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Abstract: This paper is in continuation with my efforts on improving performance of R application. In my previous paper titled “A Study on 
CRAN R and MRAN R Interpreters”, I have demonstrated performance improvements by Microsoft R over core R out of the box. Microsoft R 
uses Intel MKL library to make R applications multithreaded. In this paper, I have highlighted some APIs using which performance will increase 
manifolds. This replacement requires little to no overhead in code change thus very effective to use by legacy apps. 
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I. INTRODUCTION: 

 
R is an interpreted language; hence, it is bound to be slow 
when compared to other compiled languages like C/C++. 
Mostly Data Science and Machine Learning community 
uses R, often dealing with huge amount of data, thus 
performance becomes critical. Aim of this paper is to 
improve sluggish performance of R. In my previous paper 
[1], I introduced Microsoft R [2]which using multithreading 
boosts performance. In this paper, tactics are presented to 
gain performance improvement out-of-the-box. How 
switching APIs like read_csv and fread over read.csv, 
fastPOSIXct over POSIXct, and data types like character vs 
factor, data.table vs data.frame can improve performance is 
shown in this paper. 
 
II. SYSTEM SPECS: 

 
Processor: Intel i5 @2.30 GHz 
Cores: 2 physical, 4 logical 
RAM: 8 GB 
OS: Windows 7 64-bit 
R: Microsoft R Open 3.4.0 
RStudio: Version 1.0.143 
CRAN mirror: snapshot taken on 01-May-2017 
Intel MKL [3]: Enabled, using all physical cores (2) 
 
III. PROFILING: 

 
You can use built-in method system.time() for measuring 
execution time taken by a function or portion of the code or 
use microbenchmark() from microbenchmark[4]library. If 
you have a big application, it is better to use 
Rprofvis()[5]which records all calls executed during 
application lifecycle and generates a rich html file which 
helps finding memory/CPU bottlenecks. RStudio has 
RProfvis installed by default. 
 
 
 
 

IV. READING CSV: 
 

 

Figure 1. Time taken by different file read functions. 

R applications heavily make use of CSV files, as it is a 
simple way of storing and sharing tabular data. It is very 
convenient to mold CSV data into R type like list, matrix, 
data.frame or data.table. Here I am comparing three popular 
methods for reading CSV: read.csv(), read_csv, and fread(). 
Read_csv() is built-in method, read_csv() requires readr[6] 
library, and fread() requires data.table[7] library. Following 
shows time comparisons of these functions for different file 
sizes. With fread you can get around 20 times performance 
improvement over read.csv(). 

 
Table I. Time taken by different file read functions 

 
9.25 kb  read.csv read_csv fread 

run1 0 0.09 0 
run2 0.02 0.14 0 
run3 0.01 0.02 0 
avg 0.01 0.083333 0 

11.6 mb  read.csv read_csv fread 
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run1 1.12 0.15 0.09 
run2 1.1 0.13 0.08 
run3 1.1 0.13 0.08 
avg 1.106667 0.136667 0.083333 

46.3 mb  read.csv read_csv fread 
run1 4.52 0.61 0.33 
run2 4.24 0.58 0.33 
run3 4.21 0.57 0.31 
avg 4.323333 0.586667 0.323333 

270 mb  read.csv read_csv fread 
run1 31.85 3.54 1.86 
run2 31.34 3.06 1.87 
run3 31.27 3.04 1.85 
avg 31.48667 3.213333 1.86 

462 mb  read.csv read_csv fread 
run1 59.07 9.16 3 
run2 57.89 8.97 3 
run3 57.78 8.87 3.03 
avg 58.24667 9 3.01 

 
V. POSIXCONVERSIONS: 

 

 

Figure 2. Time taken by POSIXct and fastPOSIXct 

POSIXct is the number of seconds since the epoch – 1st 
January 1970. POSIXctcan be best used as a list structure of 
dates. If you need to convert character or factor time format 
to a time series object, you will convert it with as.POSIXct. 
But this call is very costly, use fastPOSIXct() instead from 
fasttime[8] library.fastPOSIXct is extremely fast compared 
to POSIXct as it uses pure string parsing without overhead 
of additional system callsas in the case of POSIXct. 
Following shows comparisons of time taken for POSIXct 
and fastPOSIXct for different numbers of records. You can 
achieve around 85 times performance improvement. 

 
Table II. Time taken by POSIXct and fastPOSIXct 

 
79 rows  POSIXct fastPOSIXct 

run1 0 0 
run2 0 0 
run3 0 0 
avg 0 0 

113096 rows  POSIXct fastPOSIXct 
run1 4.21 0.05 
run2 4.23 0.07 
run3 4.23 0.05 
avg 4.22333 0.05666667 

1087276 
rows 

 POSIXct fastPOSIXct 
run1 40.91 0.46 
run2 40.93 0.45 
run3 41.14 0.46 
avg 40.9933 0.45666667 

 
VI. CHARACTER VECTORS: 

 
Another trick is to use character vector instead of factor. 
Using character with fastPOSIXct() and table(unlist()) 
instead of factor may up the performance a few notch. 
Following table shows a marginal performance gain by 
character over factor for fastPOSIXct. Vector size was 
599476 records. 

 
Table III. Character vs factor parsing in fastPOSIXct 

 
fastPOSIXct  character factor 

run1 0.25 0.3 
run2 0.25 0.28 
run3 0.25 0.28 
avg 0.25 0.287 

 
 
VII. DATA.TABLES: 

 
Data.tables may improve performance over list/data.frames 
when using with merge() or format(). You should avoid 
using format() in all cases. If you have to use merge to join 
two frames convert it to tables, which will increase 
performance. Following table shows comparison: 
 

Table IV. Comparison of data.frame and data.table 
 

merge  data.frame data.table 
run1 71.45 8.91 
run2 69.69 8.8 
run3 68.66 8.83 
avg 69.93333333 8.846666667 

 
VIII. STORING RESULT: 

 
After performing operation on a variable, saving result in 
different variable is faster than reusing the same variable on 
which operation was performed. 
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Table V. Time taken when result is saved in the same 
variable on which operation is performed v/s result saved in 

new variable 
 

operation 
1 

 same 
variable 

different 
variable 

run1 1.65 0.29 
run2 1.56 0.28 
avg 1.605 0.285 

operation 
2 

 same 
variable 

different 
variable 

run1 0.33 0.08 
run2 0.3 0.07 
avg 0.315 0.075 

 
IX. OTHER OBSERVATIONS:[9][10] 

 
1. Gsub() is slower than strptime(). 
2. POSIXct(strptime()) is faster than POSIXct(). 
3. Library dplyr is faster than plyr. 
4. Stringr is faster than base-R implementation. 
5. Don’t use loops (scalars) instead use lapply() or other 

vectorization methods like apply(), mapply(), sapply(), 
replicate() etc. 

6. Using C-compiled code with R improves performance. 
Use Rcpp to compile code with C or FORTRAN. 

7. Keep inner loops bigger than outer loops. 
 
X. CONCLUSION 

 
It is observed that performance of R applications can be 
significantly improved by executing it in multicore 
environment and switching to performance oriented APIs 
and data types. The study was done using profilers like 
Rprofvis and system.time. You can opt for other profilers. 
One such profiler is GUIProfiler. There is an excellent case 

study done on it which can be find in research article by 
Angel Rubio and Fernando de Villar[11]. 
 
This research can be extended by yielding results for other 
observations mentioned in section IX. 
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