
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.5179
Volume 8, No. 9, November-December 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 605

ISSN No. 0976-5697

A CRITICAL ANALYSIS OF PERVASIVE COMPUTING IN EMBEDDED
SYSTEMS USING INTERNET OF THINGS

Ankita Sharma

Department of Computer science
JIMS Rohini Sec 5

Delhi, India

Manav Bali
Software Developer

DION Global Solutions Ltd
Delhi, India

Abstract: As we know Traditional computing is not able to fulfil the growing needs for information requirement anywhere anytime. So
Pervasive computing now a day marks the next generation of computing in which technology follows the current users without any particular
contribution from their end. Pervasive computing is completely opposite to the desktop paradigm, which makes use of a single user and a single
device for a particular purpose, on the other hand one who uses pervasive computing gets into use many computational devices and systems
together and may not be aware that they are doing so, (follows the concept of availability and invisibility).
 Pervasive computing follows three basic properties which are interaction, coordination, cooperation of embedded computing devices. These
sensors have embedded software’s that provide crucial information about location of the people and devices available for interaction. This
paper focuses on the basic concepts of pervasive computing and pervasive computing in embedded systems using internet of things.

Keywords: Pervasive computing, embedded systems, software, LAN, WAN, IoT

I. INTRODUCTION

Pervasive computing has come a long way back in 1970’s
when the computers started coming closer to its users.
Information technology has come a long way where desktop
computing is replaced by mobile computing devices that have
the capacity to interweave itself into everyday life. In 1991,
Mark Weiser, stated that “the most profound technologies are
those that disappear”. He said, “they weave themselves into
fabric of everyday life until they are in distinguishable from it”
[1]. Computing has also seen a growth from the era of
mainframe computing which was all about one computer
being used by many users to the era of desktop computing era
in which the usage became so much that is gets frustrating at
times. This is where pervasive computing come into picture
when distributed computing is followed by mobile computing
Architecture of Pervasive Computing

Fig 1: Architecture of Pervasive computing [5]

II. PERVASIVE AND EMBEDDED SOFTWARE

The effect of Moore’s law has made the computing system to
become cheaper and can be made use in bulk. The Embedded
technology is the process of introducing computing power to
various appliances. These devices have small sensors that’ are
intended to perform certain specific jobs and processors giving
the computing power are designed in an application oriented
way. These computing devices are generally known as
embedded systems, because they are embedded into larger
technologies, instead of being only sold as a computer. Unlike
desktop computers, they basically are for a single user and are
customized for the same [2]. They rarely have a keyboard,
hard disk, or display instead they make use of internet for
communication.

III. PERVASIVE COMPUTING AND INTERNET
OF THINGS

The internet of things (IoT) has evolved from pervasive
computing. Some say there is really no difference or very little
difference between pervasive computing and IoT. Like
pervasive computing IoT connected devices communicate and
provide notifications about the usage. The internet of things is
on the way to provide vision and turning common objects into
connected devices. Pervasive Computing basically works with
the idea of having an environment that is both perceptual and
invisible and proves beneficial for the users given anytime and
anywhere. The concept of Pervasive computing evolved since
1970 when electronic machines (computers) came closer to its
users [4]. The involvement of information technology into our
lives has already taken mobile computing technology into the
next level of computing where information is made available
to the users anywhere and anytime. His technology was coined
as the software that was found “EVERYWARE”.

Sensors Embedded
Computing

Low cost
Low power
Connectivit

y

Smart material and
design

IoT applications

Pervasive computing applications

Ankita Sharma et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,605-607

© 2015-19, IJARCS All Rights Reserved 606

IV. EMBEDDED SOFTWARE

Like any desktop system, embedded system needs software.
These software’s are highly difficult to make because of the
growing demands in pervasive computing. Instead, software
for embedded microprocessors is approaching the complexity
of many desktop computing applications, both in the number
of lines of code, and the functions being performed. For
example, we’re asking software to control complex machinery,
monitor multiple processes, establish and maintain both voice
and data communications on mobile connections, and perform
precise computations for guidance and navigation [3].
Software has a unique role to play in the design and use of
embedded technologies. The functions of even the simplest
systems have multiplied over the last decade, as users’ needs
and processing power have increased. New and far more
complex generations of electronic devices require tens or even
hundreds of thousands of lines of software to deliver on their
potential. Yet writing this software is much more difficult
than writing desktop application software. Embedded device
programmers have significant challenges not faced by the
average desktop programmer. Because embedded devices lack
a full range of interaction with the programmer, software can’t
be developed on the target device itself. It usually can’t even
be developed on the same microprocessor and operating
system used on the device.

V. THE IMPORTACE OF RELIABLE SOFTWARE
IN PERVASIVE COMPUTING

The failure of the software in terms of reliability and
performance has proved to be quite serious on the embedded
systems. A desktop computer might undergo a software error
that may crash the application or the computer. But on the
other hand, the consequences on the embedded systems is
much more serious, especially when the devices make use of
the internet for communication. Also because of the internet,
the methods for creating embedded software are no longer
good enough. The demand for new, good quality software is
becoming high. This leads the industry to hire employees who
are less experienced and talented for a simple reason to get the
software written. The Experienced and talented programmers
have to work in a smarter way to become very productive.
To a great limit these issues are been faced in the development
of the software for a number of years. There are number of
software technologies like class libraries, user interface
builders, and code generators that help to improve the delivery
of the complex applications for desktop computers and
servers. There’s still too much software to write, for too many
devices in the era of pervasive computing.

VI. OVERCOMING DEVELOPMENT OBSTACLES

One of the most well-established technology that provides
reliable applications is OBJECT ORIENTED SOFTWARE.
This established technology promises more reliable
applications as object-oriented software. The Object-oriented
software provides better methods for modularization of the
program data that is to be abstracted and also the software
components that are to be used. All these features of the
object-oriented software make it easy to write and maintain a
program because it breaks down the difficult and complex
code into small and understandable pieces. The software
programmers now have to remember lesser number of
concepts and relationships to write better software’s.
Also, there is another method to improve the reliability that is
known as computer aided software engineering or CASE.
CASE is a generic term for software whose goal is to improve

the processes behind writing software programs. The CASE
software packages have different parts of the software creation
process which includes analysis and designing [8].
There have been several limitations with CASE applications: -
• The process for the development of a software is really a

complex process and most of the CASE tools have only
been able to take hold of the front end of the process Also
as we apply the CASE tools we make that portion of the
project more reliable and more productive for the
developers, but it does not translates into a significant
improvement for a complete project because it fails to
address the back end that is the implementation and
testing part.

• Also, the CASE tools are often used as a standardized

format for storing and exchanging of data. This obviously
means that if we make an attempt to combine the
commercial tools into complete development tools we
would require spending an enormous amount of time and
energy in data translation and integration. Also, the worst
part could be that the tools could simply exchange
information and we had to manually re-enter the data.

• The process of software development is so complex that
many CASE tools have to pose artificial restrictions on
the process or the technical requirements to create a
working automation framework. The restrictions that are
put on the architecture used by the developers, often puts
a limitation to the designing and implementation. Also
because of these restrictions many developers do not
prefer working with these constraints.

VII. AN ALTERNATE APPROACH

Next comes an alternative to the CASE that is UML (Unified
Modelling Language). The UML combines a number of
different diagramming techniques to provide a consistent
definition of the software system. There are a number of
diagrams such as State charts, Sequence diagrams and object
modelling diagrams that help the developers to model the
different aspects such as architecture of the model or either the
flow of data [6].
The most important and unique characteristic of UML is that
applying it correctly results in an unambiguous model of a
software system. This obviously makes use of the software
libraries to automatically produce the source code from the set
of UML diagrams. Also, a number of libraries are used to
create the diagrams that are used for the implementation of the
design and this designing becomes the actual software
implementation.
Also, the concept is very powerful in building a software
because incomplete designs just represent a huge amount of
software errors. Also, the ability to check the correctness and
completion of the design and then implementing the software
directly from the designing part has the ability to make the
software very much reliable. This complete process helps in
removing the time-consuming stage of having the hand-coding
and designing which makes it possible to deliver the final code
very quickly [7].
During the development process, the engineers can also
generate the code directly from the diagrams. The engineers
make the changes to the code and reflect them back into the
model. The model, represented by the UML diagrams, and the
codes stay consistent throughout the life of the software.

Ankita Sharma et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,605-607

© 2015-19, IJARCS All Rights Reserved 607

VIII. CONCLUSION

The promise of ubiquitous computing is to make the life smart
thus creating a sensor network capable of collecting,
processing, and sending data and finally communicating as a
means to adapt the data activity in the essence of network and
its surroundings and which further leads to enhance human
experience and quality of life, assisted by computers. The
idealistic visions painted by the ubiquitous computing
movement stand in stark contrast to what we see when we boot
up our computers each day. There is an immediate barrier
because you have to know how to use a computer to use a
computer. For example, if you sit in front of computer without
knowing how to use a mouse we will not be able to do
anything. It’s unlikely. The computer won’t help you, either,
since you have to know how to use the computer to ask it for
help on how to use it! When computers do offer assistance, it
still tends to fall short of the mark.

IX. REFERENCES

[1] Bakre, A, Badrinath, B.R., Handoff and System Support
for Indirect TCP/IP. In Proceedings of the Second Usenix
Symposium on Mobile & Location-Independent
Computing pp 11-24,April 1995

[2] Kistler, J.J, Satyanarayanan, M., Disconnected
Operation in the Coda File System. ACM Transactions
on Computer Systems 10(1), pp 3-25, February 1992,

[3] Brewer, E.A, Katz, R.H., Chawathe, Y., Gribble, S.D,
Hodes, T, Nguyen, G, Stemm, M, Henderson, T., Amir,
E, Balakrishnan, H., Fox, A., Padmanabhan, V.N.,
Seshan, S., A Network Architecture for Heterogeneous
Mobile Computing. IEEE Personal Communications
5(5), pp 8-24, October 1998.

[4] Want, R., Hopper, A., Falcao, V., Gibbons, J, The
Active Badge Location System. ACM Transactions on
Information Systems 10(1), pp 91-102 January 1992.

[5] Debashis Saha and Amitava Mukherjee, Pervasive
computing: A Paradigm for 21st century, Published by
the IEEE Computer Society 36(3), pp- 25-31March
2003, 0018-9162.

[6] Lynch, N.A., Morgan Kaufmann, Distributed
Algorithms. 1993

[7] Mummert, L.B., Ebling, M.R., Satyanarayanan, M.
Exploiting Weak Connectivity for Mobile File Access.
In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, 29(5) pp-143-155,
December 1995.

[8] Weiser, M., The Computer for the Twenty- First
Century [J].Scientific American, 1991(3)pp- 94-100.

	Ankita Sharma
	Department of Computer science
	JIMS Rohini Sec 5
	Delhi, India

