 2

Ch

1 max ,   if  max 0.5
2 2

c

i i
i i

B Bi m i m

i i
i i

B Bi m i m

u u
x dx x dx

B
u u

x dx x dx

φ φ

ξ

φ φ

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

� � � � �
∧ ∧ <� � � ��

� � � � �
∈ =

� � � �� − ∧ ∧ ≥� � � �� � � � ��

� �

� �

    (2.9) 

Definition 2.3. (Li and Liu [22]) Let ξ  be a random fuzzy 
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variable. Then the expected value of ξ  is defined by  

        

[ ] { } { }
0

0
Ch ChE r dr r drξ ξ ξ

+∞

−∞
= ≥ − ≤� �                      

(2.10) 

provided that at least one of the two integrals is finite. 

In fact, the expected value [ ]E ξ  of ξ  may be de-

fined by  

[ ] ( ){ } ( ){ }
0

0
| |E Cr E r dr Cr E r drξ θ ξ θ θ ξ θ

+∞

−∞
= ∈Θ ≥ − ∈Θ ≤� � � �	 
 	 
� �

  (2.11) 

provided that at least one of the two integrals is finite, 

where ( )E ξ θ� �	 
  is the expected value of random varia-

ble ( )ξ θ . 

According to the Li and Liu [23] we get a new defini-

tion of entropy of random fuzzy variable ξ , denoted by 

[ ]H ξ . 

Definition 2.4 Suppose that ξ  is a discrete random fuzzy 

variable taking values in { }1 2, ,x x � . Then its entropy is 

defined by  

[ ] { }( )
1

Ch i

i

H S xξ ξ
∞

=

= =� .                                  

(2.12) 

where ( ) ( ) ( )ln 1 ln 1S t t t t t= − − − − . If there exists 

some index k  such that { }Ch 1
k

xξ = = , and 0 other-

wise, then its entropy [ ] 0H ξ = . Suppose that ξ  is a 

simple random fuzzy variable taking values in 

{ }1 2, , ,
n

x x x� . If { }Ch 0.5
i

xξ = =  for all 

1, 2, ,i n= � , then its entropy [ ] ln 2H nξ = . Suppose 

that ξ  is a discrete random fuzzy variable taking values in 

{ }1 2, ,x x � . Then [ ] 0H ξ ≥  and equality holds if and 

only if ξ  is essentially a deterministic / crisp number. 

III. MOMENT CONSTRAINTS 

    In this section, we consider discrete random fuzzy va-

riables. Let ξ  be a discrete random fuzzy variable taking 

values in { }1 2, , ,
n

x x x�  (in this paper we always as-

sume that 1 2 nx x x< < <� ) with membership degrees 

{ }1 2, , ,
n

u u u�  and probability { }1 2, , ,
n

p p p� , re-

spectively, where 1 2 1.nu u u∨ ∨ ∨ =�  Then the ex-

pected value of ξ  can be written as (without loss of gene-

rality, suppose 1 0k kx x− < ≤ ). 

[ ] { } { } { } { }
1 1 1

1
0

0
1 2

Ch Ch Ch Ch
k i i

i i k

n k
x x x

x x x
i k i

E r dr r dr r dr r drξ ξ ξ ξ ξ
− − −

−

= + =

= ≥ + ≥ − ≤ − ≤� �� � � �

     

{ } { }( ) { } { }( )
1

1

Ch Ch Ch Ch
k n

i i i i i i

i i k

x x x x x xξ ξ ξ ξ
−

= =

= ≤ − < ⋅ + ≥ − > ⋅� �

 

1 1
1

1

1
1

1
max max max max

2 2 2 2 2

max 0.5&max 0.5
2 2

1
1 max max

2 2 2

n
j j j j

j j j j i
j i j i i j n i j n

i

j j

j j
j i i j n

n
j j

j j
i j n j i

i

u u u u
p p p p x

u u
if p p

u u
p p

≤ ≤ ≤ < ≤ ≤ < ≤
=

≤ ≤ ≤ ≤

< ≤ ≤ <
=

� �� � � � � � � �
∧ − ∧ + ∧ − ∧ ⋅� �� � � � � � � �

� � � � � � � �� �

� � � �
∧ < ∧ <� � � �

� � � �

� � � �
= − ∧ − ∧� � �

� � � �

�

�
1

1

Similarly, five forms can be intro

1 max max
2 2

0.5&max 0.5&max 0.5
2 2 2

duced

j j

j j i
j i i j n

j ji
j j

j i i j n

u u
p p x

u uu
if pi p p

≤ < < ≤

≤ < < ≤

�
�
�
�
�
�
�

� �� � � � �
+ − ∧ − ∧ ⋅� � � � � � �

� � � �� ��
�

� � � �� �� ∧ ≥ ∧ < ∧ <� � � �� �� � � � � � �
�
�
�
�

 

1

n

i i

i

xω
=

=�                                  

(3.1) 

It is easy to verify that all 0iω ≥  and 
1

1
n

ii
ω

=
≤� . If  
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{ }
1
max max 0.5, 1, 2, ,

2 2

j j

j j
j i i j n

u u
p p i n

≤ ≤ < ≤

� � � �
∧ ∨ ∧ ≥ ∈� � � �

� � � �
�

, then 
1

1
n

ii
ω

=
=� .  

Furthermore, ( )
2

E eξ� �−
	 


 is called the variance of ξ  

and 
n

E ξ� �	 
  the nth moment of ξ . If the random fuzzy 

variable ξ  reduces to a fuzzy variable, i.e., for any 

{ }1, 2, ,i n∈ � , 1ip ≡ , then the expected value reduces 

to the following form 

     

[ ] ( )
1 1

1

1
max max max max

2

n

j j j j i
j i j i i j n i j n

i

E u u u u xξ
≤ ≤ ≤ < ≤ ≤ < ≤

=

= − + − ⋅�

                  (3.2) 

Which is just the expected value of discrete fuzzy variable 

ξ . Thus, the expected value of discrete random fuzzy va-

riable is a natural extension of discrete fuzzy variable. Let 

ξ  be a nonnegative discrete random fuzzy variable taking 

values in { }1 2, , ,
n

x x x�  with membership degrees 

{ }1 2, , ,
n

u u u�  and probability { }1 2, , ,
n

p p p� , re-

spectively., where , and k  a positive number. Then the 

k-th moment  

{ }1

0

k k
E k r Ch r drξ ξ

+∞
−� � = ≥	 
 �  

     { }
1

.
n

k

i i

i

k Ch x xξ
=

= ≥�  

     

1

1
1

max        if  max 0.5
2 2

1 max   if  max 0.5 
2 2

n
j jk

j i j
i j n i j n

i

n
j jk

j i j
j i i j n

i

u u
k p x p

u u
k p x p

≤ ≤ ≤ ≤
=

≤ < ≤ ≤
=

� � �� � � �
∧ ⋅ ∧ <� � �� � � �

� � � �� � �
= 

� �� � � ��
− ∧ ⋅ ∧ ≥� �� � � ��

� � � �� ��

�

�

 (3.3) 

If the random fuzzy variable ξ  reduces to a fuzzy variable, 

i.e., for any { }1, 2, ,i n∈ � , 1ip ≡ , then the k-th mo-

ment reduces to the following form 

 { }1

0

k k
E k r Cr r drξ ξ

+∞
−� � = ≥	 
 �  

     { }
1

.
n

k

i i

i

k Cr x xξ
=

= ≥�  

     

( )
1

1

1
max 1 max

2

n
k

j j i
i j n j i

i

k u u x
≤ ≤ ≤ <

=

= + − ⋅�                     

(3.4) 

Which is just the k-th moment of discrete fuzzy variable ξ . 

If 1k = , which is just the expected value of discrete ran-

dom fuzzy variable ξ . 

 

 

 

IV. GENETIC ALGORITHM FOR GENERAL MAX-

IMUM ENTROPY MODEL 

Genetic algorithm is a stochastic search method for 

global optimization problems based on the mechanics of 

natural selection and natural genetics. Genetic algorithm 

has demonstrated enormous success in providing good so-

lutions to many complex optimization problems. In this 

section, we will design an effective genetic algorithms inte-

grated with random fuzzy simulation for solving the maxi-

mum entropy model for discrete random fuzzy variables. 

Let ξ  be a discrete random fuzzy variable taking 

values in { }1 2, , ,
n

x x x�  with membership degrees 

{ }1 2, , ,
n

u u u�  and probability { }1 2, , ,
n

p p p� , re-

spectively. We have the natural relation 

0 1iu≤ ≤ , 0 1ip≤ ≤  and 1max 1i n iu≤ ≤ = . By using 

maximum entropy principle, we have the following maxi-

mum entropy model: 
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{ }( )

{ }

1

1

1

max

subject to

            ,

           0 1, 1,2, , .

           0 1, 1, 2, ,

           1, 1,2, ,

           1

n

i

i

n

i i

i

i

i

i

n

i

i

S Ch x

x e

u i n

p i n

u i n

ξ

ω

ω

=

=

=

�
=�

�
�
�
� ≤
�
�

≤ ≤ =
� ≤ ≤ =
�
� = ∈
�
� =�
�
�

�

�

�

�

�

�

                             

(4.1) 

Where iω  from (3.1), 

( ) ( ) ( )ln 1 ln 1S t t t t t= − − − − , 

{ }

1

                         0.5
2 2

1 max        0.5
2 2

i i
i i

i
j i

j i
j n

j i

u u
p p

Ch x
u u

p p

ξ

≤ ≤
≠

� � �
∧ ∧ <� ��

� ��
= = 

� � � �� − ∧ ∧ ≥� � � �� � �� ��

. 

In general, the expected value constraint can be re-

placed by other moment constraints. For the search spaces 

of the maximum entropy model (4.1) are particularly irre-

gular, genetic algorithm has succeeded in providing good 

solutions to complex moment conditions. 

As an illustration, the following steps show how the 

genetic algorithm works. 

Step 1: Initialize pop-size feasible chromosomes 

{ }1 2, , ,t t t

t nU u u u= �  and { }1 2, , ,t t t

t nP p p p= �  for 

1,2, ,t = � pop-size from ( ) ( ) ( )0,1 0,1 0,1× × ×� , in 

which the maximum , 1, 2, ,t

iu i n= �  for each t  is set 

to be 1. 

Step 2: Calculate the expected values for all chromo-

somes tU  and tP , 1, 2, ,t = � pop-size, respectively. If 

the expected values do not satisfy the constraints, we rege-

nerate a chromosome to replace the original one until it is 

feasible. 

Step 3: Calculate the entropy of each random fuzzy 

variable which is represented by each chromosome. The 

entropy denoted by ( )t t
H U P∧ , is to assign a probabil-

ity of reproduction to each chromosome tU  and tP  so 

that its likelihood of being selected is proportional to its 

entropy relative to the other chromosomes in the population. 

That is, the chromosomes with larger entropy will have 

more chance to produce offspring by using roulette wheel 

selection. 

Step 4: Select the chromosomes for a new population 

by spinning the roulette wheel according to the value of the 

entropy of all chromosomes. 

Step 5: Renew the chromosomes by crossover opera-

tions with a predetermined parameters cP , which is called 

the probability of crossover. In order to determine the par-

ents for crossover operation, let us do the following process 

repeatedly from 1t =  to pop-size: generating a random 

number r  from the interval [ ]0,1 , the chromosome tU  

and tP  is selected as a parent if cr P< . We denote the 

selected parents by 1 2 3, , ,t t t
U U U �  and 

1 2 3, , ,t t t
P P P �  and divide them into the following pairs: 

( ) ( ) ( )1 2 3 4 5 6, , , , , ,t t t t t t
U U U U U U �  

( ) ( ) ( )1 2 3 4 5 6, , , , , ,t t t t t t
P P P P P P �  

Let us illustrate the crossover operator on each pair by 

( )1 2,t t
U U  and ( )1 2,t t

P P . At first, we generate a random 

number c  from the open interval ( )0,1 . Then the cros-

sover operator on 1

t
U  and 2

t
U , 1

t
P  and 2

t
P  will pro-

duce two children X  and Y , X ′  and Y ′  as follows: 

( ) ( )1 2 1 21 , 1t t t t
X c U c U Y c U c U= ⋅ + − ⋅ = − ⋅ + ⋅

 

( ) ( )1 2 1 21 , 1t t t t
X c P c P Y c P c P′ ′= ⋅ + − ⋅ = − ⋅ + ⋅

 

In this case, the feasible set is not convex. Thus we must 

check the feasibility of each child before accepting it. We 



Lianlong Gao et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 66-74 
 

© 2010, IJARCS All Rights Reserved      72 

set the maximum component of each child to be 1. Then we 

check if the children satisfy the constraints. If both children 

are feasible, then we replace the parents with them. If not, 

we keep the feasible child if it exists, and keep the other 

parent still. 

Step 6: Update the chromosomes by mutation opera-

tions with a predetermined probability of mutation 
mP . In 

a similar manner to the process of selecting parents for 

crossover operation, we repeat the following steps from 

1t =  to pop-size: generating a random number r  from 

the interval [ ]0,1 , the chromosome 
tU  and 

tP  is se-

lected as a parent if mr P< . For each selected parent, de-

noted by { }1 2, , ,t t t

t nU u u u= �  and 

{ }1 2, , ,t t t

t nP p p p= � , we mutate it in the following way. 

For each selected parent, we randomly select one 
t

iu  and 

t

ip  of this chromosome and regenerate their values. Then 

set the maximum 
t

iu  to be 1 and check the feasibility of it. 

Step 7: Repeat Step 3 to Step 6 for N  times, where 

N  is a sufficiently large integer. 

Step 8: Report the best chromosome tU  and tP  as 

the optimal solution. 

V. NUMERICAL EXAMPLES 

In order to illustrate the effectiveness of the proposed 

genetic algorithm, let us consider Example 1 in Table 1 (ξ  

is a discrete random fuzzy variable taking values in 

{ }1,3, 4,8,10,11  with { }1,1,1,1,1,1p =  and expected 

value [ ]E ξ  satisfying [ ] 4E ξ ≤ ) for the comparison 

of the algorithm with respect to different parameters (Gao 

and You [3]). We compare the solutions when different pa-

rametric values of cP , mP , pop size−  and N  are 

taken in the genetic algorithm. The results are shown in Fig 

and the errors shown in Table 2 are calculated by the for-

mula: (actual value-optimal value)/optimal value 100%× .

Table 1 

Example 
{ }1 2 3 4 5 6

, , , , ,x x x x x x  [ ]E ξ  
Cr Pr∧  

maxH  

1 { }1,3, 4,8,10,11  
4≤  

{ }0.6462,0.3538, 0.3432,0.2810,0.2755,0.2744  
3.7127  

2 { }1, 2,3, 4,5,6  
3≤  

{ }0.5619,0.4381,0.4224,0.3859,0.3821,0.3713  4.0436  

 

Table 2 

 pop- 

size 
cP  mP  

N  Cr Pr∧  
maxH  ( )Error %  

1 160  0.7 0.4 1000 { }0.5179, 0.4821, 0.4821, 0.2239, 0.2225, 0.2133  3.6576 1.48 

2 190  0.7 0.3 1000 { }0.6999, 0.3000, 0.2997, 0.3001, 0.3001, 0.2998  3.6648 1.29 

3 160  0.7 0.3 1000 { }0.5506, 0.4494, 0.4402, 0.2373, 0.2373, 0.2373  3.7058 0.19 

4 160  0.8 0.3 3000 { }0.5963, 0.4037, 0.4037, 0.2833, 0.2185, 0.2185  3.6696 1.16 

 { }1 2 3 4 5 6, , , , ,u u u u u u u=  { }1, 2 3 4 5 6, , , ,p p p p p p p=  
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1 
{ }1.0000,0.9642,0.9642,0.4477,0.4450,0.4266  { }0.9447,0.6913,0.6655,0.9015,0.9361,0.6108  

2 
{ }1.0000,0.6000,0.9999,0.6001,0.6001,0.5995  { }0.8845 0.9664 0.2997 0.3405 0.8631 0.4502  

3 
{ }1.0000,0.8987,0.8804,0.5832,0.4746,0.4746  { }0.9621, 0.9829, 0.8863, 0.2373, 0.7496, 0.9978  

4 
{ }1.0000, 0.8074, 0.8074, 0.5943, 0.4371, 0.4371  { }0.6935 0.6410 0.5838 0.2833 0.3524 0.3824  

 

                                

Figure 1                                    Figure 2 

 
                    Figure 3                                                     Figure 4 

It follows from Table that the error does not exceed 

3% , which shows that the proposed algorithm is effective 

to solve the above model. 

 

VI. CONCLUSIONS 

In this paper, we promote the idea of Gao and You [3] 

to solve this problem for maximum Entropy functions of 

discrete random fuzzy variables and design a genetic algo-

rithm to solve this problem. Along with the improvement of 

uncertainty theory, we can use this method to solve many 

uncertain events such as toward fuzzy. In the future work, 

we will continue focus on this area. 
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