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Classifier were analyzed for Spam filtration. Among several 
approaches, the top most are SVM[12] (Support Vector 
Machines) and the well known Naive Bayes classifier. 
Weka, an open source, GUI based, portable workbench has 
been used to perform the analysis of various email spam 
filtering techniques with a rigorous data set applied. Data set 
of emails is created using attributes and relations from the 
spam mails received in the mailbox for over six months. The 
105 attributes and 300 instances taken as a total data set and 
10 fold cross validations has been done to test the result and 
compare the different results. The different decision tree 
algorithms are run using Weka are NBTree, C4.5 decision 
tree classifier and Logistic Model Tree classifier are 
analyzed based on  the performances with different criteria 
in terms of time, result efficiency and accuracy achieved by 
the various decision tree classifiers and also some other 
criteria like false positive, false negative rates of decisions 
taken by the classifiers.  
Catarina Silva et al  (2012) using hybrid system for text 
classification based on the ensemble of both Artificial 
Immune Systems (AIS)  and SVM approaches. [6]The 
advantage of a non-evolutionary implementation that 
produced remarkable results with text classification and 
showing the classification performance gains, resulting in a 
classification has improved.          
Manjusha et al (2013) used method for Binary Decision Tree 
Multi Class Support Vector Machine approach are using the 
advantages of SVM and decision tree[11], that is Decision 
Tree (DT) s are much faster than SVM s in classifying new 
instances while SVM perform better then DTs in terms of 
classification accuracy. To include both this advantages we 
will reduce the size of record set will be fed to the SVM. 
Normal data points are classified by decision tree while 
some crucial data points were difficult for decision tree to 
classify to multiclass SVM. 
Malti Sarangal (2014) proposed method is K Means 
clustering and Support Vector Machine (SVM) based 
classification algorithm are considered to classify the spam 
base dataset[10]. The main advantages is improved 
classification accuracy and reduces the false positive and 
time cost. K Means algorithm, is numerical and one of the 
hard clustering method, this means that a data point can 
belong to only one cluster. 
The decision tree classifiers provide great results as far as 
spam detection concerned. By comparing all the three 
classifiers, yield best results and provides 90% accuracy in 
performance. That algorithm takes more processing time 
than that of other classifiers. The one of the most 
disadvantages exhibited in this classifier. This is better than 
the earliest algorithms such as Naive Bayes and many other 
spam detection techniques. 
 
3. EXISTING SYSTEM 
 
The Immune System evolved to become an extremely 
complex resistance system that has the capability to identify 
foreign substances and to differentiate between harmless and 
harmful. Immune System is decomposed in two main layers 
of resistance that is innate and adaptive. Innate recognizes 
precised substances and its conduct is similar to all 
individuals of the same species. Adaptive layer is able to 
learn to identify new forms of anomalous pathogens that 
regularly change during the time hence it provides an 

extremely complicated adaptive form of  identification.  
          The Immune System is also supported by a pathogens 
are divided into small peptides by Antigen Presenting Cell 
(APC). The peptides are then accessible by the lymphocytes 
also called as Transaction Cells. The Transcation cells have 
a particular set of receptors that used to bind peptides with a 
certain degree of affinity that are being offered by Antigen 
Presenting Cells. Artificial Immune Systems (AIS) is an 
adaptive system inspired by biological immune system and 
it is based on theoretical immunology. 
 
4. K MEANS CLUSTERING  
      Automated mechanism uses unsupervised learning for 
classification purposed. Unsupervised learning means there 
is no supervisor is needed to train the mechanism. 
[4]Clustering is one type of unsupervised learning. 
Clustering is designed to aim for grouping similar type of 
data together. Clustering process data is divided into similar 
type of groups where each group contains the data which 
have more similarity. The groups are called as clusters. K 
Means clustering is the most useful method for finding 
natural groups of similar type of data. 
A classification technique the objects are assigned to 
predefined categories whereas in clustering the classes are 
formed and two categories available for dividing clustering 
methods on the basis of character of the data and the reason 
for that cluster has being used. The categories are fuzzy 
clustering and hard clustering in the fuzzy clustering to 
every data element can belong to more than one cluster. 
Resolve it fuzzy clustering uses a mathematical model for 
classification and hard clustering every data element is 
divided into separate cluster. 
        K Means clustering algorithm is a hard clustering 
method so it can be applied for spam filtering. [14]The 
research utilized the K Means clustering algorithm to 
classify the emails. Classifies incoming email as spam or 
legitimate on the basis of similar attributes or features. The 
K Means clustering K is a positive number initialized in the 
starting and algorithm refer it to as the number of clusters 
required for classification. K Means clustering algorithm 
inspects the feature vector of each incoming email, such that 
the items within every cluster are similar to each other. The 
basis of this inspection it form two clusters, one is spam and 
another is legitimate. The iterative process where initial set 
of clusters and the clusters are frequently updated until no 
more upgrading is possible or the number of iterations 
reached to a specified limit. 
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Figure 1.1 An overview of Local Concentration Based K 

Means Clustering 
 
The local concentration based feature extraction method 
with artificial immune system has five processing stages are 
involved to generate final results. Each of them is discussed 
given blow. 
Preprocessing of incoming email is essential task before 
process to classify it.    The setup is working with real time 
spam filter, incoming email is processed and when working 
in an experimental environment sample datasets are 
preprocessed. Used string tokenizer in this phase for 
generating dictionary of the words. Irrelevant words are 
discarded and after it processed data is passed to term 
selection stage of the model. 
Information Gain is used as term selection strategy for our 
model. [5]Algorithm for term selection is discussed as ds 
generation and term selection algorithm given below. 
Step 1 : Initialize preselected set and DS == Empty set. 
Step 2 : Every term in the terms set Do Calculate weight of 
the term according to a certain term selection strategy End 
Step 3 : Arrange the terms in decreasing order of the weight 
Step 4 : Join the front % terms to the preselected set 
Step 5 : For all terms in the preselected set Do 
Calculate Tendency as (tk)=P(tk|cl)-P (tk|cs) 
if || P(tk|cl)–P(tk|cs)||>, >=0 then 
if || P(tk|cl) –P (tk|cs) || > , >=0 then 
Add the term to DSs 
Else Add the term to DSl 
endif . 
Else Discard the term 
endif 
endfor 
P (tk|cl) is probability of tk as legitimate 
P (tk|cs) is probability of tk as spam. 
DSs is spam detector set and 
DSl spam detector set. 
Model used local concentration based feature extraction 
approach with artificial immune system.  Algorithm used for 
feature extraction is discussed to  local concentration based 
feature extraction approach with artificial immune system. 

 
Step 1 : Move a sliding window of wn term length over a 
given message  
With a step of wn term. 
Step 2 : for every position of the sliding window Do 
Calculate the spam genes concentration in the window by     
formula: SCj = Ns/Nt 
 Calculate the legitimate genes concentration of the window  
 by formula: LCj = Nl/Nt 

end for. 
Step 3 : Construct feature vector: (<SC1, 
LC1>,<SC2,LC2>…<SCn, Cn>)  
SCj is spam gene concentration in jth window. 
LCj is legitimate gene concentration in jth window. 
Nt is the number of dissimilar terms in the window. 
Ns is the number of the dissimilar terms in the window 
which corresponding to detectors in Ds. 
The work applied KMeans clustering for classification. 
Fourth and very important stage of spam filtering. The stage 
of measuring to effectiveness in this entire system by 
evaluating classification result. Algorithm used for K Means 
clustering at classification phase is discussed K Means 
clustering for classification 
Step 1: Initialize spam and legitimate Centroids   
Step 2: Centroids = kMeansInitCentroids(X, k) 
Step 3: for iter = 1 iterations Cluster assignment step Assign 
each data  
point to the closest centroid. idx(i) corresponds to cˆ(i), the   
indexof the centroid assigned to example i  
Step 4: idx = findNearestCentroids(X, centroids); Move 
centroid step  
Compute means based on centroidassignments  
Step 5: centroids = computeMeans(X, idx, K) 
Step 6: end 

 
5. VARIOUS CLASSIFIERS IN EMAIL SPAM 
FILTERING PROBLEM DEFINITION 
 
The various decision tree classifiers are taken for evaluation 
and apart from other types of data mining classifiers it is 
emphasized specifically on decision tree classifiers for the 
particular application of spam filtration technique. The main 
task of the spam filtration is to identify whether the mail is 
spam or not. The decision tree filters are easy to implement 
and easy to understand. Provides an overall satisfactory 
performance as far as spam mail detection is concerned. The 
dataset is trained and tested with various decision trees and 
the performance evaluation criteria of various classifiers are 
based on the precision, accuracy and time taken by the 
classifier. The classifier which is evaluated best is further 
enhanced to provide more accuracy and the algorithm is 
implemented in the WEKA tool.  
 
6.  SPAM DATASET 
 
The spam dataset was taken from UCI machine learning 
repository and was created by Mark Hopkins et al Hewlett 
Packard Labs. The dataset contains 4601 instances and 58 
attributes 57 continuous input attribute and 1 nominal class 
label target attribute. The class label has two values 0 for 
not spam and 1 for spam. 
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Figure 1.2 Various Classifiers in Email Spam Filtering 

 
Figure 2.1 Spam Dataset 

 
7. FEATURE REDUCTION TECHNIQUES 
 
Complex data analysis and mining on huge amounts of data 
take a very long time making practical analysis infeasible. 

[12]Feature reduction techniques have been helpful in 
analyzing reduced representation of dataset without 
compromising the integrity of the original data and produce 
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Fig 2.2: Enhancing Random forest Classifier 

 

 
Training data 

 
Test data 

Figure 2.3 Calculate the Classifier Errors 
 

 Maximum 1 - 1/nc when records are equally 
distributed among all classes, implying least interesting 

information ‹ Minimum 0.0 when all records belong to one 
class, implying most interesting information. 

 
Training data  

 
Test data 

Figure 2.3 Receiver Operating Characteristic Curve 
 
ROC graphs are two dimensional graphs in which TP rate is 
plotted on the Y axis and FP rate is plotted on the X axis. An 
ROC graph depicts relative trade offs between benefits true 
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10. CONCLUSION AND FUTURE ENHANCEMENT 
 
Email spam is a serious threat in corporate world and also in 
business. Reducing the spam mails and preventing the 
accumulation of spam mails storing in user’s mailbox is a 
great challenge to the users. The identification of best 
algorithm to classify the spam mails is an important task.  
 Decision tree algorithms are used in filtering the 
spam mails because the main task is to classify the mails 
whether it belongs to spam or ham. The algorithms are 
trained, tested before and applying filtering algorithms. The 
results of the different algorithms are evaluated based on the 
Accuracy, Error rate, Precision and False positive rate. The 
comparison of the above algorithms based on their 
performance shows that the Random forest classifier exhibit 
best results when compared to other classifiers before and 
after applying weka filters.   
 The bugs that are identified when this classification 
algorithm was built are when handling with the missing 
values. Split point is the point at the tree splits up the 
instances in two instances by assigning weights to the 
branch at the splitting point. The attribute has some missing 
values, the attributes carry some information after the split 
points. The results in additional branches in the tree. 
Sometimes, the split will have a reduction of entropy of 0 
and have a small positive value which leads to additional 
branches in the tree. The algorithm can be further enhanced 
by improving the Out of Bag estimate (OOB) it supports 
multithreading.  
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