
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4348

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 520

ISSN No. 0976-5697

R PROFILING: STRATEGIES FORPERFORMANCE IMPROVEMENTS IN R
APPLICATION

Devharsh Trivedi

Magnetic Resonance Imaging (R&D)
Philips Innovation Campus

Bangalore, India

Abstract: This paper is in continuation with my efforts on improving performance of R application. In my previous paper titled “A Study on
CRAN R and MRAN R Interpreters”, I have demonstrated performance improvements by Microsoft R over core R out of the box. Microsoft R
uses Intel MKL library to make R applications multithreaded. In this paper, I have highlighted some APIs using which performance will increase
manifolds. This replacement requires little to no overhead in code change thus very effective to use by legacy apps.

Keywords: Performance improvements in R, Performance optimization in R, R Profiling

I. INTRODUCTION:

R is an interpreted language; hence, it is bound to be slow
when compared to other compiled languages like C/C++.
Mostly Data Science and Machine Learning community
uses R, often dealing with huge amount of data, thus
performance becomes critical. Aim of this paper is to
improve sluggish performance of R. In my previous paper
[1], I introduced Microsoft R [2]which using multithreading
boosts performance. In this paper, tactics are presented to
gain performance improvement out-of-the-box. How
switching APIs like read_csv and fread over read.csv,
fastPOSIXct over POSIXct, and data types like character vs
factor, data.table vs data.frame can improve performance is
shown in this paper.

II. SYSTEM SPECS:

Processor: Intel i5 @2.30 GHz
Cores: 2 physical, 4 logical
RAM: 8 GB
OS: Windows 7 64-bit
R: Microsoft R Open 3.4.0
RStudio: Version 1.0.143
CRAN mirror: snapshot taken on 01-May-2017
Intel MKL [3]: Enabled, using all physical cores (2)

III. PROFILING:

You can use built-in method system.time() for measuring
execution time taken by a function or portion of the code or
use microbenchmark() from microbenchmark[4]library. If
you have a big application, it is better to use
Rprofvis()[5]which records all calls executed during
application lifecycle and generates a rich html file which
helps finding memory/CPU bottlenecks. RStudio has
RProfvis installed by default.

IV. READING CSV:

Figure 1. Time taken by different file read functions.

R applications heavily make use of CSV files, as it is a
simple way of storing and sharing tabular data. It is very
convenient to mold CSV data into R type like list, matrix,
data.frame or data.table. Here I am comparing three popular
methods for reading CSV: read.csv(), read_csv, and fread().
Read_csv() is built-in method, read_csv() requires readr[6]
library, and fread() requires data.table[7] library. Following
shows time comparisons of these functions for different file
sizes. With fread you can get around 20 times performance
improvement over read.csv().

Table I. Time taken by different file read functions

9.25 kb read.csv read_csv fread

run1 0 0.09 0
run2 0.02 0.14 0
run3 0.01 0.02 0
avg 0.01 0.083333 0

11.6 mb read.csv read_csv fread

0

10

20

30

40

50

60

70

9.25 kb 11.6 mb 46.3 mb 270 mb 462 mb

read.csv read_csv fread

Devharsh Trivedi, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,520-522

© 2015-19, IJARCS All Rights Reserved 521

run1 1.12 0.15 0.09
run2 1.1 0.13 0.08
run3 1.1 0.13 0.08
avg 1.106667 0.136667 0.083333

46.3 mb read.csv read_csv fread
run1 4.52 0.61 0.33
run2 4.24 0.58 0.33
run3 4.21 0.57 0.31
avg 4.323333 0.586667 0.323333

270 mb read.csv read_csv fread
run1 31.85 3.54 1.86
run2 31.34 3.06 1.87
run3 31.27 3.04 1.85
avg 31.48667 3.213333 1.86

462 mb read.csv read_csv fread
run1 59.07 9.16 3
run2 57.89 8.97 3
run3 57.78 8.87 3.03
avg 58.24667 9 3.01

V. POSIXCONVERSIONS:

Figure 2. Time taken by POSIXct and fastPOSIXct

POSIXct is the number of seconds since the epoch – 1st
January 1970. POSIXctcan be best used as a list structure of
dates. If you need to convert character or factor time format
to a time series object, you will convert it with as.POSIXct.
But this call is very costly, use fastPOSIXct() instead from
fasttime[8] library.fastPOSIXct is extremely fast compared
to POSIXct as it uses pure string parsing without overhead
of additional system callsas in the case of POSIXct.
Following shows comparisons of time taken for POSIXct
and fastPOSIXct for different numbers of records. You can
achieve around 85 times performance improvement.

Table II. Time taken by POSIXct and fastPOSIXct

79 rows POSIXct fastPOSIXct

run1 0 0
run2 0 0
run3 0 0
avg 0 0

113096 rows POSIXct fastPOSIXct
run1 4.21 0.05
run2 4.23 0.07
run3 4.23 0.05
avg 4.22333 0.05666667

1087276
rows

 POSIXct fastPOSIXct
run1 40.91 0.46
run2 40.93 0.45
run3 41.14 0.46
avg 40.9933 0.45666667

VI. CHARACTER VECTORS:

Another trick is to use character vector instead of factor.
Using character with fastPOSIXct() and table(unlist())
instead of factor may up the performance a few notch.
Following table shows a marginal performance gain by
character over factor for fastPOSIXct. Vector size was
599476 records.

Table III. Character vs factor parsing in fastPOSIXct

fastPOSIXct character factor

run1 0.25 0.3
run2 0.25 0.28
run3 0.25 0.28
avg 0.25 0.287

VII. DATA.TABLES:

Data.tables may improve performance over list/data.frames
when using with merge() or format(). You should avoid
using format() in all cases. If you have to use merge to join
two frames convert it to tables, which will increase
performance. Following table shows comparison:

Table IV. Comparison of data.frame and data.table

merge data.frame data.table
run1 71.45 8.91
run2 69.69 8.8
run3 68.66 8.83
avg 69.93333333 8.846666667

VIII. STORING RESULT:

After performing operation on a variable, saving result in
different variable is faster than reusing the same variable on
which operation was performed.

0
10
20
30
40
50

79 113096 1087276

POSIXct fastPOSIXct

Devharsh Trivedi, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,520-522

© 2015-19, IJARCS All Rights Reserved 522

Table V. Time taken when result is saved in the same
variable on which operation is performed v/s result saved in

new variable

operation
1

 same
variable

different
variable

run1 1.65 0.29
run2 1.56 0.28
avg 1.605 0.285

operation
2

 same
variable

different
variable

run1 0.33 0.08
run2 0.3 0.07
avg 0.315 0.075

IX. OTHER OBSERVATIONS:[9][10]

1. Gsub() is slower than strptime().
2. POSIXct(strptime()) is faster than POSIXct().
3. Library dplyr is faster than plyr.
4. Stringr is faster than base-R implementation.
5. Don’t use loops (scalars) instead use lapply() or other

vectorization methods like apply(), mapply(), sapply(),
replicate() etc.

6. Using C-compiled code with R improves performance.
Use Rcpp to compile code with C or FORTRAN.

7. Keep inner loops bigger than outer loops.

X. CONCLUSION

It is observed that performance of R applications can be
significantly improved by executing it in multicore
environment and switching to performance oriented APIs
and data types. The study was done using profilers like
Rprofvis and system.time. You can opt for other profilers.
One such profiler is GUIProfiler. There is an excellent case

study done on it which can be find in research article by
Angel Rubio and Fernando de Villar[11].

This research can be extended by yielding results for other
observations mentioned in section IX.

XI. ACKNOWLEDGEMENT:

I would like to thank Mr. Manish Kumar
(manish.kumar@philips.com) for guiding me during the
course of this research.

XII. REFERENCES:

[1] Devharsh Trivedi. "A Study on CRAN R and MRAN R

Interpreters." International Journal for Scientific Research and
Development 4.2 (2016): 992-994.

[2] Microsoft R Open: The Enhanced R Distribution URL
https://mran.microsoft.com/open/

[3] The Benefits of Multithreaded Performance with Microsoft R
Open URL
https://mran.microsoft.com/documents/rro/multithread/

[4] Package ‘microbenchmark’ URL https://cran.r-
project.org/web/packages/microbenchmark/microbenchmark.
pdf

[5] Exploring profiles in RStudio URL
https://rstudio.github.io/profvis/rstudio.html

[6] Package ‘readr’ URL https://cran.r-
project.org/web/packages/readr/readr.pdf

[7] Package ‘data.table’ URL https://cran.r-
project.org/web/packages/data.table/data.table.pdf

[8] Package ‘fasttime’ URL https://cran.r-
project.org/web/packages/fasttime/fasttime.pdf

[9] A Guide to Speeding Up R Code URL https://www.r-
bloggers.com/faster-higher-stonger-a-guide-to-speeding-up-r-
code-for-busy-people/

[10] Strategies to Speedup R Code URL
https://datascienceplus.com/strategies-to-speedup-r-code/

[11] Angel Rubio, Fernando de Villar. Code Profiling in R: A
Review of Existing Methods and an Introduction to Package
GUIProfiler. The R Journal, 7(2):275-287, Dec. 2015.

mailto:manish.kumar@philips.com�
https://mran.microsoft.com/open/�
https://mran.microsoft.com/documents/rro/multithread/�
https://cran.r-project.org/web/packages/microbenchmark/microbenchmark.pdf�
https://cran.r-project.org/web/packages/microbenchmark/microbenchmark.pdf�
https://cran.r-project.org/web/packages/microbenchmark/microbenchmark.pdf�
https://rstudio.github.io/profvis/rstudio.html�
https://cran.r-project.org/web/packages/readr/readr.pdf�
https://cran.r-project.org/web/packages/readr/readr.pdf�
https://cran.r-project.org/web/packages/data.table/data.table.pdf�
https://cran.r-project.org/web/packages/data.table/data.table.pdf�
https://cran.r-project.org/web/packages/fasttime/fasttime.pdf�
https://cran.r-project.org/web/packages/fasttime/fasttime.pdf�
https://www.r-bloggers.com/faster-higher-stonger-a-guide-to-speeding-up-r-code-for-busy-people/�
https://www.r-bloggers.com/faster-higher-stonger-a-guide-to-speeding-up-r-code-for-busy-people/�
https://www.r-bloggers.com/faster-higher-stonger-a-guide-to-speeding-up-r-code-for-busy-people/�
https://datascienceplus.com/strategies-to-speedup-r-code/�

