
DOI: http://dx.doi.org/10.26483/ijarcs.v9i2.5733

Volume 9, No. 2, March-April 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 247

ISSN No. 0976-5697

AN APPROACH TO IMPROVE ISOLATION AND SECURITY IN CONTAINER

BASED CLOUD SYSTEMS.

Salini Suresh
Department of Computer science

Seshadripuram Academy of Business Studies
 Bangalore, India

Manjunatha Rao
Department of MCA

Dr. Ambedkar Institute of Technology
Bangalore, India

Abstract: Container-based virtualization is a lightweight virtual hosting environment that provides application isolation with less overhead.
Containerization enables the creation of isolated, multiple user-space instances and effectual consumption of resources and rapid provisioning.
However, container-based virtual environments have a weak isolation due to a shared kernel. This makes the entire system vulnerable to security
attacks. This paper investigates various security issues in container based systems and proposes a solution for securing the container using a
novel access control model. We also conducted stress test using benchmarking tool to evaluate the enhanced isolation using our proposed model.

Keywords: cloud, container, security, isolation, authorisation, access control.

I. INTRODUCTION

Virtualization enables resource sharing using emulation of
resources. The hypervisor-based virtualization provides
sufficient isolation between guest virtual machines but
imposes significant overheads. On the other hand, in
container-based virtualization, the host operating system is
virtualized to aid multiple guest containers run on top of host
operating system without installing the added kernel for the
guest containers, which substantially reduces the performance
overhead [1].
 Kernel namespaces and control groups are deployed
to realize isolation between guests and host operating system
in Linux kernels. Namespaces offer resource isolation,
network isolation while cgroups bring about the resources,
process control and depict the configuration of a network. The
multiple processes added to cgroup shares all the resources
allocated to that group [2]. LXC has also taken on of Linux
Kernel features like chroot, Process identifier (PID) and permit
users to build and manage applications using APIs.

Even though namespaces and Linux kernel feature
perk up container security, there exist various security issues
due to a shared kernel and weak isolation. In this paper, we
investigate the security risks associated with a container based
virtual environment.

The major contributions of this paper are the following:
 We identify the security concerns in container based

virtual environments.
 We review the mechanisms to mitigate the identified

security issues.
 Propose a model to enhance the isolation and security

of the cloud container-based environment.
 Benchmarking the proposed model and evaluate the

performance.
The rest of the paper is organized as follows:
In Section II we have discussed security concerns in cloud

container based environments. Section III details the existing
security mechanisms that are deployed to address the
challenges in container security. Section IV explains the
proposed approach. Section V explains the access control

process flow of the security module. In section VI evaluation
of proposed system and the results are discussed.

II. SECURITY VULNERABILITIES

Containers suffer from weak isolation owing to sharing of
the system kernel. Any malicious code can get proliferated to
other containers and underlying operating system. A malicious
container on the host can compromise the security of other
containers and thus the entire system.

A user with root privileges on the container can
mount and access any directory from the host even the root
directory [3] which exposes the host to a threat called root
breakout. A process that breaks out of the guest container has
same access privileges on the host including root privileges.
Host break in attack turns out on the allocated container when
the host root gains access to containers and modifies it [4]. A
user with uid 0 will be root on the host with full root access
privileges on the host. This can lead to privilege escalation
attacks where a user gets privileges like root users.

The multi-tenant container cloud-based systems
where multiple containers share the host resources are
vulnerable to threats like information leakage [5]. Adversaries
can take advantage of these information leakage channels and
instigate attack that affects the confidentiality and integrity of
the entire system [6].

The container daemon is easily accessible from a web
interface which makes the applications in the container it
prone to security attacks. Malicious applications in the
container to tire out the system resources to an extent those
other applications are unable to use them, like in the case of
threats like Denial of service (DOS) [7]. Container lacks an
additional layer of isolation provided by the hypervisor which
makes it effortless for attackers to launch into the host
machine. Cloud container based environments that lack strong
access control policies are susceptible to cross site scripting
[8] attacks that let the attacker instill client side script into web
pages.

Salini Suresh et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 247-249

© 2015-19, IJARCS All Rights Reserved 248

III. SECURITY APPROACHES

A. ACCESS CONTROL MECHANISMS

The authentication and authorization of users to resources is
a major challenge in a multiuser environment. Numerous
security issues caused due to multi-tenancy can be addressed
by strong access control methods [9]. Some of the traditional
access control methods used in cloud systems are discussed
below.

1) Discretionary access control (DAC)[10]
DAC enables resource owner to set the access rights for the

users and restricts the right to use of resource according to the
identity of the user. The access privileges of each user are
specified using Access control list (ACL), and these owners
defined policies are applied to the files and directories by the
administrator. DAC is the default access control method in
UNIX systems that apply security attributes to the subjects and
objects, allows controlling access to objects and setting rights
at user’s discretion.

2) Role-Based Access Control (RBAC) [11]
RBAC is nondiscretionary access control method that allows

access to the resources based on the subject’s role in an
organization. User’s RWE rights on the container objects
dependent on his role and does not have the command over the
roles assigned. A core RBAC model assigns roles to users with
specific rights. The user can perform operations on the objects
according to permissions assigned. ACL was inefficient in
cloud environments with a large number of users. Hybrid
approaches using RBAC and ACL are used for secured
authorization.

The main shortcoming of DAC and RBAC models is that
these models implement the access control checks through the
application interfaces, which are easy to be evaded in web-
based systems [12].

3) Mandatory Access Control (MAC)[13]
Mandatory Access Control enables administrators to define

and implement access control policies for the entire system
that cannot be bypassed by the subjects.MAC policies override
the DAC file and directory privileges. The mandatory rules of
“no read up “and “no write down “are practiced in MAC to
ensure security. The most prevalent MAC technologies for
Linux are SELinux and AppArmor and are realized using
Linux Security Modules (LSM) framework.

a) SELinux [14]
SELinux administers policy-based security controls that

define activities permitted for a process on a system
irrespective of DAC permissions. Access policies are set as
labels for entire system components which include files,
directories, process and other container objects. It provides a
strong level of isolation for the containers.

b) AppArmor[15]
AppArmor is a Linux security module (LSM)

implementation and is a Mandatory Access Control (MAC)
system that achieves fine-grained access control system to
protect from attacks by allowing an application to access the
objects specified in AppArmor Profile. It follows a file path
based approach in contrast to SELinux which follows label
based method. The enforcement mode of AppArmor enforces
policies on an application and reports any policy violations.
The enforcement mode of AppArmor restricts a container from

retrieving important file system on the host in case a process in
the container is compromised.

c) Information flow control (IFC)
Information flow control is a MAC based approach to

control and make safe the data propagation.IFC employs a
controlled and safe information flow by attaching labels with
data and with users who desire to access the data. IFC model
defines secrecy and integrity labels that can be associated with
system entities. Data flow is endorsed if the security label of
the source is a subset of the label of the receiver [16].

IV. PROPOSED APPROACH

We propose a security module for improving the isolation and
security of container-based cloud systems. Our model relies on
employing stronger access control mechanism combined with
process id (PID) isolation to address the security challenges
caused due to a shared kernel. The architectural outline of our
approach is as shown in Figure 1.

Figure 1: Schematic diagram of proposed approach

An authenticated user who login to the system will have a
defined user policy. In the security module file path of each
container object is mapped against a user and each process id
in turn mapped against user security table. The security table
maintains an index of all file path and process id. It also
maintains a log of all the container activities in the system.
The two-way authorization mechanism verifies object file path
against the user policy and hence ensures that only authorized
users who have an entry in file path access the container. Even
the host root is denied access to the container as it does not
have a file path entry in security table. Each Process id is
mapped to the user so that any user without a mapping to
process id will not permit access to the container objects.

V. ACCESS CONTROL PROCESS IN SECURITY

MODULE

 Step1: User authentication on credential verification
 Step2: User policy applied.
 Step3: Object file path set in the security module.
 Step4: Set the process id and update the security

table.

Salini Suresh et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 247-249

© 2015-19, IJARCS All Rights Reserved 249

 Step5: if user policy equals the security table entry
access is permitted to the container.

VI. EVALUATION OF CONTAINER ISOLATION

In order to evaluate our proposed security module, we created
a system prototype with Ubuntu 14.4, open stack and container
on LXD. We conducted fork bomb test using benchmarking
tool to evaluate the enhanced isolation using our proposed
model. Fork bomb test creates the denial of service (DOS) and
exhausts the resources by looping that creates new child
processes. Fork bomb operates on CPU cycles and saturates
the system. In our proposed approach as we have deployed
process id isolation and file path verification, a user is
permitted to run process inside the container as per the user
policy and this ensures that unauthorized processes are not
created.
The analysis of the results from fork bomb test illustrates that
with proposed system an improvement of 99% was achieved
in reply time, 33% improvement in Net I/O, 24% increase in
connection rate and 26% increase in test duration. Hence the
proposed approach increases the container isolation and
improves the security in container based cloud systems.
Graphical representation of the performance benchmarking
between a native container and container secured with our
proposed approach is as shown in Figure 2.

 Figure 2: Performce comparison

VII. CONCLUSION AND FUTURE WORK

The dynamic, ad-hoc nature of cloud computing demands
much more than traditional security. We have discussed
security concerns in cloud container based environments,
security mechanisms and proposed a novel approach for a
secured access control. Our future work will focus on
integrating flexible access control and multi policy to the
proposed model.

VIII. REFERENCES

[1] S. Soltesz, H. P¨otzl, M. E. Fiuczynski, A. Bavier, and L.
Peterson, “Container-based operating system virtualization:

a scalable, high-performance alternative to hypervisors,” in
ACM SIGOPS c Systems Review, vol. 41, no. 3.ACM,
2007, pp. 275–287.

[2] https://www.kernel.org/doc/Documentation/cgroups/cgroup
s.txt

[3] Docker Security”. http://docs.docker.com /articles/security.
[4] PROTECT: Container Process Isolation Using System Call

Interception, Thu Yein Win; Fung Po Tso; Quentin
Mair; Huaglory Tianfield,2017 14th International
Symposium on Pervasive Systems, Algorithms and
Networks & 2017 11th International Conference on
Frontier of Computer Science and Technology & 2017
Third International Symposium of Creative Computing
(ISPAN-FCST-ISCC),Year: 2017,Pages: 191 – 196.

[5] Securing the infrastructure and the workloads of linux
containers,Massimiliano Mattetti; Alexandra Shulman-
Peleg; Yair Allouche; Antonio Corradi; Shlomi
Dolev; Luca Foschini,2015 IEEE Conference on
Communications and Network Security (CNS),Year:
2015,Pages: 559 - 567.

[6] ContainerLeaks: Emerging Security Threats of Information
Leakages in Container Clouds Xing Gao; Zhongshu
Gu; Mehmet Kayaalp; Dimitrios Pendarakis; Haining
Wang,2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN),Year: 2017,Pages: 237 – 248.

[7] Securing Cloud Containers Using Quantum Networking Ch
annels,Brian Kelley; John J. Prevost; Paul Rad; Aqsa
Fatima,2016 IEEE International Conference on
Smart Cloud (SmartCloud),Year: 2016,Pages: 103 – 111.

[8] Secure Cloud Container: Runtime Behavior Monitoring Usi
ng MostPrivileged Container (MPC),Vivek Vijay
Sarkale; Paul Rad; Wonjun Lee 2017 IEEE 4th
International Conference on Cyber Security
and CloudComputing (CSCloud), Year: 2017 Pages: 351 -
 356

[9] A Secure and Reputation Based Recommendation
Framework for Cloud Services. M. Thangapandiyan, P. M.
Rubesh Anand 2016 IEEE International Conference on
Computational Intelligence and Computing Research.

[10] Sandhu, R. S., & Samarati, P. (1994). Access control:
principle and practice. Communications Magazine, IEEE,
32(9), 40-48.

[11] D. Ferraiolo, R. Kuhn, “Role-Based Access Controls,” In:
15th NISTNCSC National Computer Security Conference,
Bultimore Maryland,USA,1992,pp.554--563.

[12] M. Dalton, C. Kozyrakis, and N. Zeldovich, “Nemesis:
preventing authentication & access control vulnerabilities
in web applications,”in 2009 USENIX Security Symposium.

[13] Lindqvist, H. (2006). Mandatory access control. Master's
Thesis in Computing Science, Umea University,
Department of Computing Science, SE-901, 87.

[14] Wright, C., Cowan, C., Smalley, S., Morris, J., & Kroah-
Hartman, G.(2002, August). Linux Security Modules:
General Security Support for the Linux Kernel. In USENIX
Security Symposium (Vol. 2, pages 1-14).

[15] https://help.ubuntu.com/lts/serverguide/apparmor.html
[16] A. C. Myers and B. Liskov, “A decentralized model for

information flow control,” in Proc. 17th Symp. Oper. Syst.
Principles, 1997,pp. 129–142.

