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Abstract: Equalization is a most widely used optimization scheme to reduce inter-symbol interference (ISI).Intersymbol interfering environment 
is a case of misrepresentation of the sent signal at the receiver. Differentsymbols can hinder with one another which results innoise and less 
relevant, reliable signal.  Multipath propagation means a wireless signal from a spreader reaches the receiver through numerous paths. If inter 
symbol interfering occurs within an arrangement, it must be reduced to the most minimal quantity conceivable. The  inter symbol interference is 
reduced through the use of  adaptive algorithms; LMS (Least Mean Square Error) and RLS (Recursive Least Square) equalization procedures 
being the most prominent ones. In this work, a joint adaptive algorithm is proposed and simulated. A novel method involving both LMS and 
RLS is used for suppression of Inter symbol interference. The LMS has the benefit of a fast convergence rate but has a significant value of mean 
square error (MSE).However, the RLS complements it with low value of MSE and a slow convergence rate . Thus, a joint RLS and LMS is 
proposed The proposed method results in improved BER performance, lesser  mean square error and a faster convergence. 
 
Keywords: LMS; RLS; MSE;BER. 
 

I. INTRODUCTION 

Due to sparseness of frequency spectrum, results in filtration 
of the transmitted signal to limit its bandwidth with the 
objective of efficient sharing of frequency resource. Not 
only this, there exist many channels which are bandpass 
practically and are dispersive, so that efficient sharing of the 
frequency resource can be achieved. Moreover, many 
practical channels are bandpass and, in fact, they often 
respond differently to inputs with different frequency 
components, i.e., they are   dispersive. To adjust to the time 
varying properties of a communication channel, we require 
an adaptive equalizer. For adaptive equalization we apply a 
same input to an unknown system and to the adaptive 
equalizer. On comparing the outputs an error signal is 
generated which is used to manipulate the filter coefficients 
of an adaptive system. After a considerable number of 
iterations, the transfer function of an adaptive filter gets 
converged to unknown systems transfer function. Therefore 
it can be said that an adaptive equalizer tracks the unknown 
properties and time varying characteristics of a channel. 
Therefore,it is capable of removing the noise satisfactorily 
[1]. 

II.   AN ADAPTIVE FIR FILTER 

An adaptive FIR transversal filter which is discrete in time 
domain and has a filter length N is shown in Figure 1. 
 

 
Figure 1.An adaptive filter. 

 
N signal samples  𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1, … . , 𝑥𝑥𝑛𝑛−𝑁𝑁+1 are applied as input 
to the filter and they are taken from a tap-delay line. The 
filter coefficients are 𝑤𝑤𝑛𝑛(0 ), 𝑤𝑤𝑛𝑛(1) … .𝑤𝑤𝑛𝑛(𝑁𝑁 − 1) , are 
referred to as the filter weights. A desired response dn is 
applied to the filter  that helps in the adjustment of the filter 
weights in such a way so as to make the filter output yn 
resemble dn. en is the estimation error that measures the 
difference between the filter output yn and the desired 
response dn. Therefore we have, 
𝑒𝑒𝑛𝑛 = 𝑑𝑑𝑛𝑛 − 𝑦𝑦𝑛𝑛                               (1)                                                                                       
      = 𝑑𝑑𝑛𝑛 − 𝑤𝑤𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛             (2)                                                                                                            
Where 𝑤𝑤𝑛𝑛 = [𝑤𝑤𝑛𝑛(0),𝑤𝑤𝑛𝑛(1) …𝑤𝑤𝑛𝑛(𝑁𝑁 − 1)]𝑇𝑇 represents the 
weight vector.And 𝑥𝑥𝑛𝑛  = [𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1 … 𝑥𝑥𝑛𝑛−𝑁𝑁+1)]𝑇𝑇 represents 
the input vector.𝑦𝑦𝑛𝑛 is the product of 𝑥𝑥𝑛𝑛  and 𝑤𝑤𝑛𝑛 . If the desired 
response 𝑦𝑦𝑛𝑛  and 𝑦𝑦𝑛𝑛  are assumed to be jointly stationary then 
MSE (mean square error) can be expressed as 
𝜀𝜀(𝑤𝑤) = 𝐸𝐸[𝑒𝑒𝑛𝑛2](3) 
𝐸𝐸[𝑑𝑑𝑛𝑛2 ] = 2𝑤𝑤𝑇𝑇𝑃𝑃 + 𝑤𝑤𝑇𝑇𝑅𝑅𝑤𝑤                                                   (4) 

𝑅𝑅 ≜ 𝐸𝐸[𝑥𝑥𝑛𝑛𝑥𝑥𝑛𝑛𝑇𝑇]𝑝𝑝 ≜ 𝐸𝐸[𝑑𝑑𝑛𝑛𝑥𝑥𝑛𝑛 ] 
For determining a point where MSE is minimized, we take 
derivative of   w.r.t w and set it to 0.The result obtained is 
the Wiener Hopf equation.   



Tehleel Zahoor et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,749-753 

© 2015-19, IJARCS All Rights Reserved       750 

R𝑤𝑤0=𝑝𝑝                           (5) 
And Wiener Hopf solution can be written as 
 
𝑤𝑤0 = 𝑅𝑅−1𝑝𝑝(6) 
The adaptive filter shows an optimal response to such a 
solution. 
For real time applications, we don’t use the inverse auto-
correlation matrix method to obtain the Wiener solution, 
instead a recursive adaptive algorithm method is used to get 
the Wiener solution by making use of a number of iterations. 
Therefore, an adaptive filter involves an adjustment of the 
weight vector in accordance with the estimation error. For 
implementing the adaptation process, an adaptive algorithm  
updates the weight vector by performing a number of 
iterations. After sufficient iterations the transfer function of 
adaptive filter converges to that of the channel.There are 
many real world applications in which adaptive algorithms 
have been studied such as speech processing, 
communications, radar, sonar, or biomedicine, require that 
the optimal filter or system coefficients need to be adjusted 
over time depending on the input signal[2]. 

III. ADAPTIVE ALGORITHMS 

A. LMS Algorithm 
It  was invented by  Widrow  and Ho and is an   extremely 
simple and robust algorithm The LMS algorithm is an 
approximation of the steepest-descend algorithm which uses 
aninstantaneous estimate of the gradient vector of the 
performance function [3].It is regarded as an important 
member of the family of stochastic gradient algorithms. 
Before discussing the LMS algorithm,  the  steepest descent 
optimization method is to be studied first. We assume the 
MSE function ᶓ(w) to be continuously differentiable. The 
gradient vector ∆ᶓ(w) of ᶓ(w)  points in the inverse direction  
minimum value of MSE. If we increase the weights in the 
direction opposite to that of the gradient vector by a small 
amount, the weights will be pushed very near to the 
minimum point in the weight space. Mathematically, it is 
represented as 
                            𝑤𝑤𝑛𝑛+1 = 𝑤𝑤𝑛𝑛 − 𝜇𝜇 𝜕𝜕ᶓ(w)

𝜕𝜕𝑤𝑤𝑛𝑛
(7) 

where n represents the iteration number, and µ is the step-
size parameter. Substituting  wn into the MSE function , and 
calculating  its derivative yields 
   𝜕𝜕ᶓ(w)
𝜕𝜕𝑤𝑤𝑛𝑛

= 2𝑅𝑅𝑤𝑤𝑛𝑛 − 2𝑝𝑝Substituting in(7) we get, 
𝑤𝑤𝑛𝑛+1 = 𝑤𝑤𝑛𝑛 − 2𝜇𝜇(𝑅𝑅𝑤𝑤𝑛𝑛 − 𝑝𝑝) 

This represents the steepest descent algorithm. 
To apply the steepest descent algorithm an exact 
measurement of the gradient vector is required which may 
not be feasible practically. Estimation of the gradient vector 
has to be based on the data available .A way forward is to  
use the instantaneous gradient vector which is given by: 

𝜕𝜕ᶓ�(𝑤𝑤𝑛𝑛)
𝜕𝜕𝑤𝑤𝑛𝑛

=  
𝜕𝜕𝑒𝑒𝑛𝑛2

𝜕𝜕𝑤𝑤𝑛𝑛
 

=𝜕𝜕(𝑑𝑑𝑛𝑛−𝑤𝑤𝑛𝑛
𝑇𝑇𝑥𝑥𝑛𝑛 )2

𝜕𝜕𝑤𝑤𝑛𝑛
 

=−2𝑒𝑒𝑛𝑛𝑥𝑥𝑛𝑛 (8)                                                                    
Making use of stochastic gradient vector ,we get 

                         𝑤𝑤𝑛𝑛+1 = 𝑤𝑤𝑛𝑛 + 2𝜇𝜇𝑒𝑒𝑛𝑛𝑥𝑥𝑛𝑛                              (9) 
This is the update for LMS algorithm.Theconvergence of the 
LMS algorithm requires convergence of the mean of 

𝑤𝑤𝑛𝑛 toward 𝑤𝑤0 and also convergence of the variance of 
elements of 𝑤𝑤𝑛𝑛 to some limited values[3]. 
 
When huge number of weights which tend towards infinity 
are used in an LMS algorithm, Butterweck[4], in his studies 
derived a limit on the step size parameter,µ. 
Thus, 0 < µ < 1

𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥
  is the condition which provides for 

stability of LMS algorithm.Until this day, a final and 
exhaustive list of conditions for LMS algorithm 
convergence is still subject to a lot of debate[5]. 
A plethora of schemes which deal with utilization of have 
been proposed[6,7,8,9,10] to meet the desirable features like 
faster speed of convergence and low steady state error. In 
recent times it was proved in [11] that  LMS algorithm with 
variable step size which was developed by Kwong and 
Johnsten in[12] is by far the best of all low complexity 
variable step-size LMS algorithm available in literature 
barring a drawback related to noise power measurement. 
 

B. RLS Algorithm 
Despite  many advantageous properties of LMS algorithm, 
the major drawback is  its slow convergence which  may 
limit its  use in applications where fast convergence is aimed 
at. In this regard, the exact least squares algorithms will be 
more useful. 
Unlike the LMS algorithm minimizes the error generated 
per iteration only based on the current  values of input data, 
the RLS algorithm is used to find an exact least squares 
solution per iteration utilizing all past data[5].In comparison 
to LMS algorithm,the RLS algorithm is less beneficial when 
we talk in terms of complexity[13][14]. 
It's a basic representative of the recursive algorithms class 
based on the theory of Kalmans filtering [15], time 
averaging [15] and the method of least squares[15].A 
detailed description andderivation of the RLS algorithm can 
be found in [15]. 
The cost function of the least squares is shown below: 

                       𝐽𝐽𝑛𝑛 = 1
2
∑ 𝑟𝑟𝑛𝑛−𝑘𝑘𝑛𝑛
𝑘𝑘=1 𝑒𝑒𝑘𝑘2(10) 

Where 𝑒𝑒𝑘𝑘  is the error at output and  𝑟𝑟 ∈ [0,1]  is the 
exponential weighting factor. 
To minimize the cost function is same as to find the 
derivativewith respect to  𝑤𝑤𝑛𝑛  which yields 
𝜕𝜕𝐽𝐽𝑛𝑛
𝜕𝜕  𝑤𝑤𝑛𝑛

= ∑ 𝑟𝑟𝑛𝑛−𝑘𝑘𝑥𝑥𝑘𝑘𝑥𝑥𝑘𝑘𝑇𝑇𝑤𝑤𝑛𝑛 − ∑ 𝑟𝑟𝑛𝑛−𝑘𝑘𝑥𝑥𝑘𝑘𝑑𝑑𝑘𝑘𝑛𝑛
𝑘𝑘=1

𝑛𝑛
𝑘𝑘=1 (11) 

Estimation of autocorrelation matrix R and cross correlation  
pleads to estimated values of 𝑅𝑅𝑛𝑛  and 𝑝𝑝𝑛𝑛  
                                       𝑅𝑅𝑛𝑛 = ∑ 𝑟𝑟𝑛𝑛−𝑘𝑘𝑥𝑥𝑘𝑘𝑥𝑥𝑘𝑘𝑇𝑇𝑛𝑛

𝑘𝑘=1 (12) 
𝑝𝑝𝑛𝑛 = ∑ 𝑟𝑟𝑛𝑛−𝑘𝑘𝑥𝑥𝑘𝑘𝑑𝑑𝑘𝑘𝑛𝑛

𝑘𝑘=1 (13) 
Putting 𝑅𝑅𝑛𝑛  and 𝑝𝑝𝑛𝑛  in the above equations and by setting the 
result to 0 we get: 
                                        𝑅𝑅𝑛𝑛𝑤𝑤𝑛𝑛 = 𝑝𝑝𝑛𝑛 (14) 
Addition of a regularizing term 𝛿𝛿𝑟𝑟𝑛𝑛‖𝑤𝑤𝑛𝑛‖2  to the cost 
function and then solving the normal equation gives least 
squares solution. 
                                     𝑤𝑤𝑛𝑛 = 𝑅𝑅𝑛𝑛−1 𝑝𝑝𝑛𝑛                                     (15) 
Here 𝛿𝛿 is the positive  regularization parameter. 
In recursive form 𝑅𝑅𝑛𝑛  and 𝑝𝑝𝑛𝑛  are expressed as: 

                                        𝑅𝑅𝑛𝑛 = 𝛾𝛾𝑅𝑅𝑛𝑛−1 + 𝑥𝑥𝑛𝑛𝑥𝑥𝑛𝑛𝑇𝑇  
                                       𝑝𝑝𝑛𝑛 = 𝛾𝛾𝑝𝑝𝑛𝑛−1 + 𝑥𝑥𝑛𝑛𝑑𝑑𝑛𝑛  

Putting these values in least squares solution  
 𝑤𝑤𝑛𝑛 = 𝑅𝑅𝑛𝑛−1 𝑝𝑝𝑛𝑛  

results in 
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                    𝑤𝑤𝑛𝑛 = (𝛾𝛾𝑅𝑅𝑛𝑛−1 + 𝑥𝑥𝑛𝑛𝑥𝑥𝑛𝑛𝑇𝑇)−1 (𝛾𝛾𝑝𝑝𝑛𝑛−1 + 𝑥𝑥𝑛𝑛𝑑𝑑𝑛𝑛)(16) 
On application of matrix inversion lemma to the above 
equation and defining priori as 

𝑒𝑒𝑛𝑛′ = 𝑑𝑑𝑛𝑛 − 𝑥𝑥𝑛𝑛𝑇𝑇𝑤𝑤𝑛𝑛−1 
We get 
                          𝑤𝑤𝑛𝑛 =  𝑤𝑤𝑛𝑛−1 + 𝐺𝐺𝑛𝑛𝑥𝑥𝑛𝑛𝑒𝑒𝑛𝑛′ (17) 
The gain matrix is defined as 𝐺𝐺𝑛𝑛 = 𝑟𝑟−1𝑅𝑅𝑛𝑛−1

−1

1+𝑟𝑟−1𝑥𝑥𝑛𝑛𝑇𝑇𝑅𝑅𝑛𝑛−1
−1 𝑥𝑥𝑛𝑛

 
The above equations are updating forms of RLS algorithm 
and initially the weight vector is set to 0. 
In the RLS Algorithm the estimate of previous samples of 
output signal, error signal and filter weight is required that 
leads to higher memory requirements[16]. 
 

IV. JOINT ADAPTIVE EQUALIZATION 

Two major families of adaptive algorithms, i.e., the LMS 
algorithms and the RLS algorithms, have been described. 
Properties of the LMS algorithm show  its simplicity, 
robustness and good tracking capabilities as well as its slow 
convergence and sensitivity to the step-size parameter. 
Properties of the RLS algorithm show its fast convergence 
independent of the input eigenvalue spread, but also show 
its high computational complexity, numerical instability and 
poor tracking capabilities. The LMS algorithm and the RLS 
algorithm are extreme implementations in terms of the 
simplicity and convergence.The LMS has the advantage of 
low computation complexity but its convergence is very 
slow.However, the RLS is opposite with fast convergence 
and high computation. They are exactly complementary. 
Thus, a jointLMS and RLS is proposed.In the first stage, the 
RLS algorithm is initially used toobtain the weight 
coefficients of relative balance state. Then,the LMS 
algorithm works to equalize received signals andupdating 
weights each N-symbols.  
 
The joint RLS and LMSalgorithm repeatedly runs with low 
complexity and fastconvergence. In addition, the 
configuration of proposedalgorithm should carefully 
consider the orders of RLS andLMS. It’s important for RLS 
and LMS algorithms to inheritweights from each other and 
exert their respective advantagesat the same time.Joint RLS 
and LMS algorithm is mainly based on Minimum Mean 
Square Error (MMSE) criterion in stable working mode.The 
results obtained are compared on the basis of parameters 
likeBER performance ,Convergence rate ,Mean square error. 
 

V. RESULTS AND DISCUSSION 

On simulation in MATLAB 2015A by applying different 
algorithms we get the results discussed in the coming 
section. 
The Performance of the filter can be evaluatedby analyzing 
the convergence rate, MSE and BER .TheBER can 
bedefined asthe ratio of the number of bit errors detected in 
the receiver to the total no. of bits transmitted.The 
convergence speed is the rate at which the filter gets 
converged  to its resultant state. A faster convergence rate is 
a desirable feature of an adaptive system.The  mean square 
error (MSE) is a performance metric indicating how well a 
system can adapt to a given solution. A small minimum 
MSE is an indication that the adaptive system has accurately 

modeled, predicted, adapted and/or converged to a solution 
for the system. 
 
 

 

 
Figure 2. Plot of MSE for different step sizes in case of LMS   
 
Figure 2.shows that in case of LMS ,when step size is less, 
the mean square error (MSE) is less but the rate of 
convergence is slow. On increasing the step size we obtain a 
fast response to changes incurred but at the same time MSE 
increases considerably. Therefore it is essential to maintain a 
tradeoff between MSE and convergence rate. For that the 
value of step size is to be chosen carefully.Convergence rate 
and MSE are therefore not, however, independent of all of 
the other performance characteristics. There will be a 
tradeoff, in other performance criteria, for an improved 
convergence rate and there will be a decreased convergence 
performance for an increase in other performance. Same 
happens in case of MSE. 
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Figure 3. Plot of MSE for different filter lengths in case of LMS   
 
 

Figure 3.shows that in case of LMS algorithm when  filter 
length is 4 , the value of MSE is less but it takes more time 
to converge. If we increase the length of the filter the MSE 
increases but it has a faster response. Like the case of step 
size there should be a balance between these two 
parameters. 

 
Figure 4.shows the MSE performance of RLS, proposed 
algorithm and LMS.As we can clearly see our proposed 
algorithm offers a middle path between RLS and LMS, 
thereby balancing MSE and convergence rate. 
 
 

Figure 4.MSE performance of RLS, proposed algorithm and LMS 
 
 

Figure 5. BER performance of channel equalization using RLS,LMS and 
proposed scheme. 

 
 
In figure 5 we can clearly see that the BER performance of 
the proposed algorithm is much better than the RLS 
algorithm and slightly lesser than the LMS scheme. Since 
LMS has better tracking abilities than RLS, it’s BER 
performance is better. Hence the BER performance of Joint 
RLS-LMS lies in between the two. 
The results obtained can be summarized in the  table I: 
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                                                      Table I. 

Sr. No. Algorithm Convergence 
rate 

Mean 
square 
error 

BER 
Performance 

1 RLS More Less Less than 
LMS 

2 Joint 
LMS-
RLS 

In between In 
between 

In between 

3 LMS          Less More Better 

VI. CONCLUSION AND FUTURE SCOPE 

Channel equalization is typically developed as an effective 
way of anti-fading method. Among various adaptive 
algorithms, LMS and RLS are most widely used for 
appropriate complexity and good performance the features 
of LMS and RLS algorithms are compared. The LMS has 
the advantage of low computation complexity but its 
convergence is very slow. However, the RLS is opposite 
with fast convergence and high computation. They are 
exactly complementary. Thus, a joint RLS and LMS is 
proposed. 
In theProposed algorithm,the RLS algorithm is initially used 
toobtain the weight coefficients of relative balance state. 
Then,the LMS algorithm works to equalize received signals 
andupdating weights each N-symbols. The joint RLS and 
LMSalgorithm repeatedly runs with low complexity and fast 
convergence. In addition, the configuration of proposed 
algorithm should carefully consider the orders of RLS and 
LMS. It’s important for RLS and LMS algorithms to inherit 
weights from each other and exert their respective 
advantages at the same time.Joint RLS and LMS algorithm 
is mainly based on Minimum Mean Square Error (MMSE) 
criterion in stable working mode. The average BER is used 
as the performance measure for the various digital signal 
processing techniques discussed in this dissertation. The 
average frame error-rate and, more generally, the statistical 
distribution of the BER's are also useful performance 
measures, and should be investigated in the future. In 
addition to multipath mitigation techniques, error control 
mechanisms are also necessary for establishing a reliable 
wireless communication link. Error detecting codes and 
automatic request for retransmission (ARQ) protocols 
should be investigated in the future. Other variants of the 
recursive least-squares (RLS) algorithm should be 
investigated. The combination of the RLS and least-mean-
square (LMS) algorithms should be studied. 
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