
DOI: http://dx.doi.org/10.26483/ijarcs.v9i2.5746

Volume 9, No. 2, March-April 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 460

ISSN No. 0976-5697

EVALUATION OF OPENMP OPTIMIZATION IN HETEROGENEOUS
COMPUTING MODE BY CODE OFFLOADING ON INTEL XEON PHI CO-

PROCESSOR

Kajal Chauhan
M. Tech. Student, Dharmsinh Desai University,

Nadiad-387001, Gujarat, India

Dr. C. K. Bhensdadia
Head of Dept. of Computer Engineering

Dharmsinh Desai UniversityNadiad-387001, Gujarat, India

Dr. M. B. Potdar
Project Director, Bhaskaracharya Institute for Space

 Applications and Geo-Informatics
Gandhinagar 382007, India

Abstract: As the computing needs are increasing, the utilization of compute powers of multi-processors and co-processors together is an active
area of research. This paradigm is known as Heterogeneous computing. With the increasing data sizes and complexity of algorithms, and dead
lock reached in processor clock frequency due to power constraints, multi core and many core CPUs and GPUs have been used for parallel
computing. It has become new approach for high volume data processing in the field of image processing. The present authors had earlier tested
on the Intel Quad Core i7 processor with 8 threads and two Intel Xeon 12 core with 48 threads CPUs for optimization of K-Means clustering
image processing code using remote sensing data. The speedup of 5x was achieved on Intel i7 core CPU and 13x was obtained on Intel Xeon
CPU when dynamic scheduling as threads deployed were large. In continuation of the earlier studies, the present study analyses the Intel Xeon
phi coprocessor 7120P(device) HPC accelerator performance with processor base frequency of 1.24 GHz along with OpenMP Parallel
computing model. It is observed that the offloading will not give best result with small data size. To get the full benefits of offloading on Intel
Xeon phi coprocessor, computation offloading with OpenMP utilizing both processor and coprocessor gains accelerations and increases the
performance if communication overhead is less than the computation times which is highly application dependent.

Keywords: Key words: Intel i7, Xeon, Intel Xeon Phi, Code Offloading, OpenMP, Image Processing, K-Means Clustering, Code Optimization.

I. INTRODUCTION

Since the requirement and need of more and more compute
power is increasing rapidly, there many new architectures
are to fulfill this requirements. One of them is GP-GPU to
fulfill this requirement. The GPU manufactured by NVIDIA
mainly for gaming systems have found way into parallel
computation as GP-GPUs. The GPGPU Provides high
parallelism and fast computation speed for parallel
applications, but its CUDA programming complexity
presents a significant challenge for developer and has been
greatly simplified by introducing improved library functions
for better memory management [3]. Even though the CUDA
Programming model was developed specifically for
NVIDIA GPU, the heterogeneous programming of GP-GPU
is still complex as compared to programming to General
Purpose CPU and Intel Xeon phi co-processor/Processor
using parallel programming model such as OpenMP. The
another architecture which can accomplish the requirement
of accelerated computing is many integrated core (MIC)
architecture of Intel Xeon Phi coprocessor (fig. 1). A
program source code written for standard Intel® Xeon®
processor(CPU) can be compiled and run on a Intel® MIC
Products (Intel Xeon phi). The programming these cores can
be with the OpenMP directives in standard C, C++, and

FORTRAN source code[4]. The newer version of OpenMP
like OpenMP v4.0 [5] provides directives to program
accelerators and also new directives to address the
management of a shared-memory. OpenMP v4.0 focuses on

latest Intel Xeon phi co-processor and processor
technologies. OpenMP v4.0 contains some key directives
like “target” which compiles and loads the executable onto a
device and the “map” clause for selection of data item to be
transferred to and from the device. The “target data”
directive allows allocating of device and transferring of data
to it. Before the actual offload takes place, the “device”
clause has provision of allowing a specific device if more
than one device is present in the system. [6].

Three modes of offloading are shown in fig. 2. The most
common Execution modes in heterogeneous environment is
offloading a compute intensive portion of a code to the
Device [7, 8]. The mode is known as native mode, wherein
the entire code is uploaded on the device for execution .

Offload mode: In this mode, an application starts execution
on a host and later some selected highly computationally
intensive parallelizable portions of the code are offloaded
(i.e. sent) to device(s) for the execution on coprocessors by
using all the cores and resources on the device computing
system. This mode is used when a program contains largely
and highly parallel codes and the concerned data for
processing on the device(s) are large in size. The data
required for processing on device(s) by the offloaded
program for computation is to be transferred from CPU to
coprocessor(s) only once without any need of multiple
transfers. In this model, the coprocessor acts as an
accelerating device similar to GPU. The Offload is achieved

Kajal Chauhan et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,460-466

© 2015-19, IJARCS All Rights Reserved 461

by using Offloading directive available in OpenMP v4.0 and
later versions. Using this directive at the beginning of a code
region, where parallel computation is accelerates the
computation quite significantly.

Fig. 1 High level overview of the Intel Xeon Phi Co-
processor architecture [2].

This mode is hindered by the issue of the time required for
transferring the related data from host memory system to the
device(s) memory systems. The larger the volume of the
data, more the time required for transfer. Also, the time
overhead required for establishing link from host to
device(s) is also quite significant.

The loss in time due to data transfer need to be compensated
by the processing time of all computing elements of the
device(s). In general, the processors on the GPU are slower
than those of the host. The offloading to devices becomes
economical only when the gain in the processing time even
with slower processors surpasses the data transfer time by a
large margin.

Native mode: In this mode, the entire application is made to
run on coprocessor itself. The program code is compiled for
"mmic" execution using a suitable compiler. The executable
is transferred to the device. The user set default to the device
and thus executes the code in the native mode. Hence, in this
mode not all the platform computing power is used. The
input data for processing has to be uploaded to the device
memory separately. A major drawback is the smaller size of
the coprocessor memory than the host processor RAM
memory. Therefore, this mode is more beneficial when
application contains high or massive amount of
computations parallelism without the sequential or minor
sequential components. Most of the computations involved
in scientific research fall in this category of data processing
types.

The OS running on the devices is usually is Linux. Using
this native mode of execution is simple when the host is also
running on the Linux OS. If the host is running on Windows
OS, a secure connection to device need to be established.
Such a situation is avoided if Knights landing Intel Xeon
Phi processor is deployed in place of host processor(s).

Symmetric mode: In this case, the application program
runs on both the host processor and coprocessor(s) with
some workload sharing which is possible with Message
Passing Interface (MPI). All available cores on host and
devices are used. However, a programmer may face two
challenges. First, balancing the workload among the
different number of cores in CPU and GPU coprocessors.
Second, the communication cost through MPI can be usually
higher than the computation cost. The second can be
minimized when the data when is large. The cost-benefit
analysis is required to be carried out in this mode of
operation.

II. INTEL XEON PHI COPROCESSOR

Intel Xeon Phi architecture is based on different hardware
design and programming principles than its closest
contender NVidia Tesla and AMD in HPC market used for
acceleration of general purpose computing and highly
parallel applications. The applications which benefit in
performance with GPU should always benefit from Intel
Xeon Phi coprocessor because of the same fundamentals of
vectorization, SIMD implementation etc. The flexibility of
an Intel Xeon Phi includes support for applications that can’t
be run on GPUs. Moreover, the efforts required for
programming in Intel Xeon Phi is much less than that for
CUDA (Table 1). CUDA programming requires specially
writing of application kernels. Programs written in OpenMP
are can be easily ported for execution on Intel Xeon Phi
Coprocessor (Table 2). The Compute kernel can be easily
ported to Intel Xeon Phi without much code changes. The
efforts of porting applications to CUDA or OpenCL are
usually much higher in than those required in case of
OpenMP directive based programming model [10, 11].

The Intel® Xeon Phi™ coprocessor can be programmed
with standard techniques like C/C++, Fortran using
parallelization paradigms like OpenMP, Co-array Fortran,
OpenCL and systems MPI, Intel Cilk, Intel TBB and the
Intel Math Kernel Library (MKL). The OpenMP is enough
to get better result when used with latest offload version of
OpenMP v4.0/4.5 to get high performance [12].

Intel Xeon phi coprocessor (named Knights Corner) is
powered by one or more processors which act as a host for
coprocessor and each host has one or more number of
coprocessor. The Intel Xeon Phi coprocessor is connected to
an Intel Xeon processor through PCI Express bus. To boost
the application performance, both the Intel Xeon processor
and Intel Xeon phi coprocessor can be used. Intel Xeon phi
coprocessor Architecture, as shown in Fig. 1, contains 61
cores running at 1.24 GHz Pentium cores [13] supporting
maximum 4 threads per core. It also includes 32 vector
registers with width of 512 bits. Various Execution model as
explained earlier offload, native and symmetric have been
developed and design that is used for the execution of
application on Intel Xeon phi coprocessor in associated with
host processor [7, 14].

Kajal Chauhan et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,460-466

© 2015-19, IJARCS All Rights Reserved 462

Fig. 2 Execution Model of CPU alone, Symmetric, offload

and Native.

The 2nd Generation Intel Xeon phi Processor [5] (named
Knights Lander) is the first Intel’s bootable host processor
that provides vectorization and massive parallelism for HPC
applications. Its architecture is based on well-known Intel's
standard shared memory architecture, which basically
focuses on providing improvement in vector and scalar
performance. It contains up to 72 cores and adopts new
memory technology, MC-DRAM for large high bandwidth
memory transfers and DDR for huge bulk memory transfers.
The Knights Landing is upgradation for Knights corner user.
The Applications which run are on Knights Corner can
easily run on Knights Landing. The programming language
that work for Intel Xeon processor and Knights Corner, viz.
OpenMP, MPI and TBB, work equally well for Knights
Landing. But GPU Programming like CUDA and OpenCL
are not possible for this processor.

Intel Xeon phi coprocessor (named Knights Corner) is
powered by one or more processors which act as a host for
coprocessor and each host has one or more number of
coprocessor. The Intel Xeon Phi coprocessor is connected to
an Intel Xeon processor through PCI Express bus. For better
performance of applications, both the Intel Xeon processor
as host and Intel Xeon phi as coprocessor can be deployed.
Intel Xeon phi coprocessor Architecture, (Fig. 1) contains
61 cores running at 1.24 GHz Pentium cores [13] supporting
maximum 4 threads per core. It also includes 32 vector
registers with width of 512 bits. Various Execution model as
explained earlier offload, native and symmetric have been
developed and design that is used for the execution of
application on Intel Xeon phi coprocessor in associated with
host processor [7, 14].

The 2nd Generation Intel Xeon phi Processor [5] (named
Knights Lander) is the first Intel’s bootable host processor
that provides vectorization and massive parallelism for HPC
applications. Its architecture is based on well-known Intel's
standard shared memory architecture, which basically
focuses on providing improvement in vector and scalar
performance. It contains up to 72 cores and adopts new
memory technology, MC-DRAM for large high bandwidth
memory transfers and DDR for huge bulk memory transfers.
The Knights Landing is upgradation for Knights corner user.
The Applications which run are on Knights Corner can
easily run on Knights Landing. The programming language

that work for Intel Xeon processor and Knights Corner, viz.
OpenMP, MPI and TBB, work equally well for Knights
Landing. But GPU Programming like CUDA and OpenCL
are not possible for this processor.

Table.1 Programming comparison of Intel Xeon Phi co-
processor with CUDA Enabled Device [9]

Programming
Approach

CUDA Enable
Device

Intel Xeon Phi co-
processor

Language such
as C/C++

/Fortran etc

Only Through
the offload

programming
mode. Many
language can
be accelerated
only by calling

CUDA,
OpenCL or

library
methods

Both Native and
offload mode but

requires the use of a
threading model like
Pthreads or OpenMP

CUDA,
OpenCL

acceleration

On device as
an offload
accelerator

Offload model,
OpenCL compiler
support is coming.

Technically possible
for CUDA, but

products such as
CUDA-x86 do not
currently generate

code for Intel Xeon
Phi coprocessor.

Alternate possible
path include (1) the
CU2CL CUDA-to-

OpenCL source
translator,(2)LLVM

translation and
(3)manual translation

Directive-based
programming

Via OpenACC
as an external

accelerator

Via OpenMP natively
and in offload mode

Programming
with libraries

Both native
and offload

mode

Both on-device and
offload

III. OFFLOADING TO INTEL XEON PHI COPROCESSOR

Intel Xeon Phi coprocessor enables new OpenMP
programming directive “offload” that offloads the
computation from a host processor to Intel Xeon phi co-
processor for parallel processing. Offloading advantage
depends on factors such as (i) application characteristics
such as the computation part must be higher than the
communication for the offloaded portion, (ii) efficiency of
host and coprocessor runtimes in transferring data and speed

Kajal Chauhan et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,460-466

© 2015-19, IJARCS All Rights Reserved 463

of code invocation etc. Intel provides a user-level offload
library called the "Intel Coprocessor Offload Infrastructure
(COI)" for the services to create coprocessor-side process. It
creates FIFO pipeline between host and coprocessor, moves
data and uploads code, invokes code, manage memory
buffer etc. The language pragmas is one of the programming
model which provides compiler directives for offloading
like “#pragma omp offload”, for transfers of data to and
from coprocessor for offloading code, with clauses “in, out,
inout and nocopy”; of which the “inout” is used implicitly.
For the synchronization of variables between host and
coprocessor “#pragma offload target(mic)” directive is used
to offload. The “#pragma offload_transfer target(mic)’’
minimizes the data transfer allocation overhead on device.
Therefore, it depends on the programmer how to enhance
offload speedup[5]. For using offload directives, the
following steps need to be followed:

1) Install Intel's MPSS i.e. Many core Platform
Software Stack [15].

2) Set the environment for Intel MIC Architecture
software [16] and install the driver successfully and
start the coprocessor.

3) Install the Software Development tools [17] and
install the latest version of Intel compiler.

4) Configure the Intel Parallel Studio XE with visual
studio.

5) Enable all offload and OpenMP options in the
project properties.

Table. 2 Comparison of NVDIA GPU with Intel Xeon
Phi co-processor

 NVidia GPU Intel Xeon Phi co-
processor

Number of
cores

2880(K40 TESLA) 72 (7290F)

Memory size 12GB(K40
TESLA)

384GB(7290F)

Parallelism Data parallelism Task Parallelism

Directives OpenACC OpenMP + Phi
Directives

Tools Intel Native
Compiler

OpenCL

Native
Programming

Model

CUDA Vector Intrinsic

IV. OBJECTIVES

The present authors reported in [1] the analysis of OpenMP
Directives based optimization of K-Means clustering
algorithm on Intel Core™1 i7-4790 3.6 GHz Quad core
host processor with 8 logical threads and on twin Intel Xeon
Processor E5-2680 v3 2.5 GHz host processors with 12
cores each and 48 logical threads. The Fig. 3(a, b) show the
execution times on Intel i7 processors with 8 threads and on
Intel Xeon processors with 48 threads, respectively. The

speedup factor of 4.3 was obtained with Intel i7 Quad core
(8 threads) host and 14.2 with Intel Xeon dual 12 core (48
threads) host. This present work extends the above work to
include Intel Xeon Phi co-processor and offload compute
intensive code to it and evaluate the advantage gained over
the previous configurations. In Offloading we can use both
Intel Xeon Processor on host and Intel Xeon Phi coprocessor
by using OpenMP directives.

Fig 3a. Speedup on Intel® Core™ i7-4790@3.60

Fig 3b. Speedup on Intel® Xeon® Processor E5-2680 v3@

2.50 Processor

V. DATA ANALYSIS AND RESULT

We have used the K-Means clustering code that does
unsupervised classification of the remotely sensed
multispectral data based on the clustering in the spectral
feature space. Earlier, the results of the OpenMP
optimization of this code on Intel i7 and Intel Xeon Hosts
have been reported [1]. The optimization of this code in
heterogeneous computing environment comprising of Intel

mailto:i7-4790@3.60�

Kajal Chauhan et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,460-466

© 2015-19, IJARCS All Rights Reserved 464

Xeon two 12 core 2.5 GHz CPUs having 16 GB primary
memory as host and Intel Xeon Phi (Knights Corner) 61
cores with processor speed 1.24 GHz co-processor as device
by offloading K-Means clustering algorithm is attempted.
We have used OpenMPv4.0/v4.5 Directives. The Microsoft
Visual Studio ultimate 2012 is integrated with Intel Parallel
Studio XE 2017 which provides the Intel compiler C++ 17.

The Performance of OpenMP optimization of K-Means
clustering algorithm using four band multispectral data
acquired by Landsat 8 Thematic Mapper. The basic 4 band
multispectral data of 512 lines by 512 columns were
rescaled to sizes 256*256, 768*768, 1024*1024,
1280*1280, 1536*1536 and 1792*1792 lines and columns.
The data volume of 1792x1792 images increased by a factor
49 compared to the size of 256x256 lines and columns.

Fig. 5 Speedup factor as a function of Data size factor of
offloading, OpenMP and both.

Case 1: The K-means clustering code is run with both
Offloading followed by OpenMP. The parallel and compute
intensive portions of the code were offloaded to Intel Xeon
phi coprocessor on which the code is run in under OpenMP
directives. The volume of data size is changed by a factor
of49 as described above. This mode utilized all the 48
threads available on host of execution of that part the which
is not offloaded to the device. The offload portion of the
code is run using all 240 threads. As there are four
parallelizable regions in the code, all are offloaded
separately. The processor times for each of the offload
portions are computed and later summed to compute total
offload processing time. Based the total compute times with
and without offloads, the speedup factors are computed for
each data set whose volume ranges by a factor of 49. These
are shown in Fig. 4. The speedup factor ranges from 5.95 to
16.97 as data volume ranges from 1 to 49.

Case 2: In this case, the K-Means clustering code is run
without OpenMP optimization directives. The data are
transferred to the Xeon Phi device, but processed without
OpenMP directives. The data are processed using all the
threads available on Xeon Phi device, which is can be up to
240 threads. Based on the total compute times of four
offload regions, the speedup factors are computed and
shown in Fig. 4. They range from nearly 0.83 to 1.09 as the
data volumes ranges by a factor of 49. The compute times
do not take into account the data transfer time from host
primary memory to the device memory. The data transfer
time to Xeon Phi device required by is about 3.3 seconds.

Fig. 4 Optimize the K-Means algorithm using OpenMP
directives and apply offloading on Intel Xeon phi

coprocessor.

Kajal Chauhan et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,460-466

© 2015-19, IJARCS All Rights Reserved 465

The Fig. 4 shows flow chart of the source code of K-Means
clustering in which the three portions of offloading and
OpenMP optimizations are indicated.

We have evaluated the performances of OpenMP and
offloading case of following 3 options:

Case 3: In this case, the data are not offloaded to the device,
but rather processed using only OpenMP directives. In this
mode, the code is executed on the host processors Intel Xeon
using maximally available 48 threads. The speedup factors are
computed from the compute times with and without use of the
OpenMP directives (Fig. 4). They range from 6.43 to 16.67,
which are almost as the case 1 above.

By using only OpenMP on host gives better result for image
size 256 *256, 512 * 512 and 768*768 but as we increases
image size more than 768x768, the OpenMP with Offloading
on host and device both gives better results than just using
OpenMP individually on host. In offloading, the data transfer
overhead should be much smaller than computation time. This
can result if data volume is smaller and the code is highly
compute intensive. For large volume data and less
computations, the offloading is not economic. The data
transfer process first initializes and allocates the memory on
device and then map the variable to device from host.
Therefore to get benefits of offloading, it is required to ensure
that the data transfer overhead should be smaller than the
communication overhead.

Fig. 6 Execution Time of offloading followed by OpenMP on

Intel Xeon Phi coprocessor (device) and Intel Xeon core
processor (host).

The Fig. 5 shows the Execution Times (required per iteration
in K-Means clustering algorithm) of offloading followed by
OpenMP optimization on host and device along with the
Execution Time of OpenMP on host. Here, it is observed that
OpenMP on host gives better result than that offloading
computation on device. This is because of the slower 1.24
GHz processor speeds of Intel Xeon Phi coprocessor 7120P
compute elements (device) which is less than 2.50 GHz
processor speed of Intel Xeon 12-core processor E5-2680.
Thus, OpenMP on host gives better result because the reading

and writing file is faster and no communication overhead is
negligible.

In Fig. 6 shows execution time per iteration by using
offloading execution mode with OpenMP directives for data
size raging up to 49. It increases from 21.5 ms for 256x256
size image data to 211 ms for 1792x1792 size images. In
absence of optimization, the time should increase by a factor
of 49 to 1053.5 ms (= 21.3*49) for later size image data. The
computed per iteration execution time with respect to 256 *
256 Image size time (21.5 ms) is higher than the actual per
iteration execution time. The Fig. 7 shows the speedup factors
increasing with image size. It is seen that the speedup factor
follows the data computation load provided by the data size.
With initial faster increase in data size also is also
accompanied by faster increase in speedup factor.

Fig. 7 Comparison of Calculated Execution Time w.r.t to 256*256
Image with Actual Execution Time by utilizing host and device both.

VI. CONCLUSION

As many parallel computing techniques and high performance
computers are evolved so far, the present study analyses the
Intel Xeon phi coprocessor 7120P(device) HPC accelerator
performance with processor base frequency of 1.24 GHz along
with OpenMP Parallel computing model. By utilizing both the
host processor (Intel Xeon 12-core processor E5-2680
v3@2.50) and Intel Xeon Phi coprocessor, the performance
can be accelerated when computation offloading execution
mode is used. In computation offloading with OpenMP
directives, the performance increases but not much because of
some essential reason which are required to be considered
while offloading. Firstly, offloading will not give best result
with small data size. To get the full benefits of offloading on
Intel Xeon phi coprocessor, it is required that Communication
overhead should be lower than computation time. Secondly,
the data size should be large enough. Thirdly, as hosts have
usually higher processor speeds than the processors in a
device, only OpenMP mode gives better result on host than
that on device. Hence, Offloading with OpenMP utilizing both
processor and coprocessor gains accelerations and increases

Kajal Chauhan et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,460-466

© 2015-19, IJARCS All Rights Reserved 466

the performance if communication overhead is less than the
computation times which is highly application dependent.

Fig. 8 Speedup factor of Calculated Execution Time w.r.t to 256 * 256 Image

with Actual Execution Time by utilizing host and device both.

VII. ACKNOWLEDGMENT

We the authors thank Director, BISAG, for providing
infrastructure and encouragement, and DDU, Nadiad for
permitting to carry out this project at BISAG.

VIII. REFERENCES

[1] Chauhan, Kajal, C. K. Bhensdadia, and M. B. Potdar, (2017),

Parallel Computing Models and Analysis of OpenMP
Optimization on Intel i7 and Xeon Processors, International
Journal of Computer Science and Software Engineering
(IJCSSE), Volume 6, Issue 12, p. 315-322.

[2] Intel® Xeon Phi™ Coprocessor Architecture for Software
Developers,https://software.intel.com/en-us/articles/intel- Xeon-
phi-coprocessor-architecture-for-software-developers.

[3] Wilt, Nicholas. The CUDA handbook: A comprehensive guide
to GPU programming. Pearson Education, 2013.

[4] Intel® Many Integrated Core Architecture – Advanced,
https://www.intel.in/content/www/in/en/architecture-and-

technology/many-integrated-core/intel-many-integrated-core-
architecture.html.

[5] Newburn, Chris J. et al., "Offload compiler runtime for the
Intel® Xeon Phi coprocessor." Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW),
2013 IEEE 27th International. IEEE, 2013.

[6] A comparison of heterogeneous and Many Core Programming
Model, https://www.hpcwire.com/2015/03/02/a-comparison-of-
heterogeneous-and-manycore-programming-models/

[7] Intel Xeon phi Programming Environment,
https://software.intel.com/en-us/articles/intel-xeon-phi-
programming-environment

[8] Kowalik, Janusz, Piotr Arłukowicz, and Erika Parsons.
"Speeding Up Computers." arXiv preprint arXiv:1603.05487
(2016).

[9] Culler, David, et al., "LogP: Towards a realistic model of
parallel computation." ACM Sigplan Notices. Vol. 28. No. 7.
ACM, 1993.

[10] James Jeffers, James Reinders, "Introduction" in Intel Xeon Phi
Coprocessor High Performance Programming, 2013.

[11] CUDA vs. Phi: Phi Programming for CUDA Developers,
http://www.drdobbs.com/parallel/cuda-vs-phi-phi-programming-
for-cuda-dev/240144545

[12] Capotondi, Alessandro, and Andrea Marongiu, 2016, "On the
effectiveness of OpenMP teams for cluster-based many-core
accelerators", in High Performance Computing & Simulation
(HPCS), International Conference on. IEEE, 2016.

.

[13] Intel Pentium Processor,
https://www.intel.com/content/www/us/en/products/processors/p
entium.html.

[14] Hybrid Computing – Coprocessors/Accelerators Power-Aware
Computing – Performance of Applications
Kernels,https://www.cdac.in/index.aspx?id=pdf_xeon-phi-prog-
overview-hypack

[15] Intel Many Core Platform Software Stack (Intel
MPSS), https://software.intel.com/en-us/articles/intel-manycore-
platform-software-stack-mpss

[16] Intel® Xeon Phi™ Coprocessor Developer's Quick Start
Guide,https://software.intel.com/en-us/articles/intel-xeon-phi-
coprocessor-developers-quick-start-guide

[17] Intel® Parallel Studio XE, https: //software.intel.com/en-
us/parallel-studio-xe

http://www.drdobbs.com/parallel/cuda-vs-phi-phi-programming-for-cuda-dev/240144545�
http://www.drdobbs.com/parallel/cuda-vs-phi-phi-programming-for-cuda-dev/240144545�
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss�
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss�

	I. Introduction
	II. Intel xeon phi coprocessor
	III. Offloading to Intel xeon phi coprocessor
	IV. objectiveS
	V. Data analysis and result
	VI. conclusion

