
DOI: http://dx.doi.org/10.26483/ijarcs.v9i5.6308
Volume 9, No. 5, September-October 2018

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 64

ISSN No. 0976-5697

REVIEW ON STEMMING TECHNIQUES

Prabhjot Kaur
Department of Computer Science and Engineering

Sant Longowal Institute of Engineering and Technology
Longowal, Sangrur (Punjab) – 148106, India

Preetpal Kaur Buttar
Department of Computer Science and Engineering

Sant Longowal Institute of Engineering and Technology
Longowal, Sangrur (Punjab) – 148106, India

Abstract: Stemming is a method of deriving root word from the inflected word. The stemming process is often called conflation and is done by
stemmers or stemming algorithms. The stemming algorithm is the process that reduces all the words of the same basis in a common form. The
algorithm is basic building block for the stemmer. The development of stemmer is based on language and requires specific language knowledge
and spell checking for that language. This paper, presents an overview of different stemming techniques and algorithms which have been used
by the researchers for stemming in different languages.

Keywords: Stemming; Stemming techniques; Survey

I. INTRODUCTION

1.1 Stemming: Stemming is a process that reduces the
comparative morphological variation of the words into a single
term called stem or root word, without performing a complete
morphological analysis [1]. Stemming is the process of removing
the affixes from inflected words to their original, basic or root form
[2]. The main objective of the stemmer is to find the root word
from the inflected words. Stemming is finished by removing
attached prefixes and suffixes from words. Stemming will cut the
inflections from the word and get the root word as a result. For
example, a stemming algorithm stem the words “applied”,
“applies” and “applying” to the root word “apply”. The example of
stemming shown in figure 1.1. Various languages like English,
Hindi, Marathi, Nepali, Bengali used stemming in their
information retrieval systems. The first English stemmer was
distributed in 1968. It was written by Julie Beth Lovins [3]. A later
stemmer was written by Martin Porter in 1980 [4].

 Figure 1.1 Stemming Example

The derived words answered, answer, answering and answers are
converted to the root word answer, through which not only
retrieval performance improves as well as capacity can be
enhanced in some particular applications.
Stemming can be used for indexing and search system. In order to
develop any application in NLP like text extraction, machine
interpretation, document arrangement, topic tracking, text outline,
etc., stemmer is required as a basic linguistic resource for any
language in the world to attain high accuracy [5].

1.2 Stemmer: Stemmer is a system whose input is an inflected
word and it provides the output in the form of a root word. The
inflected word can be singular, plural or it may contain some other
affixes. The root word is the correct word that contains some
dictionary meaning [1].
1.3 Stemming Algorithms: A stemming algorithm is a technique
which is used by stemmer [1]. The stemming algorithms may
include pattern matching algorithms, stochastic algorithms, hybrid
algorithms, porter stemming algorithm, dictionary-based
algorithms, rule-based algorithms, corpus-based algorithms, n-
gram techniques etc. A stemming algorithm can be characterized as
context-sensitive or context-free[1]. In a context-free algorithm, no
restriction is placed on the removal of suffix and the matched
ending is stripped if any ending matches. In a context-sensitive
algorithm, various restrictions are placed when we are removing
the suffixes from the words. For the removal of suffixes from the
word, these algorithms have to construct some rules and some
dictionary sets. Rules tell us which suffix is to be removed and
how; and dictionary tells us whether the word is present or not.
Porter stemmer is the context-sensitive; Rule-based stemmer that is
widely used.

1.4 The purposes of a stemming algorithm
A stemming algorithm, or stemmer has two main purposes:

1) The first one comprises of words with the same term
being clustered into single class which reduces dictionary
size. It helps to reduce the storage space.

2) Secondly, the base word form is matched with the variant
forms of words in documents and queries, which solves
the problem of mismatch in vocabulary [6].

1.5 Stemming Errors:

Two types of errors occur in the stemming process one is over-
stemming and another is under-stemming.
Over-stemming occurs when the word refers to distinct concepts
even though they are converted to the same stem. For example,
“compute” and “compile” getting stemmed to “comp”.
Under-stemming is occurred when the two words which have
similar root are not reduced to the same stem. For example,
“compiling being stemmed to “compil” and “compile” to
“comp”[7].

Answered

Answering

Answer

Answers

 Answer

Prabhjot Kaur et al, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,64-68

© 2015-19, IJARCS All Rights Reserved 65

1.6 Classification of Stemming Techniques:
Stemming process contains rich writing, and various stemmers
have been produced since few years. Stemming technique may run
from simple methodologies, for example the elimination of plural
and participle present and passed to complex methodologies that
expel a lot of suffixes and incorporate a dictionary. Current
stemming algorithms categorized are: rule based, statistical, or
hybrid which have their own normal way to find the stems of the
variation word form. The order of these stemming techniques is
displayed in figure 1.2.

Figure 1.2 Categorization of stemming techniques.

1.6.1 Rule based stemmers
Rule based stemmers are also known as language-specific
stemmers because they convert variant word forms into their stem.
The language-specific rules are created if these are measure
experience in language. These Stemmers are better than Statistic
Stemmers in the implementation of complex language code rules
[8] [6]. These stemmers are divided into three categories:

1) Brute Force Algorithms: In order to get the root of the
word, brute force algorithms use a search table. The
search table contain list of root words and their inflected
words. The table is searched to find the appropriate
inflection, as well as the root form of the word associated
with it. These stemming techniques also known as
dictionary-based or table lookup techniques. These
stemmers can consider the inflected word forms that does
not properly adopt language rules, for example; suffix
removal algorithms can stem from the word “eating” to
“eat”, so it does not stem the infrequent inflection “ate”.

2) Affix Removal Algorithms: These algorithms remove
prefixes and/or suffixes from inflected words. These
stemmers used context-sensitive rules and suffix/prefix
list to get the stem. The disadvantage of these stemmers
is that the stem created after removing the suffix is not
the real word of the language.

3) Morphological Stemmers: To perform stemming,
morphological stemmers contain inflectional and
derivational morphological analysis. These stemmers
prefer dictionaries in special languages with word
combinations organized using grammatical and
morphological variations [9]. Inflectional analysis will
recognize the forms of words because of gender, mood,
time, event, status, number, face. Derivational analysis

will recognize the changes in the word portion (POS) and
to minimize the surface to mold forms which it produces.
Such as “advancement” is stemmed to “advance”
however “department” is not stemmed to “depart”
because each form has a totally different linguistics.
These stemmers serve morphological correct roots and
can evaluate different exceptional cases and process roots
from lexicon, using rules and as a lexicon.

1.6.2 Statistical Stemmers
The stemmers use semi-supervised or unsupervised learning to find
out stemming rules of the language [6]. They cluster
morphologically connected words using the nearby set of
documents, thus avoiding the use of language experts or additional
language resources. Therefore, statistical stemmers are also known
as corpus-based or language independent stemmers. A number of
studies [8-13] showed that statistical stemmers used are reasonable
substitutes for a specific language stemmer, particularly for
languages in which language resources are not completed [6].

1) Lexicon Analysis-Based Stemmers: Lexicon analysis
based stemmers evaluate cluster of words attained from
the lexicon to group related lexical words. They find
possible suffixes and stems by different techniques such
as calculating distances [12], the frequency of substrings
[14], etc.

2) Corpus Analysis-Based Stemmers: Corpus analysis
based stemmers group morphologically familiar words,
and then analyze their context or appearance in the
lexicon. They confirmed the fact that the words used
inside the corps are the best representative for inclusion,
then words that do not occur together [12].

3) Character N-Gram-Based Stemmers: These stemmers
recall the rules of stemming by the frequency of n-grams
derived from vocabulary words. They can manage
morphological differences in alphabetic language [11].

1.6.3 Hybrid Stemmers
To perform stemming, hybrid stemmers combine various different
methods [6]. The combination of methods increased the
effectiveness of the stemmer. The stemmers can be formed by
combining various methods, for example, combination of different
methods based on rules or combination of rule-based approaches
with statistical methods. Such as, the suffix stripping algorithm can
be further enhanced by table searches for non-common verb forms
(such as ran / run) or singular / plural formulas [6]. A number of
hybrid stemmers [15-19] have been developed for different
languages.

II. LITERATURE SURVEY

Literature survey of stemming for English Language:

Julie Beth Lovins (1968) [3] discussed the practical and
theoretical attributes of stemming algorithms. He proposed new
version of the longest-match, context-sensitive stemming algorithm
for English language that can be developed for use in a library
information transfer system.

Porter (1980) [4] suggested suffix stripping algorithm which has
been implemented as a short, fast program in BCPL. It performs
better than a much more elaborated system with which it has been
compared.

Paice (1994) [20] developed a method for evaluating stemming
algorithms. The method is dealing with stemmer assessment which
depends on counting and detecting actual errors and errors that

Rule Based Statistical Hybrid

Brute Force

Affix Removal

Morphological

Lexicon
Analysis Based

Corpus
Analysis Based

Character N-
gram Based

Stemming Techniques

Prabhjot Kaur et al, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,64-68

© 2015-19, IJARCS All Rights Reserved 66

occur when creating sample words that are obtained from real
texts. This makes it possible to calculate the index of "stemming
weight" for each stemmer, and also describing the general accuracy
and the error rates of over and under stemming. This method
involves the separation of word samples manually into conceptual
groups and into these groups that reference actual performance
indicators.

Xu and Croft (1998) [21] suggested a methodology for the error
in the results obtained from the statistical characteristics of the
group is used. The main idea of the generation of equivalence of
equations for words methods with conventional logs and "separate
back" mixed multiple words based on their participation in the
lexicon.

Mayfield and McNamee (2003) [22] developed an output of n-
grams, which determines that when one n-gram in the form of a
pseudo-word stem to be effective and neutral approach for some
languages. Since different morphological parts (common suffixes
and prefixes, such as “able” or “ing”) will occur more frequently
than invariants (unique word roots), a typical statistic can be used
to identify them.

Jenkins and Smith (2005) [23] suggested a conservative
stemming algorithm for search and indexing. The algorithm is
recognized by words that do not need to be derived, it works on
rules that are also used as steps. It contains rules that are divided
into two sets: the first set is used to clean the icons; second set is
used to change the suffixes. The first set of rules avoids a small list
of six common problem words. Second, the required upper joints
are removed and the contractions expand. Contains 139 suffix rules
that are used to test certain types of suffixes. The result of stemmer
shows that it frequently meets these goals in approximately 85% or
more of words that it stems.

Massimo and Nicola (2003) [24] developed a statistical method
for generating a Hidden Markov Models (HMMs) stemmer. The
approach based was on unsupervised learning without prior
knowledge and it created training set manually. The HMM
topology determines the number of states, the initial and final
states, the states marking as belonging to one of two groups, and
permitting transfers. The transition was composed by a probability
function. In every transition, the new state expands a symbol and
links possibilities. The set of symbols before division is considered
a stalk, remaining as a suffix.

Peng et.al.(2007) [25] proposed a contextually sensitive web
search. In the algorithm to determine the distribution of labor
similarities, corpus analysis is used. Porter's morphological rules
are then applied to the list of similarities in order to find the
stemming candidates that come from, some of which are chosen
based on the goal of dealing, for example, pluralization. In the non-
converter index, the forms obtained are used to extend the search
query. For example, in view of the word "present", the application
of the rules applies to " presenting, presented, presents ". For the
purposes of pluralization, only "presents" is selected. Thus, a
current user request is expanded to "present" is expanded to
“present” or “presents”.

Literature survey of stemming for Indian Languages:

Ramanathan et.al (2003) [26] developed a lightweight stemmer
for Hindi language. In this stemmer, words conflated the terms by
suffix removal for information retrieval. The proposed lightweight

trunk of the Hindi language was based on Indian grammar, where a
list of 65 total suffixes was generated manually. The accuracy of
the lightweight stemmer for Hindi language was 88%.

Dasgupta and Ng (2006) [27] developed unsupervised
morphological analysis of Bengali language. The algorithm is used
to segment words into stems, suffixes and prefixes with no prior
knowledge of the morphological rules of a particular language.
This consists of two steps: (1) the activation of suffixes, prefixes
and root vocabulary containing words taken from a large unknown
group, (2) division of the words based on these induced segments.
If calculated on a group of fragmented 4-110 phonetic words of
Bengali language, the algorithm has the F-83% level, significantly
superior to semantics, one of the most traditional unmonitored
morphological analyst, with about 23%.

Zahurul et.al (2009) [28] proposed a lightweight stemmer for
Bengali language spell checker. The lightweight stemmer was used
to find the root of an input word. The authors reported the
efficiency of the lightweight stemmer for Bengali language was
90.8%.

Gupta and Lehal (2011) [2] suggested on Punjabi language noun
and proper name stemming. In their approach, an attempt was
made to get the root or stem the words of Punjabi language, and
then to examine it against the Punjabi name and the correct name
dictionary. An in-depth analysis of our Punjabi news group was
conducted and the different rules of the name, correct name and
possible different suffixes were identified, such as ◌ੀਆਂīāṃ, ਿ◌ਆਂ
iāṃ, ◌ੀਏ īē etc. The authors reported the accuracy of stemmer is
87.37%.

Kumar and Rana (2011) [5] presented a design and development
stemmer for Punjabi language, which used a brute force and suffix
stripping technique. Brute force does not require text
preprocessing. The authors used substitution with suffix striping, in
order to avoid the problem of over-stemming and under-stemming.
The authors reported the average accuracy of the stemmer as
80.73%. Sundra et.al (2010) [30] proposed a morphological
analyzer for Tamil language. The analyzer was used to change the
Tamil word to equal metrological Tamil words(lemmas). The
accuracy of the stemmer was 91.7%.

Juhi et.al (2012) [29] developed a lightweight stemmer for
Gujarati. In this proposed method the lightweight stemmer
algorithm was used for stems the Gujarati words. The lightweight
stemmer had an average accuracy of 91.5%.

Mishra et.al (2012) [19] developed MAULIK: An efficient
stemmer for Hindi language. In this stemmer, MAULIK algorithm
was used to stem the Hindi words by using Hybrid approach. The
stemmer used the hybrid approach for stemming the Hindi words.
The accuracy of the stemmer is 91.59%.

Suba et al. (2011) [31] suggested two stemmers of Guajarati
language- (1) lightweight inflectional stemmer used the hybrid
approach, and (2) heavyweight derivational stemmer used the rule-
based approach. Accuracy of inflectional stemmer was 90.7% and
was as large as IR and the accuracy of derivational stemmer was
70.7%.

Prabhjot Kaur et al, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,64-68

© 2015-19, IJARCS All Rights Reserved 67

Table 1: Existing stemmers for Indian languages

Reference Method Description Accuracy

Kumar et.al,

2010 [5]

Brute Force

algorithm

Truncate the

derivational

forms from a

word.

80.7%

Gupta et.al,

2011 [2]

Rule-based Rules used for

stem the words

of noun and

proper names of

Punjabi

language

87.37%

Upendra

Mishra et.al,

2012 [19]

MAULIK

algorithm

Combination of

Brute force and

suffix removal

algorithm

91.8%

Dasgupta and

Ng, 2006 [27]

Rule-based Segmenting

words into

suffixes,

prefixes and

stems.

83%

Ramanathan

et.al, 2004

[26]

Lightweight

algorithm

find the root of

the word

88%

Zahurul Islam

Md et.al, 2009

[28]

Lightweight

algorithm

find the root of

the word

90.8%

Juhi Ameta

et.al, 2012

[29]

Lightweight

algorithm

find the root of

the word

91.5%

Suba et.al,

2011 [31]

Lightweight

stemmer

find the root of

the word

70.70%

Vijay Sundar

et.al 2012

[30]

Morphological

analyzer

Derivational

form of a word

91.7%

III. CONCLUSIONS

Stemming plays an important role in information retrieval system
and its impact is very large, compared with that found in the review
of the various stemming algorithms. In this paper, we studied
various stemming algorithms and their effectiveness in various
Indian languages. This is not enough for an information retrieval
system. So that in future, researchers will opt for more
implementations of stemming algorithm method and their utilities
for various information retrieval systems in Indian languages.

IV. REFERENCES

[1] P. Rana, “Stemming of Punjabi Words By Using Brute
Force Technique,” Int. J. Eng. Sci., vol. 3, no. 2, pp.
1351–1358, 2011.

[2] V. Gupta and G. S. Lehal, “Punjabi language stemmer for
nouns and proper names,” Proc. 2nd Work. South
Southeast Asian Nat. Lang. Process. (WSSANLP),
IJCNLP 2011, pp. 35–39, 2011.

[3] J. B. Lovins, “Development of a stemming algorithm,”
Mech. Transl. Comput. Linguist., vol. 11, no. June, pp.
22–31, 1968.

[4] M. F. Porter, “An algorithm for suffix stripping,”
Program, vol. 14, no. 3. pp. 130–137, 1980.

[5] D. Kumar and P. Rana, “Design and Development of a
Stemmer for Punjabi,” Int. J. Comput. Appl., vol. 11, no.
12, pp. 18–23, 2010.

[6] Jasmeet Singh and V. Gupta, “Text Stemming:
Approaches, Applications, and Challenges,” ACM
Comput. Surv. Vol. 49, No. 3, Article 45 pp. 1-46, 2016.

[7] J. Patel, P. Desai, and U. Bhagat, “A survey of different
stemming algorithm,” Int. J. Adv. Eng. Res. Dev., vol. 2,
no. 6, pp. 1083–1088, 2015.

[8] Tom´aˇs Brychc´ın and Miloslav Konop´ık, “High
precision stemmer,” Inf. Process. Manag. 51, 1, pp. 68–
91, 2015.

[9] Robert Krovetz, “Viewing morphology as an inference
process,” In Proceedings of the 16th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 191–202, 1993.

[10] JiaulH. Paik, Mandar Mitra, Swapan K. Parui, and
Kalervo Jarvelin, “An effective and efficient stemming
algorithm for information retrieval,” ACM Trans. Inf.
Syst. 29, 2011.

[11] Jiaul H. Paik, Dipasree Pal, and Swapan K. Parui, “A
novel corpus-based stemming algorithm using co-
occurrence statistics,” In Proceedings of the 34th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’11). ACM,
New York, NY, pp. 863–872, 2011.

[12] Jiaul H. Paik, Swapan K. Parui, Dipasree Pal, and Stephen
E. Robertson, “Effective and robust querybased
stemming,” ACM Trans. Inf. Syst. 31, pp. 2013.

[13] Prasenjit Majumder, Mandar Mitra, Swapan K. Parui,
Gobinda Kole, Pabitra Mitra, and Kalyankumar Datta,
“Yet another suffix stripper,” ACM Trans. Inf. Syst. 25,
2007.

[14] JiaulH. Paik and Swapan K. Parui, “A Fast corpus-based
stemmer,” ACMTrans. Asian Lang. Inf. Process. 10,
2011.

[15] David Weiss, “A hybrid stemmer for the Polish
language,” Institute of Computing Science: Poznan
University of Technology Research Report. 2005

[16] Manish Shrivastava, Bibhuti Mohapatra, Pushpak
Bhattacharyya, Nitin Agarwal, and Smriti Singh,
“Morphology based natural language processing tools for
indian languages,” In Proceedings of the 4th Annual Inter
Research Student Seminar in Computer Science, 2005.

[17] Giorgos Adam, Konstantinos Asimakis, Christos Bouras,
and Vassilis Poulopoulos, “An efficient mechanism for

Prabhjot Kaur et al, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,64-68

© 2015-19, IJARCS All Rights Reserved 68

stemming and tagging: the case of Greek language,” In
Proceedings of the 14th International, 2010.

[18] Pratikkumar Patel, Kashyap Popat, and Pushpak
Bhattacharyya, “Hybrid stemmer for Gujarati,” In
Proceedings of the 23rd International Conference on
Computational Linguistics (COLING), 51, 2010.

[19] Upendra Mishra and Chandra Prakash, “MAULIK: An
effective stemmer for Hindi language” Int. J. Comput. Sci.
Eng. 4, pp. 711–717, 2012.

[20] C. D. Paice, “An Evaluation Method for Stemming
Algorithms”, Proceedings of 17th annual international
ACM SIGIR conference on Research and development in
information retrieval, pp. 42-50, 1994.

[21] X. Jinxi and C. Bruce W., “Corpus-based Stemming
Using Co-occurrence of Word Variants”, ACM
Transactions on Information Systems, Volume 16, Issue
1, pp. 61-81, 1998.

[22] J. Mayfield and P. McNamee, “Single N-gram
stemming”, Proceedings of the 26th annual international
ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 415-416, 2003.

[23] M. Jenkins and D. Smith, “Conservative Stemming for
Search and Indexing”, In Proceedings of SIGIR’05, 2005.

[24] M. Massimo and O. Nicola. “A Novel Method for
Stemmer Generation based on Hidden Markov Models”,
Proceedings of the twelfth international conference on
Information and knowledge management, pp. 131-138,
2003.

[25] F. Peng, N. Ahmed, X. Li and Y. Lu, “Context Sensitive
Stemming for Web Search”, Proceedings of the 30th

annual international ACM SIGIR Conference on
Research
and Development in Information Retrieval, pp. 639-646.

[26] A. Ramanathan and D. D. Rao, “A Lightweight Stemmer
for Hindi”, Workshop on Computational Linguistics for
South-Asian Languages, EACL, 2003.

 [27] S. Dasgupta and V. Ng, “Unsupervised Morphological
Parsing of Bengali”, Language Resources and
Evaluation, 40(3-4):311-330, 2006.

 [28] Khan. 2007. “A light weight stemmer for Bengali and its
Use in spelling Checker,” Proc. 1st Intl. Conf. on Digital
Comm. and Computer Applications (DCCA07), Irbid,
Jordan, March 19-23.

[29] Juhi Ameta, Nisheeth Joshi and Iti Mathur, 2011, “A
Lightweight Stemmer for Gujarati,” 46th Annual
National Convention of Computer Society of India.
Organized by Computer Society of India Gujarat
Chapter. Sponsored by Computer Society of India and
Department of Science and Technology, Govt. of Gujarat
and IEEE Gujarat Section.

[30] Vijay Sundar et.al, “Morphological Analyzer for
Classical Tamil Texts,” Workshop on Computational
Linguistics for South-Asian Languages, 2012.

[31] K. Suba, D. Jiandani and P. Bhattacharyya, “Hybrid
Inflectional Stemmer and Rule-based Derivational
Stemmer for Gujarati”, In proceedings of the 2nd
Workshop on South and Southeast Asian Natural
Language Processing (WSSANLP), IJCNLP 2011,
Chiang Mai, Thailand, pp.1-8, 2011

