
DOI: http://dx.doi.org/10.26483/ijarcs.v9i2.5853

Volume 9, No. 2, March-April 2018

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 438

ISSN No. 0976-5697

LITERATURE REVIEW ON SOFTWARE COMPLEXITY, SOFTWARE
USABILITY AND SOFTWARE DELIVERABILITY

Mohd. Kamran Khan

Department of Computer Science & Engineering
Integral University

Lucknow, Uttar Pradesh, India

Mr. Faiyaz Ahmad
Department of Computer Science & Engineering

Integral University
Lucknow, Uttar Pradesh, India

Dr. Mohammadi Akheela Khanum

Head, Department of Computer Science & Engineering
Integral University

Lucknow, Uttar Pradesh, India

Abstract: This paper is a literature survey (Review Paper) of comparative analysis on various definitions and concept explanations on software
complexity, software deliverability and Software usability published recently (till date) in different international papers and books. This paper
also includes the basic introduction of soft computing and its approaches. This paper explains how the software usability gets affected by the
software complexity.

Keywords: Software Complexity, Software Usability, Software Deliverability and Soft Computing

I. INTRODUCTION

With the ever-increasing expansion of business forces, it is
becoming very hard to model the software in a decentralized
and distributed atmosphere. If we model the complete business
process, it leads to an extremely complex and demanding
software application which means complexity in the usage. The
major aim of the software gets defeated if its user finds it very
hard to operate or cannot contribute considerably to the
productivity. The huge amount of data and functionalities
required by the current enterprise systems imposes numerous
challenges on software developers. The most important
difficulty arises to maintain a balance between Software
Complexity and Usability, as both the qualities of the software
is very much inter-related. The main reason of choosing this
study is the companies like SAP, Oracle are now losing their
market because of the cost and complexity of their software
product.

II. SOFTWARE COMPLEXITY

Complexity has been a frequent word in recent scientific
literature, in different fields and with diverse meanings.
Sometimes complexity appears as a precise concept, at other
times as vague ideas. Many organizations are seeking to
upgrade their business with the help of Software. These
organizations are looking out for software supplier which can
provide a tool that meets their organizational needs. Although
there are number of tools available in the market, but the sole
reason of selecting criteria over completing product is the ease
of use [2,7]

The process of software development, including

documentation, design, program, test, and maintenance can be
measured statistically. Therefore, the quality of software can be
monitored efficiently. Software metrics is very important in
research of software engineering and it has developed
gradually. In this paper, software metrics definition was given

and the history of and the types of software metrics were
overviewed. Software complexity measuring is the important
constituent of software metrics and it is concerning the cost of
software development and maintenance. In order to improve
the software quality and the project controllability, it is
necessary to control the software complexity by measuring the
related aspects [1, 2].

The software products that are technologically advancedand

developed based on prioritized requirements can be anticipated
to have a minor probability of being rejected. In order to
rankthe requirements, participants will have to relate them in
order to limit their relative status through a weighting or
scoring arrangement [10]. These comparisons turn out to be
complex with rise in the number of requirements [11]. Hence,
the intention of this learning is to chronologically select and
review published literature and present a holistic outline of
present techniques used in ordering software requirements. To
the greatest of the authors’ knowledge, there is no present SLR
that emphases on prioritization techniques with respect to their
explicit boundaries, taxonomies, and procedures. Instantly, the
crux of this SLR is to abridge and simplify the existing
evidences concerning (1) the existing prioritization procedures,
(2) their restrictions, (3) procedures and (4) taxonomies. This
SLR will thusdeliver insight for both researchers as well as
practitioners in the businesses and academic world in their
pursuit to develop and employenhanced techniques [2,3].

With the evolution of the software development, the scale

of the software is increasingly growing to the extent that we
cannot hand it easily. Some metrics are proposed to measure
the complexity of software in last a few years. This article aims
at a comprehensive survey of the metric of software
complexity. Some classic and efficient software complexity
metrics, such as Lines of Codes (LOC), Halstead Complexity
Metric (HCM) and Cyclomatic Complexity Metric (CCM), are
discussed and analyzed first[4,9].

Mohd. Kamran Khan et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 438-441

© 2015-19, IJARCS All Rights Reserved 439

Software complexity is important to researchers and

managers, yet much is unknown about how complexity evolves
over the life of a software application and whether different
dimensions of software complexity may exhibit similar or
differentevolutionary patterns. Using cross-sectional and
longitudinal data on a sample of 108 open source projects, this
research investigated how the complexity of open source
project releases varied throughout the life of the project.
Functional data analysis wasapplied to the release histories of
the projects and recurring evolutionary patterns were derived.
There were projects that saw little evolution, according totheir
measures of size and structural complexity. However, projects
that displayed some evolution often differed on the pattern of
evolution depending onwhether size or structural complexity
was examined [5, 11].

III. SOFTWARE USABILITY

The integration of User-Centered Design (UCD) and Agile
development processes have been gaining increased interest, in
part due to the complementarity of the techniques, the benefits
each can apply to the other, and the challenges associated with
their combination. The research paper in this contextoutlines a
Systematic Literature Review (SLR) that was focused on the
Agile as well as UCD integration. The objective of this SLR
was to recognizenumerous challenging issues that limit Agile
and User Centered Design Integration (AUCDI) and discover
the projected practices to handle them. Agile methods are
lightweight software development methods that tackle
perceived limitations of plan-driven methods via a compromise
between absence of a process and excessive process [29]. Agile
methodsfocuson dealing with the volatile requirements
throughdumping upfront, exactly defined strategies [6,8].

Agile approaches are simpler software development

procedures that handles perceived restrictions of plan-driven
approachesthrough a negotiationamong absence of a process in
addition to excessive process. The Agile processes intent to
handle with volatile necessitiesthrough discarding upfront,
precisely clear plans. They are basically used to develop
software incrementally.

From last few years, the development of software has been

considered by two mainstyles: agile software development, that
aims to attainimproved flexibility and velocity during the
process of development, and user-centered design, that places
the objectives and requirements of the system’s end-users at the
middle of development of software in order to bring software
with suitable usability [7].

The Software Usabilityis well-defined by ISO as “the

software product’s capability to belearned, understood, used
and striking to the end user, when used
indefinitecircumstances” [1]. This attribute has gained
importance as an integral quality aspect of software
development [2]. The benefits of usability for users and
software companies have been much highlighted in literature
[3, 4, 5]. However, poor usability is the single biggest cause of
software application failure in practice [6]. For over a decade,
the software engineering (SE) community has been actively
pursuing different lines of research targeting the incorporation
of usability practices into software development [9, 10].

IV. SOFTWARE DELIVERABILITY

The deliverability of the software deliverability can be
measured as the degree of the usability factor providing to the
handler of the system by the software. The deliverability of
softwaremust be high with the intention ofachieveextreme
value from thesoftware. The commercial value of any software
is vastly affected by the deliverability of software which in
futureenforcesnumerouslimitations on the software designers
[19,20].

The usability of software is essentially the level of ease or

the comfort with which anend-user can work on the software.
Like explained earlier the complexity of softwarediffers from
one user to anotheruser and from one software to another in a
definite and controlledset-up. The usability of software also
varies consequently. The higher the software complexity, the
lower will be the usability aspect of that specific software in
use [12, 17].

High usability factor permitsthe software to

capturemaximum market space prospect as comparison to those
software products which has comparatively low software
usability value. This straight awayimpacts the market position
of the companyand the software product.

The well-known term ‘software usability’ in the perspective

of developing software represents a method that place the user,
instead of the system, at the center of the business process
which is to be developed. This concept is called user-centered
design, thatincludes user apprehensions and advocacy from the
start of the design procedure and commands that the
requirements of the end user must be leading in any design
results [14, 21]. The greatest visible characteristic of this
method is usability testing, that includesthe work of users and
interact with the x interface of the software and share their
opinions and worries with the software developers. This
paperdeliberates the notion of software usability and why it
must be a significant part of the software project [13, 25].

The standard definition of software usability given by ISO

is "The degree up to which a software product can be utilized
by particular users to attain particular objectives with
efficiency, and effectiveness as well as satisfaction in a
specified context of usage”. The term ‘usability’ is also refers
to the ways for improving the ease-of-use by the user during
the software development design process [23, 27].

The usability consultant Jakob Nielsen and computer

science professor Ben Shneiderman have given (individually)
regarding a framework of the software system acceptability,
where the software usability is an integral part of the
‘usefulness’ and is composed of following factors:

1. Efficiency
2. Learnability
3. Satisfaction
4. Memorability
5. Errors

The mentioned factors can be explained simply. Like
learnability is how effortless is it for users to complete
fundamental tasks the opening time they come across the
design. In addition, the term efficiency can be explained as
once the users have learned the design, how fast can they carry
out the everyday jobs [16,18].

The next factor memorability can be defined as when users

go back to the design following a period of not using it, how

Mohd. Kamran Khan et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 438-441

© 2015-19, IJARCS All Rights Reserved 440

effortlessly can they re-establish the expertise. The next factor
errors can be understood as how many errors do users make,
how rigorous are these errors, and how without difficulty can
they recuperate from those errors and the last factor satisfaction
can be explained as how pleasing is it to utilize the design [22,
26].

Six basic factors of software usability are as follows: -

1. Context shifts
2. Navigational guidance
3. Input parameters
4. System feedback
5. Error feedback
6. New concepts

1. The term ‘Context shift’happens when the end user

crosses the tool or product boundaries, graphical user
interface,so as tocarry out a step.

2. Navigational guidance refers to the support provided to a

user for proceedings into a step (from the previous step) and
through the step.

3. The Input parameters are basically the data supplied by

the end user to executeall the steps.

4. The term ‘System feedback’is defined asresponse of the

system to the actions of the end user for a given prescribed
steps. Instances of system feedback may comprisegrowth
indication dialog boxes, verification of execution of commands
and reports generated by systems.

5. The term ‘Error feedback’can be definedas the response

of the system to frequentfault situations the end user may
encounter.

6. The term ‘New concepts’ refer to the background

information on a explicitissue that the end user desires to know
in order to execute a step and that the end user has encounter
for the very first time in the perspective of therecent task(s)
[24].

CONCLUSION

Deliverability of the software can be measured as the
degree of the usability factor given to the software user. The
deliverability of software be high so as toachieveoptimum
value from the software in use. The commercial value of any
software is majorlyimpacted by the deliverability of software
which further imposes numerouslimitations on the software
developers.Higher the complexity, lower will be the usability
aspect of that particular software product.

V. ACKNOWLEDGMENT

The author is thankful to Dr. Manuj Darbari, Professor,
Department of Information Technology, BBDNITM, Lucknow
and Dr. Siddharth Lavania, Manager, IFCI Ltd, New Delhi for
their kind support and encouragement in this research work.

VI. REFERENCES

[1] Honglei, T., Wei, S., & Yanan, Z. (2009, December). The
research on software metrics and software complexity metrics.

In Computer Science-Technology and Applications, 2009.
IFCSTA'09. International Forum on (Vol. 1, pp. 131-136).
IEEE.

[2] Achimugu, P., Selamat, A., Ibrahim, R., & Mahrin, M. N. R.
(2014). A systematic literature review of software
requirements prioritization research. Information and software
technology, 56(6), 568-585K.

[3] Paternoster, N., Giardino, C., Unterkalmsteiner, M.,
Gorschek, T., & Abrahamsson, P. (2014). Software
development in startup companies: A systematic mapping
study. Information and Software Technology, 56(10), 1200-
1218.

[4] Yu, S., & Zhou, S. (2010, April). A survey on metric of
software complexity. In Information Management and
Engineering (ICIME), 2010 The 2nd IEEE International
Conference on (pp. 352-356). IEEE.

[5] Darcy, D. P., Daniel, S. L., & Stewart, K. J. (2010, January).
Exploring complexity in open source software: Evolutionary
patterns, antecedents, and outcomes. In System Sciences
(HICSS), 2010 43rd Hawaii International Conference on (pp.
1-11). IEEE.

[6] Salah, D., Paige, R. F., & Cairns, P. (2014, May). A
systematic literature review for agile development processes
and user centred design integration. In Proceedings of the 18th
international conference on evaluation and assessment in
software engineering (p. 5). ACM.

[7] Brhel, M., Meth, H., Maedche, A., & Werder, K. (2015).
Exploring principles of user-centered agile software
development: A literature review. Information and Software
Technology, 61, 163-181.

[8] Carvajal, L., Moreno, A. M., Sanchez-Segura, M. I., & Seffah,
A. (2013). Usability through software design. IEEE
Transactions on Software Engineering, 39(11), 1582-1596.

[9] Parks, N. E. (2012, October). Testing & quantifying ERP
usability. In Proceedings of the 1st Annual conference on
Research in information technology (pp. 31-36). ACM.

[10] Albertao, F., Xiao, J., Tian, C., Lu, Y., Zhang, K. Q., & Liu,
C. (2010, November). Measuring the sustainability
performance of software projects. In e-Business Engineering
(ICEBE), 2010 IEEE 7th International Conference on (pp.
369-373). IEEE.

[11] Lavania, S., Darbari, M., Ahuja, N.J., Siddqui, I.A.:
Application of computational intelligence in measuring the
elasticity between software complexity and deliverability. In:
2014 IEEE International Advance Computing Conference
(IACC). IEEE (2014)

[12] Lavania, S., Darbari, M., Ahuja, N.J., Shukla, P.K.:
Application of evolutionary algorithm in managing the trade-
off between complexity of software and its deliverables. Int.
Rev. Comput. Softw. 7

[13] Lavania, S., Darbari, M., Ahuja, N., Siddqui, I.A.: Application
of computational intelligence in measuring the elasticity
between complexity and deliverability. In: 4th IEEE
International Advanced Computing Conference—IACC
(2014)

(6), 2899–2903 (2012)

[14] Lavania, S., Darbari, M., Ahuja, N. J., & Shukla, P. K. (2012).
Application of evolutionary algorithm in managing the trade-
off between complexity of software and its deliverables.
International Review on Computers & Software, 7(6), 2899-
2903

[15] Lavania, S., Darbari, M., Ahuja, N., Siddqui, I.A.: Genetic
algorithms-fuzzy based trade-off adjustment between software
complexity and deliverability. In: 9th Annual International
Joint Conferences on Computer, Information, Systems
Sciences, and Engineering. Springer (2013)

[16] Y.Dia and Keller, “Quantifying the complexity of IT Services
Management Processes”, IBM Research Report, 2006.

[17] Sobiesiak, R., & O'Keefe, T. (2011, November). Complexity
analysis: a quantitative approach to usability engineering. In
Proceedings of the 2011 Conference of the Center for
Advanced Studies on Collaborative Research (pp. 242-256).
IBM Corp.

Mohd. Kamran Khan et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 438-441

© 2015-19, IJARCS All Rights Reserved 441

[18] Y.Dia and R.Sobiesiak, “Quantifying Software Usability
through Complexity Analysis”, IBM Design: papers and
Presentations, 2010.

[19] P K Shukla, S P Tripathi, Interpretability issues in
Evolutionary Multi-Objective Fuzzy knowledge Base
Systems, 7th

[20] Darbari, M., & Yagyasen, D. (2013). Application of
Granularised OWL framework for modeling Urban Traffic
System. Pensee Multidisciplinary Journal, 75(9).

 International Conference on Bio-Inspired
Computing: Theories and Applications (BIC-TA 2012),ABV-
IIITM, Gwalior,India,14-16 December, 2012.(Springer AISC
SERIES).

[21] Ahmad, S. S., Purohit, H., Mohammed, F. N., & Darbari, M.
(2013). Information granules for medical infonomics.
International Journal of Information and Operations
Management Education, 5(3), 205-213.

[22] Diao, Y., & Keller, A. (2006, October). Quantifying the
complexity of IT service management processes. In

International Workshop on Distributed Systems: Operations
and Management (pp. 61-73). Springer, Berlin, Heidelberg.

[23] Nielsen, J., & Mack, R. L. (1994). Usability Inspection
Methods John Wiley & Sons. New York.

[24] Neilson Jacob, “Usability Engineering”, Boston AP
Professional, 1994, ISBN:

[25] D. Dumas, Joseph S., and Janice C. Redish. “A practical guide
to Usability Testing”, London : Intellect Books, 1999. ISBN:
1841500208.

0-12-518400-X

[26] L. Zadeh, “Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems”,
Selected Papers by Lotfi A Zadeh edited by: George J
Klir (SUNY, Binghamton) edited by: Bo Yuan (SUNY,
Binghamton). ISBN: 978-981-02-2421-9.

 Reports
[27] Usability in Software Design, “A Report by Microsoft

Corporation”, 2000

	Introduction
	Software Complexity
	Software usability
	Software deliverability
	Acknowledgment
	References

