
��������	�
����	��������������

����������������������������������������� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*��������� 

© 2010, IJARCS All Rights Reserved  129   

 Projected Features for Hindi Speech Recognition System 

 

R. K. Aggarwal* 
Department Of Computer Engineering 

National Institute of Technology  

 Kurukshetra, INDIA 

 rka15969@gmail.com 

 

 M. Dave 
Department Of Computer Engineering 

National Institute of Technology 

 Kurukshetra, INDIA 

mdave67@gmail.com

 

 

Abstract: Automatic speech recognition (ASR) is a technology that allows a computer to identify the words uttered by a person using a 

microphone or telephone. The processing required is divided into two parts: the signal processing front end and statistical framework of hidden 

Markov model (HMM) at back-end for pattern classification. This paper presents a comparative study of different types of feature reduction 

techniques in the context of Hindi language. Experimental results show a significant improvement in ASR performance by using extended MF-

PLP (PLP derived from Mel scale filter bank) feature extraction technique at front-end with the help of Hetroscedastic linear discriminant 

analysis (HLDA) projection scheme. All the investigations are based on the experiments conducted in typical field conditions using standard 

close talking microphone. 
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I. INTRODUCTION 

Automatic speech recognition (ASR) involves in the 
recovery of information into textual form from the physical 
speech signals. It has wide variety of application such as 
interactive voice response system (IVRS), dictation writing 
and voice controlled house hold appliances. The major 
application of ASR is to build speech based interfaces for 
human computer interaction, providing a convenient access 
to the information technology and its applications for 
illiterate and physically challenged persons [1].  

The two main components, normally used in ASR, are 
signal processing component at front-end and pattern 
matching component at back-end. Speech signal is converted 
into discrete sequence of feature vectors, which is assumed to 
contain only that information about given utterance that is 
important for its correct recognition. These feature vectors 
are decoded into linguistic units like word, syllable, and 
phones using hidden Markov models [2]. 

In this paper we review and present a comparative study 
of various reduction techniques proposed so far such as 
principal component analysis (PCA), linear discriminant 
analysis (LDA), and Hetroscedastic linear discriminant 
analysis (HLDA) with their merits and demerits. These 
methods are applied at the front-end to obtain the 
uncorrelated and reduced size feature vector. At front-end 
extended MF-PLP (PLP Derived from Mel scale Filter Bank) 
is used for feature extraction and these features are evaluated 
using the statistical techniques of acoustic models (HMM-
GMM). All the experiments are conducted in the context of 
Hindi languages. The rest of the paper is organized as 
follows: Section 2 describes the architecture and working of 
ASR. Feature extraction techniques are given in section 3. 
Section 4 describes the feature reduction methods normally 
used in pattern recognition. The techniques used for pattern 
classification like Gaussian mixture models are discussed in 
section 5. In section 6, an experimental comparison of ASR 
performance with various reduction methods is presented. 
Finally, the paper concludes with a brief discussion of the 
experimental results in section 7. 

II. WORKING OF ASR 

The main modules of ASR are preprocessing and feature 
extraction, acoustic and language model generation, and 
decoding (classification) as shown in Figure 1. Preprocessing 
covers the signal acquisitions, conditioning and 
segmentation. Speech signal is captured through a close 
talking microphone, i.e., 10 cm distance between lips and 
transducer. Next step involves analog to digital conversion as 
well as digital filtering to emphasize the important 
components of the speech. This signal is blocked into 
overlapped frames (frame size 20-40 ms and frame shift 10 
ms) using a Hamming window. Further speech activity 
detection is performed as a front end step having a positive 
impact on the ASR system in terms of both CPU usage and 
ASR accuracy. This is due to the fact that the decoder is not 
required to operate on non speech segment, thus reducing the 
processing effort and word insertion error rate. These frames 
are further processed using the signal processing techniques 
like Mel-frequency cepstrum coefficient (MFCC), perceptual 
linear prediction (PLP), MF-PLP and wavelets [3]. 

At back end, speech database and text corpus are required 
to generate acoustic and language models respectively which 
are used as knowledge sources during decoding. On the basis 
of generated models, ASR uses hidden Markov model 
framework to provide acoustic match score between 
observations and proposed strings of words. For large 
vocabulary task, it is impractical to create a separate acoustic 
model for every possible word since it requires too much 
training data to measure the variability in every possible 
context. A word model is formed by concatenating the 
models for the constituent subword sounds in the word, as 
defined in a word lexicon or dictionary. The main role of 
acoustic model is the mapping from each sub word unit to 
acoustic observations. Popular subword units being used are 
context independent phones, syllables and triphones. In 
language model rules are introduced to follow the linguistic 
restrictions present in the language and to allow redemption 
of possible invalid phoneme sequences [4]. 
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Figure 1. Components of ASR 

 

III. FEATURE EXTRACTION 

The parameters representations of speech signals may be 
divided into two groups: those based on linear prediction   
spectrum and based on Fourier spectrum. In second category 
filter bank energies have been used for spectral analysis in 
ASR by accumulating the energy in each band over short 
segments of time. Filter bank energies are determined by 
applying filters directly on the DFT-derived power spectrum 
of the signal. The power in each band is calculated as the 
weighted sum of adjacent power values. The filter bank 
representation allows incorporation of perceptually based 
frequency scales such as Mel-warped filter bank and Bark-
warped filter bank [5]. The popular techniques based on filter 
bank approach are MFCC, PLP, and MF-PLP. 

It is common to append an energy coefficient to the 
cepstrum feature vector. The energy is computed as the 
logarithm of the accumulated frame energy: 

��� � ����	
 ��	� �������� ��                                       (1) 

Where ��	� is the input speech signal and � corresponds to 

size of the Hamming window. Energy is useful since 

differences in energy are seen among different phonemes. 
MFCC proposed by Davis and Mermelstein 1980 [6] 

includes computing the cosine transform of the real 
logarithm of the short-time power spectrum on a Mel warped 
frequency scale. Here a speech spectrum passes through a 
filter bank of Mel-spaced triangular filters, and the filter 
output energies are log-compressed and transformed to the 
cepstral domain by DCT. Normally first 13 coefficients are 
enough for the representation of the signal. This cepstral as 
such along with their first and second order derivatives are 
used as features for recognition. In PLP, the spectrum is 
multiplied by a mathematical curve modeling the ear’s 
behavior in judging loudness as a function of frequency. The 
output is then raised to the power 0.33 to simulate the power 
law of hearing [7]. In MF-PLP (PLP Derived from Mel scale 
Filter Bank), the MFCC and PLP techniques are merged into 
one algorithm [8]. The first steps until generating the output 
of the Mel scale triangular filter bank are taken from the 

MFCC algorithm. The only difference here is that the filter 
bank is applied to the power spectrum instead of the 
magnitude spectrum. The last steps generating the cepstrum 
coefficients are taken from the PLP algorithm. The steps 
followed for MF-PLP extraction are given below and shown 
in Figure 2.  

 

Figure 2: MF-PLP Extraction Modeling 

• Compute power spectrum of windowed speech. 

• Perform grouping to 21 critical bands in Bark scale 
especially for 16 kHz sampling frequency. 

• Perform loudness equalization and cube root 
compression to simulate the power law of hearing. 

• Perform Inverse Fast Fourier Transform (IFFT). 

• Derive LP coefficients by Levinson-Durbin 
procedure [9] and convert them into cepstral 
coefficients. 

IV. FEATURE REDUCTION TECHNIQUES 

An important task for any pattern recognition problem is 
to find a good feature space, which should be both compact 
and contain the richest possible discriminant information. 
Feature dimensions which contain less discriminant 
information should be discarded because their existence not 
only slows down the classification process but also degrades 
the performance in many situations. This step is aimed at 
incorporating the techniques which project the features into 
low dimensional subspace, while preserving discriminative 
information. To derive such a good feature subspace is 
through finding a linear transformation��from the original 
feature space����to a new low dimensional one ��such that: 

��	�� � ����	��                                                             (2) where���	��is the feature vector in the transformed feature 

space and��	��  is  the feature vector in original feature 

space and � is the target feature space’s dimensionality 
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The techniques mainly used for feature decorrelation and 

dimensionality reduction are principal component analysis 

(PCA), linear discriminant analysis (LDA), Heteroscedastic 

linear discriminant analysis (HLDA) [10] 

A. Principal Component Analysis 

PCA [11] defines the orthogonal linear transforms using 

a matrix P, where target feature vector� is obtained by: 

� � !� �                                                                             (3)             

Transform matrix P corresponds to the Eigen vectors of 

covariance matrix of the original feature space arranged on 

the basis of the Eigen values. The first row of matrix P 

(called first base vector, p1), shows the direction of the 

largest variability in -dimensional space of feature vectors. 

The second row shows a direction perpendicular to direction 

given by the first row with the second largest variability and 

so on.  
From the feature space, covariance matrix "�# is derived 

as: 

"�# � �
� 
 	�� $ �%�	�� $ �%�&��''��                                    (4) 

where �is the number of training feature vectors, ��is the (�) 
training feature vector, �%is the mean vector calculated as: 

�% � �
� 
 �&�&��                                                                      (5) 

Since the covariance matrix "�#  is a square, one can 
calculate the eigenvectors and eigen values for this matrix. 

The (�)  base vector ( (�)  row of matrix P) of PCA 
transformation�*&, is given by the eigen vector corresponding 

to (�)  largest eigen value. In order to reduce the dimension, 
only first M base vectors such that � + � which preserves 
the most variability of feature space are selected. 

B.  Linear discriminant analysis 

The other dimensionality reduction method widely used 
in pattern recognition is linear discriminant analysis (LDA) 
[12], where the optimization criterion is to maximize the 
Fisher ratio value in the transformed feature space. In LDA 
the objective is to increase the ratio of the between class 
variance to the average within class variance for each 
dimension. It assumes that features belonging to each 
particular class obey Gaussian distribution with the same 
covariance matrix for all classes. Base vectors of LDA 
transformation matrix are calculated by the eigenvectors of 
the product of across-class covariance matrix and inverse of 
within-class covariance matrix i.e., "�#,- . "�#/-0� . Across-
class covariance matrix "�#,-  represents the wanted 
variability in data and computed as: 

"�#,- � �
�
 �1� 	�%1 $ �%�21�� 	�1 $ �%��                            (6) 

where 3 is the number of classes, �1 is number of training 

vectors belonging to class and �%1is the mean vector for class 
4 defined as 

�%1 � �
� 
 �&12&��                                                                    (7)  

Within-class covariance matrix "�#/- represents the 
unwanted variability in data and is given as weighted average 
of covariance matrix of all classes. 

"�#/- � �
�
 �1�21�� "�#1                                                (8) 

where "�#1  is covariance matrix for class �4 . In order to 
achieve feature reduction, LDA chooses first � base vectors 
that retain the maximum amount of class discrimination 
information. 

C.  Heteroscedastic Linear Discriminant Analysis 

HLDA, a   generalization of LDA and first proposed by 
N. Kumar [13], assumes that original N dimensional feature 

space can be split into two statistically independent 
subspaces, one containing the necessary information and 
another with nuisance information. Here classes obey 
Gaussian distribution with different covariance for each class 
and maximizes the likelihood of all the training data in the 
transformed space. Each training data contributes equally in 
the transformed space as well as to the objective functions.  
The main difference between LDA and HLDA is that full 
covariance matrix statistics for each component are required 
to estimate an HLDA transform, whereas only the average 
within and between class covariance matrices are required 
for LDA. Thus HLDA, a refinement of LDA, uses the actual 
class covariance matrices rather than using the averages. 

V. ACOUSTIC MODELING TECHNIQUES 

 Among the various acoustic models, HMM is so far the 
most widely used technique due to its efficient algorithm for 
training and recognition. It is a statistical model for an 
ordered sequence of symbols, acting as a stochastic finite 
state machine which is assumed to be built up from a finite 
set of possible states [14]. An HMM is the same as a Markov 
chain, except for one important difference:  each state emits 
output symbol based on some emission probability. Instead 
of associating a single output symbol per state in an HMM, 
all symbols are possible at each state, each with its own 

probability. 
In ASR, only forward transition of states is allowed in a 

left to right way as shown in Figure 3 [15]. The Markov 
chain is specified in terms of an initial state distribution 
vector 5 � 657�� 5�� � ' � 5�8   and a state transition matrix 

9 � :;&<=�> ? (� @ ? 4. Here 5& is the probability of A& to be 

the initial state and ;&< has the property of 

;&< � B�CDEFE�@ + (                                                           (9) 

Consider a first order 4  state ( A�� A�� ' � � A1�  Markov 
chain the initial state probability are defined as 

5& � GB�����( H >
>�����( � >7                                                                 (10)    

The Basic HMM theory was published in series of 
classical papers by Baum and his colleague [16, 17] and 
details of HMM for ASR can be found in many references 
[18, 4]. 

 

 
 

Fig.3. 5-state hidden Markov model 

In GMM each of the HMM states are associated with a 

multivariate Gaussian probability distribution, defined as: 

�	�I J� 
� � >
	K5�� �L M
M� �L E�* N$>

K 	� $ J��
0O	� $ J�P 
(11) 

Where J is the  dimensional mean vector, 
 is the  .  

covariance matrix, and M
M is the determinant of covariance 

matrix 
 . In the mixtures of Gaussian density, the 

probability density for observable data x is the weighted sum 

of each Gaussian component: 

*	�MQ� � 
 "R�R	�MJR� SR��R��                                   (12) 
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Where "R, the mixture weight associated with T�) Gaussian 
component is subject to the following constraint "R U B and 

 "R � >��R��  and *	�MQ�  is an utterance level score of � 
given the model V�[14]. 

The complete Gaussian mixture model is parameterized 
by the mean vectors, covariance matrices and mixture 
weights from all component densities. 

VI. EXPERIMENTAL RESULTS 

The speech signal is sampled at 16 kHz using 16 bits 
quantization and pre emphasized using a first order filter 
with a coefficient of 0.97. The samples are blocked into the 
overlapping frames of 30 ms in duration and updated at 10 
ms intervals. These frames are processed by filter bank 
approach for feature extraction. The outputs of the filter bank 
are then transformed to cepstral coefficients, where only the 
first 12 coefficients are retained as a part of feature vector 
[19]. The complete feature vector consist of 52 values 
including the 12 cepstral coefficients with one energy, 13 
delta coefficients, 13 delta delta coefficients and 13 triple 
delta coefficients. The 52 dimensional feature vector is 
reduced to 39 dimension by using any of the projection 
schemes (reduction techniques) as shown in Figure 4.  

Many public domain software tools are available for the 

research work in the field of ASR such as Sphinx from 

Carnegie Mellon University [20], hidden Markov model 

toolkit (HTK) from Cambridge University [21] and LVCSR 

engine Julius from Japan [22]. We have used HTK-3.4.1 in 

LINUX environment for our experimental work. Further the 

experiment consists of an evaluation of the system using the 

room condition and standard speech capturing hardware 

such as sound card and a head set microphone. 

3-states along with dummy (non-emitting) initial and 

final nodes were used for each phonetic transcription in 

HMM topology. The choice of the number of model states is 

suggested by the observation that each phoneme instance 

could be divided into three quasi-stationary parts: an initial 

part, a central part and a final part. 

The experiment was performed on a set of speech data 

consisting of four hundred words of Hindi language 

recording by 10 male 10 female speakers. Testing of 

randomly chosen 50 sentences spoken by different speakers 

is made and recognition rate (i.e. accuracy) is calculated as 

Accuracy (%) = 100-WER(%). 

Word error rate runs three types of errors: insertion, 

deletion and substitution errors. If there are N words in the 

reference transcript, and the ASR output has S substitutions, 

D deletions and I insertions, then 

WXY � >BB Z [\]\^
_ �%                                                     (13)        

A. Experiments with Projection Schemes  

In this experiment at front-end, the feature vectors of MF-
PLP were appended up to triple deltas (13 static + 13� + 
13�� + 13���) and these 52 dimensional feature vectors 
were reduced to the standard 39 values, using the projection 
schemes. At back-end, classical HMM was used with two 
modeling units, whole word and triphone. A triphone HMM 
is applied to model the acoustic characteristic of a phoneme 
in the context of a specified preceding and a specified 
succeeding phoneme. For example a triphone HMM “h-I-s” 
may be generated for the vowel “i” in the context of a 
preceding “h” and a succeeding “s”.   

Results were compared in case of three projection 
schemes HLDA, LDA and PCA as shown in Figure 5. 
HLDA based reduction shows maximum accuracy in this 
scenario. The difference between the performance of HLDA 
and LDA is less. We can also use LDA if less computation is 
required to make the application fit in real time environment 
or in embedded system. 

 

Figure 4. Extended Feature Vector Generation 
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Figure 5. Accuracy versus Projection Schemes 

B. Experiment with Gaussian Mixtures 

Thirteen extra triple delta features are added in standard 

39 MFCC features forming a feature vector of 52 values. 

These 52 values are then reduced to 39 by applying 

projection schemes. At back-end, classical HMM was used 

with different Gaussian mixtures, 1 mix, 4 mix, 8 mix, and 

16 mix. Maximum accuracy was observed for  HLDA, when 

8 Gaussian mixtures were used for experiments as shown in 

Table 1. 

Table 1. Accuracy for Mixtures and Projection Schemes 

Projected 

Features  

 Accuracy for different mixtures  

1 mix 4 mix 8 mix 16 mix 

PCA  76 85 88 86 

LDA 77 87 90 89 

HLDA 78 87 91 90 

Std. Feature 73 82 86 84 

VII. CONCLUSION 

Recognizing and understanding of speech is the basic for 

facing a broad class of challenging problems related with 

natural language conversational interface. For the design 

and development of efficient and accurate ASR, 

discriminant and compact features play an important role. In 

the paper we reviewed the projection schemes and applied 

them for feature reduction purpose. Experimental results 

showed that HLDA performs best in comparison to others.  

Further the extended features (includes triple deltas) showed 

2 to 5% more accuracy in comparison to standard features. 
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