
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4407

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 704

ISSN No. 0976-5697

IMPLEMENTATION OF AES ALGORITHM ON FPGA FOR LOW AREA
CONSUMPTION

Gurpinder Kaur

Department of ECE,
Punjabi University, Patiala, Punjab, India

Dr. Amandeep Singh Sappal
Department of ECE,

Punjabi University, Patiala, Punjab, India

Abstract: With the increasing number of internet and wireless communication users the demand for security measures to protect user data
transmitted over open channels increases. So cryptography becomes important for such sensitive data which needs to be kept secured. AES can
be considered as the most widely used modern symmetric key encryption standard. This paper propounds hardware implementation of AES to
achieve less area and high speed. The proposed AES design supports 128 bit key length and 128 bit data blocks. Single register is used to store
the round keys in each round of key expansion to reduce area consumption. The AES-128 is implemented on FPGA using Verilog language with
the help of Xilinx ISE tool.

Keyword: Advanced Encryption Standard (AES), Field Programmable Gate Array (FPGA)

1. INTRODUCTION

Data security is a major problem for any organization that
has valuable information that needs to be kept secured from
automated spying/hacking. So to avoid savage attacks on
information, cryptography can be used as effective tool.
AES can be considered as the most widely used modern
symmetric key encryption standard [1].
In 2000 NIST announced that the rijandael algorithm from
Belgium has been selected as the Advanced Encryption
Standard (AES) algorithm. After that AES algorithm has
attracted attentions from various departments since it
provides high level of security and can be implemented
easily [2].
AES can be implemented both in hardware or software but
hardware implementation is used in real time applications
from high end computers to low power portable devices.
Since there is a set of complex computational steps in AES
algorithm so software implementation of AES algorithm is
slow and thus consumes large amount of time to complete.
Whereas AES hardware implementation is fast, very reliable
and conveniently suitable for high speed applications and
moreover it does not require system resources used in
software implementation. AES hardware implementation
can be easily reset and erase data on risk and thus provide
better system performance. Also hardware implementation
is economically better than software implementation [3].
There are two major platforms for hardware
implementation. They are: (1) Application Specific
Integrated Circuits (ASICs) (2) Field Programmable Gate
Array (FPGA). In this paper FPGA has been used for the
implementation of AES as it inhibits parallelism and is
reconfigurable. Also FPGA approach proves to be

economically better than ASIC implementation. Further
FPGA architecture consists of various features such as block
memory (BRAM), Digital Signal Processing (DSP)
cores[7]. Major problem in hardware implementation of
AES is higher area and power consumption. Main goal of
AES hardware implementation is to minimize hardware and
speed up the Algorithm with minimum increase in hardware.
The rest of the paper is organized as follows. Section II
presents a brief overview of AES and previously proposed
existing work done and section III provides the proposed
work. Section IV shows the implementation results and
finally, section V concludes the paper.

2. ADVANCED ENCRYPTION STANDARD

The AES is a private or symmetric block cipher which uses
the same key for encryption and decryption. AES algorithm
can encrypt or decrypt block size of 128 bit using cipher
keys of 128, 192, 256 bits [4]. Depending on the key length
the each round is repeated Nr number of times. In this paper
the key size is 128 and each round is repeated 10 times.

TABLE I. KEY LENGTH AND ROUNDS
Key size(bits) No. of Rounds
128 10
192 12
256 14

AES Encryption consists of four different transformations –
SubBytes, ShiftRows, MixColumns, AddRoundKey. Figure
1 shows the various steps of AES Encryption and
Decryption

.

Gurpinder Kaur, et al International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,704-707

© 2015-19, IJARCS All Rights Reserved 705

Figure 1. Block diagram of AES Encryption and Decryption.

A. SubBytes

In byte substitution layer each element of the state is
transformed non-linearly using look up tables with some
special mathematical properties. The mathematical
operations consists of multiplicative inverse over GF()
and then affine transformation.

1) Inverse SubBytes: In order to compute the reverse of S-
Box substitution inverse of affine transformation is
computed and then inverse operation is reversed by
computing the reverse again [5].

B. ShiftRows

ShiftRows layer permutes the data on byte level to
increase the diffusion properties of AES. The first row of
ShiftRowtransformation remains unchanged while the
second, third and fourth row of state matrix shifts by
three, two and one byte respectively to the right.

2) Inverse ShiftRows: in order to reverse the shift rows
operation each row of the state matrix is shifted in
opposite direction i.e. to the left and the first row remains
unchanged [5].

C. MixColumns

MixColumn transformation is a linear transformation
which mixes each column of state matrix independently.
Each column is considered as a polynomial over the
GF() and then multiplied by fixed polynomial modulo

. The combination of ShiftRows and MixColumn
makes it possible that after only three rounds every byte
of state matrix depends on all 16 plaintext bytes.
MixColumn layer is not present in last round of AES
encryption.

3) Inverse MixColumn: in inverse MixColumn each column
is considered as polynomial over GF()and then
multiplied by a fixed polynomial modulo

{0b} +{0d} +{09} +{0e}. This layer is not
present in first round of decryption [6].

D. Key Addition layer

Two inputs for key addition layer are 16 bytes (128 bits)
state matrix and a subkey of 16 bytes. These two inputs
are combined by a bitwise XOR operation.

E. Key Scheduling
The subkeys are derived in the key scheduling. The key
schedule takes the original input key(of length 128, 192
or 256 bits) and derives the remaining subkeys. Total
number of subkeys derived are number of rounds plus
one. AES key schedule is word oriented, where 1 word =
32 bits. for 128 bit key, first it accepts 4 bytes input word
and thus performs cyclic permutations. It takes 4 byte
words as input and then via byte substitution each byte is
substituted by another byte and then xoring is performed
using a round constant word array.
Since the AES is a symmetric cipher .i.e. same key is
used for both encryption and decryption, so the key
computed in last round of encryption is applied to first
round of decryption, the second to last computed key is
applied to second round of decryption and so on.

3. PROPOSED WORK

This section describes the proposed method for low area
consumption along with maintaining high speed on a single
hardware.
A. Hardware Efficient Architecture

The substitution box used in SubByte and InvSubByte
can be implemented by two methods, they are BRAM
implementation and combinational logic [3]. In this
paper S-Box architecture based on combination logic is
present. In this paper single register is used for
temporary storage of round key values computed in each

Gurpinder Kaur, et al International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,704-707

© 2015-19, IJARCS All Rights Reserved 706

round. Use of single register instead of individual
register for each round saves hardware and thus leads to
lower area consumption.

B. Pipelined Architecture

In this paper pipelined architecture is used for achieving
high speed as compared to the previous work. In
pipelining when one round is completed simultaneously,
the bytes are accepted for the next round. To increase the
speed pipelining architecture proves to be very effective
[6].

C. AES data path improvement

In AES algorithm control is observed to be independent
of data. In this paper finite state machine technique
(FSM) is used to easily understand the data path during
encryption and decryption process. The finite state
machine technique is used to represent and control
execution flow. This technique provides detailed path to
be followed to reach the output.

D. FSM Encryption

Initially when reset is on, no data will be processed and
the system is in pre_idle state waiting for the data to
encrypt. When reset is set low .i.e. reset = 0, then the
system goes to idle state. The system fetches the 16 byte
input data block .i.e. plain text in idle state. When the
data block is ready the system moves to next state(s0).
The s0 state indicates the first round of encryption in
which the original data .i.e. plain text is xored with
original input key. This xored data is applied to S-Box
and then after ShiftRow transformation MixColumn is
performed. So after the first round algorithm moves to
second state s1 where the output of first round is xored
with the subkey generated using original key and thus
applied to the four transformations. Similarly for the next
eight rounds this state is repeated. And in the last round
all the process remains same except the MixColumn
transformation is excluded. Once the last round .i.e. 10th
round is completed the encryption is done for the first 16
byte data block and thus the done signal goes high
indicating that the encryption is done and the system is
ready to encrypt the next 16 byte data block.

E. FSM Decryption

Decryption is the reverse process for encryption. Reset
and pre_idle state are similar to those used in FSM
Encryption. When reset is low the system moves to idle
state and waits for the data to decrypt. When done signal
is high it indicates that data is encrypted and is thus
ready to decrypt. So system moves to s0 state where first
round of decryption is performed which is similar to the
last round of encryption and thus switches to next state
which repeats in the same manner for the next eight
rounds and includes InvMixColumn transformation and
in the last round after completion of last round .i.e. when
system decrypts the cipher text back to plain text(input
data) it provides a decrypt signal to indicate that
decryption is done and the system moves to pre_idle
state thus waiting for the new data to arrive.

4. RESULTS AND COMPARISONS
A Xilinx ISE 13.2 tool has been used for synthesis and

implementation and Xilinx Isim(0.61xd) for testing and
verification of simulation results. The experimental
results has been observed using FPGA family
XC6SLX16-3-CSG324. Simulation results of AES
Encryption and decryption are shown in figure 2 and
figure 3. The proposed design area utilization for
encryption and decryption are summarized in table 2 and
table 3 along with their performance in comparison to
the previous work.

Figure 2: Simulation results of AES Encryption

TABLE 2. Comparison of proposed Encryption design with

existing design[3]
Parameter Proposed

work
Existing
design[3]

Data path(bit) 128 128
No. of rounds 10 10
Slice Registers 509 564

Slice LUTs 1329 3559
Fully used LUT-FF

pairs
403 459

Block RAM 1 4
Combinational path

delay(ns)
0 0

Max. operating
Frequency(Mhz)

285.759 273.997

Throughput(Mbps) 2085.56 855.61

Figure 3: Simulation results for AES Decryption

Gurpinder Kaur, et al International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,704-707

© 2015-19, IJARCS All Rights Reserved 707

TABLE 3. Comparison of proposed Decryption design with
the existing design

Parameter Proposed
work

Existing
design[3]

Data path(bit) 128 128
No. of rounds 10 10
Slice Registers 580 607

Slice LUTs 2197 3531
Fully used LUT-FF

pairs
548 426

Block RAM 1 20
Combinational path

delay(ns)
0 0

Max. operating
Frequency(Mhz)

282.319 223.157

Throughput 2111.196 696.712

5. CONCLUSION

AES plays a very important role in security applications.
Since the software implementation of AES is unsatisfactory
for real time applications so hardware implementation of
AES is used. High speed implementation is achieved using
pipelined approach. The speed needs to be increased being
very careful towards area as with increase in speed area also
increases. So a trade-off needs to be maintained between
speed and hardware such that with lowest increase in area

the speed is increased. The proposed design shows
improvement in terms of hardware and speed.

REFERENCES

[1] Gulroz Singh, Mankirat Singh Lamba, “Efficient Hardware
Implementation of Image Watermarking Using DWT and AES
Algorithm”, 39th National System Conference, pp 1-6, Dec
2015.

[2] Standard N F, Announcing the advanced encryption
standard(AES), Federal Information Processing Standards
Publications, 2001.

[3] Pritamkumar N. Khose and Vrushali G. Raut, “Implementation
of AES Algorithm on FPGA for Low Area Consumption”,
proc. 2015 International Conference on Pervasive Computing
(ICPC).

[4] FIPS 197, Advanced Encryption Standard
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[5] Christof Paar and Jan Pelzl, “ Understanding Cryptography”,
pp 87-117, DOI 10.1007/978-3-642-04101-3 1,_c Springer-
Verlag Berlin Heidelberg 2010.

[6] Pournima U. Deshpande and Smita A. Bhosale, “AES
Encryption Engines of Many Core Processor Arrays on FPGA
by using Parallel, Pipeline and Sequential Technique”, proc.
International Conference on Energy Systems and
Applications(ICESA), pp 75-80, 30 Oct – 01 Nov 2015.

[7] Rajpreet Singh, Tripatjot Singh Panag, Amandeep Singh
Sappal, “FPGA implementation of Optimized Decimation
Filter for Wireless Communication Receivers”, International
Journal of Innovative Research in Computer and
Communication Engineering, vol. 2, issue 4, April 2014.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf�

