
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4246

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 91

ISSN No. 0976-5697 ISSN No. 0976-5697

EFFORT ESTIMATION OF OBJECT ORIENTED SYSTEM USING STOCHASTIC
TREE BOOSTING TECHNIQUE

Nancy Kukreja
Research Scholar

HCTM Technical Campus, Kaithal

Urvashi Garg
Assistant Professor

HCTM Technical Campus, Kaithal

Abstract: Effort Estimation is one of the necessary and daunting tasks in software engineering. Effort Estimation means to predict the effort
required to develop the software project. Predicting the effort with high precision is an ultimatum that draws the concern of researchers. In a
need to develop best products within proper schedule, the work of proper effort estimation is of basic necessity. No doubt, there are a lot of effort
estimation techniques which are already developed like COCOMO (Cost Constructive Model) etc. but these effort estimation techniques have
sustained unsuitable for estimation of object oriented software because they are used for procedural programming concept. Presently, object
oriented concept is frequently used in practice and as Class is the base of object oriented design so the use of Class Point approach(CPA) to
estimate the effort supports the estimator in a much better way. The performance of model obtained using CPA can be upgraded by applying
Stochastic Tree Boosting (STB) technique over forty project dataset collected from different sources in order to improve its prediction accuracy.

1. INTRODUCTION

1.1 STOCHASTIC TREE BOOSTING TECHNIQUE
Stochastic Tree Boosting means to randomly select the
values from dataset and then fit those values in tree in order
to estimate the effort required to develop the software. Tree
is a binary tree of depth 3 and each node of tree consists of
values from one project of the dataset.
In this technique, firstly random number of values are
selected from dataset and fitted in the first tree and values in
its terminal nodes are processed. After processing the
terminal nodes values in first tree again random number of
values are selected and fitted in second tree and this process
continues until the values are fitted in desired number of
trees. After repeating this process for (number of trees)
times, the values of each node are processed in order to
estimate the effort of each node.
1.2 ERROR AND ACCURACY ESTIMATION
METRICS
The evaluation of the values obtained using Stochastic Tree
Boosting Technique is done by applying certain metrics as
defined below [1-4]
The Magnitude of Relative Error (MRE) [1] for each
observation i can be obtained as:

 (1)
Where
AEi = Original effort value collected from the dataset for the
ith validation data.
PEi = Output (predicted effort) obtained using the developed
model for the ith validation data.
TP = Total no. of projects in the validation set.
The Mean Magnitude of Relative Error (MMRE) [1] can
be obtained through the summation of Magnitude of
Relative Error (MRE) over N observations:

 (2)
Where
AEi = Original effort value collected from the dataset for the
ith validation data.
PEi = Output (predicted effort) obtained using the developed
model for the ith validation data.

TP = Total no. of projects in the validation set.
The Root Mean Square Error (RMSE) [4] is calculated as
the square root of mean square error (MSE). MSE is
calculated by finding out the mean of the square of the
difference between the actual and predicted effort value.

 (3)
Where
AEi = Original effort value collected from the dataset for the
ith test data.
PEi = Output (predicted effort) obtained using the developed
model for the ith test data.
TP = Total no. of projects in the test set.
The Prediction Accuracy (PRED (y)) [1] is PRED can be
described as:

 (4)
Where
AEi = Original effort value collected from the dataset for the
ith test data.
PEi = Output (predicted effort) obtained using the developed
model for the ith test data.
TP = Total no. of projects in the test set.

2. LITERATURE SURVEY

The COnstructive COst Model (COCOMO) produced by
Barry Boehm in 1981 [5] provides a great deal of material
that explains exactly what costs the model is estimating, and
why it comes up with the estimates it does.
R. T. Hughes [6] has proposed a model based on expert
judgment by a group of experts to utilize their experiences
for estimation of proposed software. ‘Expert judgment’ is
defined as the consultation of one or more experts. In
general, this model assumes that expert judgment is where
an estimate is based on the experience of one or more people
who are familiar with the development of software
applications similar to that currently being sized. The Delphi
technique [7] can be used to provide communication and
cooperation among experts.

Nancy Kukreja et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,91-96

© 2015-19, IJARCS All Rights Reserved 92

Function Point approach and COCOMO experience the ill
effects of the impediment of the need to align the model to
every individual estimation environment combined with
variable precision levels even after adjustment.
Fernando Gonzalez-Ladron-de Guevara, Marta Fernandez-
Diego, and Chris Lokan [8] have done a systematic mapping
study over 107 number of papers that use International
Software Benchmarking Standards Group (ISBSG) data to
check which and to what extent variables in the ISBSG
dataset have been used in software engineering to build
effort estimation models.
G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello [9]
have identified two measures for calculation of final class
points .i.e. Class Point 1 (CP1) and Class Point 2 (CP2) CP1
is calculated using two measures, Number of External
Methods (NEM) and Number of Services Requested (NSR);
whereas CP2 is calculated by utilizing an one more i.e.
NOA (no of attributes) in addition to NEM and NSR. They
conducted an experiment on forty project dataset and
concluded that the prediction accuracy of CP1 and CP2
under the class point approach were 75% and 83%
respectively.
S. Kim, W. Lively, and D. Simmons [10] have described
class point in a new way to interpret system's architectural
complexity. They have used various extra parameters along
with NEM, NSR and NOA to compute the total number of
adjusted class point value.
Shashank Mouli Satapathy, Barada Prasanna Acharya, and
Santanu Kumar Rath [11] used SGB Technique for effort
prediction required to develop various software projects
using both the class point and the use case point approach.
SGB technique considers a function iteratively in a series
and combines the output of each function with a weighting
coefficient in order to minimize the total error of prediction
and increase the accuracy. Furthermore, he compares the
models obtained using the SGB technique with the other
machine learning techniques in order to highlight the
performance achieved by each method.

3. PROPOSED WORK

The proposed work is based on data derived from forty
student projects [9] developed using Java language. STB
(Stochastic Tree Boosting) based effort estimation model
which is used to estimate the effort required to develop the
software has been developed using forty project dataset.

3.1 CLASS POINT APPROACH

The CPA was given by Costagliola [9] [12] in 1998. Effort
Estimation process using Class point approach requires two
measures CP1 (Class Point 1) and CP2 (Class Point2). CP1
is estimated using two metrics, i.e. Number of External
Methods (NEM) and the Number of Services Requested
(NSR); whereas CP2 is estimated utilizing a new metric
NOA (No of Attributes) along with NEM and NSR. The
NEM measure is given by the number of local methods
which are public. NSR is basically the number of different
services requested to other classes. In CP2 estimation, the
Number of Attributes (NOA) [13] measure is taken into
account in order to evaluate the complexity level of each
class.
3.2 STEPS FOR EFFORT ESTIMATION USING STB
To calculate the effort of a given software project, the
following steps are used.
1. Class Points Estimation: Class Points i.e. CP1 and CP2
are estimated using Class point approach. Estimated CP1
and CP2 values are used as an input to effort estimation.
2. Sorting of Dataset: The forty project dataset is firstly
sorted in ascending order based on CP values.
3. Setting Dataset into proper decimal: All elements of
dataset are brought into proper decimals i.e. range between 0
and 1. Let Y be the dataset and y be an element of the
dataset. Then, the proper decimal value of y can be
calculated as [4]:

 (5)
Where min(Y) represents the minimum value of the dataset
Y and max(Y) represents the maximum value of the dataset
Y.
4. Partitioning of Dataset: The dataset is partitioned into
three sets i.e. learning set, validation set and test set.
5. Performing STB Execution: The values of various
parameters such as number of trees, and stochastic factor are
taken and then STB steps are executed on learning set,
validation set and test set.
6. Performing Validation: After completing STB
execution, a five-stage validation is performed which
produces five prototype models. The model that gives the
minimum error (minimum RMSE and minimum MMRE)
and the maximum accuracy (maximum PRED (y)) values is
selected as the best model for each stage.
3.3 EXPERIMENTAL DETAILS: In the proposed
research study, the dataset collected from Costagliola [9],
shown in Table 1, is used. In this table, every row displays
the details of one project developed in the JAVA language
values of CP1, CP2 and the actual effort (denoted by EFH)
expressed in terms of person-hours required to successfully
complete the project.

Table 1 Forty Project Dataset [9]

S. No EFH CP1 CP2 NEM NSR NOA S. No EFH CP1 CP2 NEM NSR NOA
1 286 103.18 110.55 142 97 170 21 366 287.97 262.74 343 264 299
2 396 278.72 242.54 409 295 292 22 947 663.6 627.6 944 421 637
3 471 473.9 446.6 821 567 929 23 485 397.1 358.6 409 269 451
4 1016 851.44 760.96 975 723 755 24 812 678.28 590.42 531 401 520
5 1261 1263.12 1242.6 997 764 1145 25 685 386.31 428.18 387 297 812
6 261 196.68 180.84 225 181 400 26 638 268.45 280.84 373 278 788
7 993 178.8 645.6 589 944 402 27 1803 2090.7 1719.25 724 1167 1633

Nancy Kukreja et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,91-96

© 2015-19, IJARCS All Rights Reserved 93

S. No EFH CP1 CP2 NEM NSR NOA S. No EFH CP1 CP2 NEM NSR NOA
8 552 213.3 208.56 262 167 260 28 369 114.4 104.5 192 126 177
9 998 1095 905 697 929 385 29 439 162.87 156.64 169 128 181
10 180 116.62 95.06 71 218 77 30 491 258.72 246.96 323 195 285
11 482 267.8 251.55 368 504 559 31 484 289.68 241.4 363 398 444
12 1083 687.57 766.29 789 362 682 32 481 480.25 413.1 431 362 389
13 205 59.64 64.61 79 41 98 33 861 778.75 738.7 692 653 858
14 851 697.48 620.1 542 392 508 34 417 263.72 234.08 345 245 389
15 840 864.27 743.49 701 635 770 35 268 217.36 195.36 218 187 448
16 1414 1386.32 1345.4 885 701 1087 36 470 295.26 263.07 250 512 332
17 279 132.54 74.26 97 387 65 37 436 117.48 126.38 135 121 193
18 621 550.55 481.66 382 654 293 38 428 146.97 148.35 227 147 212
19 601 539.35 474.95 387 845 484 39 436 169.74 200.1 213 183 318
20 680 489.06 438.9 347 870 304 40 356 112.53 110.67 154 83 147

After estimating the final class point values, the dataset is
then sorted based on CP and then brought into proper
decimal. The dataset in proper decimal format is partitioned
into three sets shown in Figure 1.

3.4 PARTITIONING PROCEDURE FOR DATASET

1. Firstly, the dataset in proper decimal format is
partitioned into a training set and a test set. The test
set consists of every fifth tuple of dataset i.e. it
consists of eight tuples and remaining thirty two
tuples are present in training set. Selecting the
parameters, validation and error estimation is done
using training set and prediction accuracy is
estimated using test set.

2. After partitioning the dataset in training set and test
set, the training set is further divided into validation
set and learning set. Validation set consists of every
fifth tuple of training set i.e. it consists of six tuples
and remaining twenty six tuples are present in
learning set. Selection of parameters is done using
learning set and validation and error estimation is
done using validation set.

Figure 1 Divison of Dataset

3.5 STB EXECUTION
To estimate the effort required to develop the software using
STB technique, the following steps are used:
1. A random percentage of rows are selected using
stochastic factor. If stochastic factor is 0.5, then 50% of
rows are selected.
2. The selected rows are then fitted to the first tree (T1).
Each node of tree consists of its EFH value, CP value, list
for containing values.
3. The mean of terminal nodes of tree is calculated.
4. The calculated mean is added to list of each terminal node
of tree.
5. Steps 1-4 are again applied to feed the next tree and this
process continues until 1000(number of trees) trees are fed.
6. Finally, the predicted values of each node are calculated
by taking the mean of all values added to list of each node.
The following parameter values are chosen to predict the
effort using the STB technique.
No of Trees: 1000
Stochastic Factor: 0.5

4. IMPLEMENTATION

Proper estimation of effort is very essential in order to
improve reliability of software development processes.
Among various estimation methods, the estimation of the
effort of software is done using Class Point Approach. The
parameters are optimized using the Stochastic Tree Boosting
technique to achieve better accuracy. The implementation of
proposed work is done using XML, Java with NetBeans
IDE and MATLAB.
4.1 CALCULATING THE PREDICTED EFFORT
Figure 2 shows the Predicted Effort after completing the
Effort estimation process.

Nancy Kukreja et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,91-96

© 2015-19, IJARCS All Rights Reserved 94

Figure 2 Calculating the Predicted Effort in Predicted Effort Frame based on CP1

4.2 CALCULATED RESULTS OF EFFORT ESTIMATION

Table 2 Error and Accuracy Estimation for Each Fold obtained using STB based on CP1

Fold MMRE(Validation Error) RMSE(Test Error) Prediction Accuracy (%)
1 0.452 0.125 91.2875
2 0.191 0.129 90.175000
3 0.166 0.115 91.5
4 0.244 0.132 91.162500
5 0.519 0.177 86.0875

Table 2 shows that 3rd Fold is the best fold as it provides min MMRE, min RMSE and max Prediction accuracy.

Table 3 Final Estimated/Predicted Effort using STB based on CP1
S.
No

EF
H

CP1 Proper
Decimal
EFH
(Actual
Effort)

Proper
Decimal
CP1

Predicted
 Effort

S.
No

EFH CP1 Proper
Decimal
EFH
(Actual
Effort)

Proper
Decimal
 CP1

Predicted
Effort

1. 205 59.64 0.015 0 0.213 21. 484 289.68 0.187 0.113 0.235
2. 286 103.18 0.065 0.021 0.218 22. 470 295.26 0.179 0.116 0.165
3. 356 112.53 0.108 0.026 0.165 23. 685 386.31 0.311 0.161 0.238
4. 369 114.4 0.116 0.027 0.127 24. 485 397.1 0.188 0.166 0.232
5. 180 116.62 0 0.028 0.214 25. 471 473.9 0.179 0.204 0.237
6. 436 117.48 0.158 0.028 0.223 26. 481 480.25 0.185 0.207 0.236
7. 279 132.54 0.061 0.036 0.218 27. 680 489.06 0.308 0.211 0.245
8. 428 146.97 0.153 0.043 0.171 28. 601 539.35 0.259 0.236 0.241
9. 439 162.87 0.16 0.051 0.227 29. 621 550.55 0.272 0.242 0.212
10. 436 169.74 0.158 0.054 0.143 30. 947 663.6 0.473 0.297 0.255
11. 993 178.8 0.501 0.059 0.243 31. 812 678.28 0.389 0.305 0.247
12. 261 196.68 0.05 0.067 0.217 32. 1083 687.57 0.556 0.309 0.253
13. 552 213.3 0.229 0.076 0.194 33. 851 697.48 0.413 0.314 0.278

Nancy Kukreja et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,91-96

© 2015-19, IJARCS All Rights Reserved 95

S.
No

EF
H

CP1 Proper
Decimal
EFH
(Actual
Effort)

Proper
Decimal
CP1

Predicted
 Effort

S.
No

EFH CP1 Proper
Decimal
EFH
(Actual
Effort)

Proper
Decimal
 CP1

Predicted
Effort

14. 268 217.36 0.054 0.078 0.227 34. 861 778.75 0.42 0.354 0.25
15. 491 258.72 0.192 0.098 0.226 35. 1016 851.44 0.515 0.39 0.29
16. 417 263.72 0.146 0.1 0.156 36. 840 864.27 0.407 0.396 0.258
17. 482 267.8 0.186 0.102 0.219 37. 998 1095 0.504 0.51 0.273
18. 638 268.45 0.282 0.103 0.207 38. 1261 1263.1 0.666 0.593 0.397
19. 396 278.72 0.133 0.108 0.225 39. 1414 1386.3 0.76 0.653 0.284
20. 366 287.97 0.115 0.112 0.228 40. 1803 2090.7 1 1 0.316

Table 3 shows the Final Predicted Effort of forty project dataset.

4.3 SOFTWARE SIZE VS. EFFORT GRAPH BASED
ON CP1
Figure 3 depicts the relationship between Software Size
(Class Points) and Actual Effort.

Figure 3 Software Size vs. Effort Graph based on CP1

4.4 SOFTWARE SIZE VS. EFFORT GRAPH
(PROPER DECIMAL) BASED ON CP1

Figure 4 depicts the relationship between Software
Size(Proper Decimal) and Effort(Proper Decimal) based on
CP1. Proper Decimal means that values lies between 0 and 1

Figure 4 Software Size vs. Effort Graph (Proper Decimal)

based on CP1 `

4.5 ACTUAL EFFORT VS. PREDICTED EFFORT
GRAPH BASED ON CP1

Figure 5 depicts the relationship between Actual Effort and
Predicted Effort. It shows that Predicted Effort and Actual
Effort are somewhat close to each other i.e. there is little
difference between the values of Actual effort and predicted
effort.

Figure 5 Actual Effort vs. Predicted Effort Graph based on

CP1

5. CONCLUSIONS

The research work proposed in this research paper is
beneficial for software developers, system analysts, and
product experts. Class Point Approach (CPA) is used for
object-oriented software and I have extended this approach
by employing Stochastic Tree Boosting Technique to
provide more precise estimation result. I have observed
different results (error and prediction accuracy values)
obtained using STB and comparisons are made using
graphs. The results show that the STB-based effort
estimation model possesses lower MMRE, NRMSE and
higher prediction accuracy. So, we can conclude that effort
estimation using the STB-based model provides results with
better precision.

6. FUTURE SCOPE OF WORK

This research work can be further extended by applying
some other machine learning techniques for the software
development effort estimation purpose. There are various
machine learning methods such as Decision Tree Forest,
Random Forest and Support Vector Regression etc. which

Nancy Kukreja et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,91-96

© 2015-19, IJARCS All Rights Reserved 96

can be implemented and compare their results with the
results of the STB technique to measure their precision.

7. REFERENCES

[1] Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum,

“Selecting best practices for effort estimation,” Software
Engineering, IEEE Transactions on, 32(11):883-895, 2006.

[2] Ali Bou Nassif, Danny Ho and Luiz Fernando Capretz,
“Towards an early software estimation using log-linear
regression and a multilayer perceptron model,” Journal of
Systems and Software, 86(1):144-160, 2013.

[3] Mohammad Azzeh, Ali Bou Nassif, and Leandro L Minku,
“An empirical evaluation of ensemble adjustment methods for
analogy-based effort estimation,” Journal of Systems and
Software, 103:36-52, 2015.

[4] Shashank Mouli Satapathy, Mukesh Kumar, and Santanu
Kumar Rath, “Class point approach for software effort
estimation using soft computing techniques,” In Advances in
Computing, Communications and Informatics (ICACCI),
2013 International Conference on, pages 178-183. IEEE,
2013.

[5] Barry W Boehm, “Software engineering economics, volume
197,” Prentice-hall Englewood Cliffs (NJ), 1981.

[6] Robert T Hughes, “Expert judgment as an estimating
method,” Information and Software Technology, 38(2):67-75,
1996.

[7] Norman Dalkey and Olaf Helmer, “An experimental
application of the delphi method to the use of experts,”
Management science, 9(3):458-467, 1963.

[8] Fernando Gonzalez-Ladron-de Guevara, Marta Fernandez-
Diego, and Chris Lokan, “The usage of isbsg data fields in
software effort estimation: A systematic mapping study,”
Journal of Systems and Software, 113:188-215, 2016.

[9] G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello, “Class
point: an approach for the size estimation of object-oriented
systems,” Software Engineering, IEEE Transactions on,
31(1):52-74, 2005.

[10] S. Kim, W. Lively and D. Simmons, “An effort estimation by
uml points in early stage of software development,”
Proceedings of the International Conference on Software
Engineering Research and Practice, pages 415-421, 2006.

[11] Shashank Mouli Satapathy, Barada Prasanna Acharya, and
Santanu Kumar Rath, “Class point approach for software
effort estimation using stochastic gradient boosting
technique,” ACM SIGSOFT Software Engineering Notes,
39(3):1-6, 2014.

[12] G Costagliola, F Ferrucci, G Tortora, and G Vitiello,
“Towards a software size metrics for object-oriented
systems,” Proc. AQUIS, 98:121-126, 1998.

[13] B. Henderson-Sellers, “Object-Oriented Metrics: Measures of
Complexity,” Prentice-Hall, 1996.

