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Abstract: Effort Estimation is one of the necessary and daunting tasks in software engineering. Effort Estimation means to predict the effort 
required to develop the software project. Predicting the effort with high precision is an ultimatum that draws the concern of researchers. In a 
need to develop best products within proper schedule, the work of proper effort estimation is of basic necessity. No doubt, there are a lot of effort 
estimation techniques which are already developed like COCOMO (Cost Constructive Model) etc. but these effort estimation techniques have 
sustained unsuitable for estimation of object oriented software because they are used for procedural programming concept. Presently, object 
oriented concept is frequently used in practice and as Class is the base of object oriented design so the use of Class Point approach(CPA) to 
estimate the effort supports the estimator in a much better way. The performance of model obtained using CPA can be upgraded by applying 
Stochastic Tree Boosting (STB) technique over forty project dataset collected from different sources in order to improve its prediction accuracy.   
 
1. INTRODUCTION 
 
1.1 STOCHASTIC TREE BOOSTING TECHNIQUE 
Stochastic Tree Boosting means to randomly select the 
values from dataset and then fit those values in tree in order 
to estimate the effort required to develop the software. Tree 
is a binary tree of depth 3 and each node of tree consists of 
values from one project of the dataset. 
In this technique, firstly random number of values are 
selected from dataset and fitted in the first tree and values in 
its terminal nodes are processed. After processing the 
terminal nodes values in first tree again random number of 
values are selected and fitted in second tree and this process 
continues until the values are fitted in desired number of 
trees. After repeating this process for (number of trees) 
times, the values of each node are processed in order to 
estimate the effort of each node. 
1.2 ERROR AND ACCURACY ESTIMATION 
METRICS 
The evaluation of the values obtained using Stochastic Tree 
Boosting Technique is done by applying certain metrics as 
defined below [1-4] 
The Magnitude of Relative Error (MRE) [1] for each 
observation i can be obtained as: 

     (1) 
Where 
AEi = Original effort value collected from the dataset for the 
ith validation data. 
PEi = Output (predicted effort) obtained using the developed 
model for the ith validation data. 
TP = Total no. of projects in the validation set. 
The Mean Magnitude of Relative Error (MMRE) [1] can 
be obtained through the summation of Magnitude of 
Relative Error (MRE) over N observations: 

   (2) 
Where 
AEi = Original effort value collected from the dataset for the 
ith validation data. 
PEi = Output (predicted effort) obtained using the developed 
model for the ith validation data. 

TP = Total no. of projects in the validation set. 
The Root Mean Square Error (RMSE) [4] is calculated as 
the square root of mean square error (MSE). MSE is 
calculated by finding out the mean of the square of the 
difference between the actual and predicted effort value. 

    (3) 
Where 
AEi = Original effort value collected from the dataset for the 
ith test data. 
PEi = Output (predicted effort) obtained using the developed 
model for the ith test data. 
TP = Total no. of projects in the test set. 
The Prediction Accuracy (PRED (y)) [1] is PRED can be 
described as: 

  (4) 
Where 
AEi = Original effort value collected from the dataset for the 
ith test data. 
PEi = Output (predicted effort) obtained using the developed 
model for the ith test data. 
TP = Total no. of projects in the test set. 
 
2. LITERATURE SURVEY 
 
The COnstructive COst Model (COCOMO) produced by 
Barry Boehm in 1981 [5] provides a great deal of material 
that explains exactly what costs the model is estimating, and 
why it comes up with the estimates it does.  
R. T. Hughes [6] has proposed a model based on expert 
judgment by a group of experts to utilize their experiences 
for estimation of proposed software. ‘Expert judgment’ is 
defined as the consultation of one or more experts. In 
general, this model assumes that expert judgment is where 
an estimate is based on the experience of one or more people 
who are familiar with the development of software 
applications similar to that currently being sized. The Delphi 
technique [7] can be used to provide communication and 
cooperation among experts.  



Nancy Kukreja et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,91-96 

© 2015-19, IJARCS All Rights Reserved                    92 

Function Point approach and COCOMO experience the ill 
effects of the impediment of the need to align the model to 
every individual estimation environment combined with 
variable precision levels even after adjustment.  
Fernando Gonzalez-Ladron-de Guevara, Marta Fernandez-
Diego, and Chris Lokan [8] have done a systematic mapping 
study over 107 number of papers that use International 
Software Benchmarking Standards Group (ISBSG) data  to 
check which and to what extent variables in the ISBSG 
dataset have been used in software engineering to build 
effort estimation models. 
G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello [9] 
have identified two measures for calculation of final class 
points .i.e. Class Point 1 (CP1) and Class Point 2 (CP2) CP1 
is calculated using two measures, Number of External 
Methods (NEM) and Number of Services Requested (NSR); 
whereas CP2 is calculated by utilizing an one more i.e. 
NOA (no of attributes) in addition to NEM and NSR. They 
conducted an experiment on forty project dataset and 
concluded that the prediction accuracy of CP1 and CP2 
under the class point approach were 75% and 83% 
respectively. 
S. Kim, W. Lively, and D. Simmons [10] have described 
class point in a new way to interpret system's architectural 
complexity. They have used various extra parameters along 
with NEM, NSR and NOA to compute the total number of 
adjusted class point value. 
Shashank Mouli Satapathy, Barada Prasanna Acharya, and 
Santanu Kumar Rath [11] used SGB Technique for effort 
prediction required to develop various software projects 
using both the class point and the use case point approach. 
SGB technique considers a function iteratively in a series 
and combines the output of each function with a weighting 
coefficient in order to minimize the total error of prediction 
and increase the accuracy. Furthermore, he compares the 
models obtained using the SGB technique with the other 
machine learning techniques in order to highlight the 
performance achieved by each method. 
 
3. PROPOSED WORK 
 
The proposed work is based on data derived from forty 
student projects [9] developed using Java language. STB 
(Stochastic Tree Boosting) based effort estimation model 
which is used to estimate the effort required to develop the 
software has been developed using forty project dataset.  
 
3.1 CLASS POINT APPROACH 

The CPA was given by Costagliola [9] [12] in 1998. Effort 
Estimation process using Class point approach requires two 
measures CP1 (Class Point 1) and CP2 (Class Point2). CP1 
is estimated using two metrics, i.e. Number of External 
Methods (NEM) and the Number of Services Requested 
(NSR); whereas CP2 is estimated utilizing a new metric 
NOA (No of Attributes) along with NEM and NSR. The 
NEM measure is given by the number of local methods 
which are public. NSR is basically the number of different 
services requested to other classes. In CP2 estimation, the 
Number of Attributes (NOA) [13] measure is taken into 
account in order to evaluate the complexity level of each 
class. 
3.2 STEPS FOR EFFORT ESTIMATION USING STB 
To calculate the effort of a given software project, the 
following steps are used. 
1. Class Points Estimation: Class Points i.e. CP1 and CP2 
are estimated using Class point approach. Estimated CP1 
and CP2 values are used as an input to effort estimation. 
2. Sorting of Dataset: The forty project dataset is firstly 
sorted in ascending order based on CP values.  
3. Setting Dataset into proper decimal: All elements of 
dataset are brought into proper decimals i.e. range between 0 
and 1. Let Y be the dataset and y be an element of the 
dataset. Then, the proper decimal value of y can be 
calculated as [4]: 

  (5) 
Where min(Y) represents the minimum value of the dataset 
Y and max(Y) represents the maximum value of the dataset 
Y. 
4. Partitioning of Dataset: The dataset is partitioned into 
three sets i.e. learning set, validation set and test set. 
5. Performing STB Execution: The values of various 
parameters such as number of trees, and stochastic factor are 
taken and then STB steps are executed on learning set, 
validation set and test set.  
6. Performing Validation: After completing STB 
execution, a five-stage validation is performed which 
produces five prototype models. The model that gives the 
minimum error (minimum RMSE and minimum MMRE) 
and the maximum accuracy (maximum PRED (y)) values is 
selected as the best model for each stage.  
3.3 EXPERIMENTAL DETAILS: In the proposed 
research study, the dataset collected from Costagliola [9], 
shown in Table 1, is used. In this table, every row displays 
the details of one project developed in the JAVA language 
values of CP1, CP2 and the actual effort (denoted by EFH) 
expressed in terms of person-hours required to successfully 
complete the project.  

 
Table 1 Forty Project Dataset [9] 

S. No EFH CP1 CP2 NEM NSR NOA S. No EFH CP1 CP2 NEM NSR NOA 
1 286 103.18 110.55 142 97 170 21 366 287.97 262.74 343 264 299 
2 396 278.72 242.54 409 295 292 22 947 663.6 627.6 944 421 637 
3 471 473.9 446.6 821 567 929 23 485 397.1 358.6 409 269 451 
4 1016 851.44 760.96 975 723 755 24 812 678.28 590.42 531 401 520 
5 1261 1263.12 1242.6 997 764 1145 25 685 386.31 428.18 387 297 812 
6 261 196.68 180.84 225 181 400 26 638 268.45 280.84 373 278 788 
7 993 178.8 645.6 589 944 402 27 1803 2090.7 1719.25 724 1167 1633 
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S. No EFH CP1 CP2 NEM NSR NOA S. No EFH CP1 CP2 NEM NSR NOA 
8 552 213.3 208.56 262 167 260 28 369 114.4 104.5 192 126 177 
9 998 1095 905 697 929 385 29 439 162.87 156.64 169 128 181 
10 180 116.62 95.06 71 218 77 30 491 258.72 246.96 323 195 285 
11 482 267.8 251.55 368 504 559 31 484 289.68 241.4 363 398 444 
12 1083 687.57 766.29 789 362 682 32 481 480.25 413.1 431 362 389 
13 205 59.64 64.61 79 41 98 33 861 778.75 738.7 692 653 858 
14 851 697.48 620.1 542 392 508 34 417 263.72 234.08 345 245 389 
15 840 864.27 743.49 701 635 770 35 268 217.36 195.36 218 187 448 
16 1414 1386.32 1345.4 885 701 1087 36 470 295.26 263.07 250 512 332 
17 279 132.54 74.26 97 387 65 37 436 117.48 126.38 135 121 193 
18 621 550.55 481.66 382 654 293 38 428 146.97 148.35 227 147 212 
19 601 539.35 474.95 387 845 484 39 436 169.74 200.1 213 183 318 
20 680 489.06 438.9 347 870 304 40 356 112.53 110.67 154 83 147 

 
After estimating the final class point values, the dataset is 
then sorted based on CP and then brought into proper 
decimal. The dataset in proper decimal format is partitioned 
into three sets shown in Figure 1. 
 
3.4 PARTITIONING PROCEDURE FOR DATASET 
 

1. Firstly, the dataset in proper decimal format is 
partitioned into a training set and a test set. The test 
set consists of every fifth tuple of dataset i.e. it 
consists of eight tuples and remaining thirty two 
tuples are present in training set. Selecting the 
parameters, validation and error estimation is done 
using training set and prediction accuracy is 
estimated using test set. 

2. After partitioning the dataset in training set and test 
set, the training set is further divided into validation 
set and learning set. Validation set consists of every 
fifth tuple of training set i.e. it consists of six tuples 
and remaining twenty six tuples are present in 
learning set. Selection of parameters is done using 
learning set and validation and error estimation is 
done using validation set.   

 
Figure 1 Divison of Dataset 

3.5 STB EXECUTION 
To estimate the effort required to develop the software using 
STB technique, the following steps are used: 
1. A random percentage of rows are selected using 
stochastic factor. If stochastic factor is 0.5, then 50% of 
rows   are selected. 
2. The selected rows are then fitted to the first tree (T1). 
Each node of tree consists of its EFH value, CP value, list 
for containing values. 
3. The mean of terminal nodes of tree is calculated. 
4. The calculated mean is added to list of each terminal node 
of tree. 
5. Steps 1-4 are again applied to feed the next tree and this 
process continues until 1000(number of trees) trees are fed. 
6. Finally, the predicted values of each node are calculated 
by taking the mean of all values added to list of each node. 
The following parameter values are chosen to predict the 
effort using the STB technique. 
No of Trees: 1000 
Stochastic Factor: 0.5 
 
4. IMPLEMENTATION  

 
Proper estimation of effort is very essential in order to 
improve reliability of software development processes. 
Among various estimation methods, the estimation of the 
effort of software is done using Class Point Approach. The 
parameters are optimized using the Stochastic Tree Boosting 
technique to achieve better accuracy. The implementation of 
proposed work is done  using XML, Java with NetBeans 
IDE and MATLAB. 
4.1 CALCULATING THE PREDICTED EFFORT 
Figure 2 shows the Predicted Effort after completing the 
Effort estimation process. 
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Figure 2 Calculating the Predicted Effort in Predicted Effort Frame based on CP1 

 
4.2 CALCULATED RESULTS OF EFFORT ESTIMATION 
 

Table 2 Error and Accuracy Estimation for Each Fold obtained using STB based on CP1 
 

Fold MMRE(Validation Error) RMSE(Test Error) Prediction Accuracy (%) 
1 0.452 0.125 91.2875 
2 0.191 0.129 90.175000 
3 0.166 0.115 91.5 
4 0.244 0.132 91.162500 
5 0.519 0.177 86.0875 

 
Table 2 shows that 3rd Fold is the best fold as it provides min MMRE, min RMSE and max Prediction accuracy. 
 

Table 3 Final Estimated/Predicted Effort using STB based on CP1 
S. 
No 

EF
H 

CP1 Proper 
Decimal 
EFH 
(Actual 
Effort) 

Proper 
Decimal 
CP1 

Predicted 
 Effort 

S. 
No 

EFH CP1 Proper 
Decimal 
EFH 
(Actual 
Effort) 

Proper 
Decimal 
 CP1 

Predicted  
Effort 

1. 205 59.64 0.015 0 0.213 21. 484 289.68 0.187 0.113 0.235 
2. 286 103.18 0.065 0.021 0.218 22. 470 295.26 0.179 0.116 0.165 
3. 356 112.53 0.108 0.026 0.165 23. 685 386.31 0.311 0.161 0.238 
4. 369 114.4 0.116 0.027 0.127 24. 485 397.1 0.188 0.166 0.232 
5. 180 116.62 0 0.028 0.214 25. 471 473.9 0.179 0.204 0.237 
6. 436 117.48 0.158 0.028 0.223 26. 481 480.25 0.185 0.207 0.236 
7. 279 132.54 0.061 0.036 0.218 27. 680 489.06 0.308 0.211 0.245 
8. 428 146.97 0.153 0.043 0.171 28. 601 539.35 0.259 0.236 0.241 
9. 439 162.87 0.16 0.051 0.227 29. 621 550.55 0.272 0.242 0.212 
10. 436 169.74 0.158 0.054 0.143 30. 947 663.6 0.473 0.297 0.255 
11. 993 178.8 0.501 0.059 0.243 31. 812 678.28 0.389 0.305 0.247 
12. 261 196.68 0.05 0.067 0.217 32. 1083 687.57 0.556 0.309 0.253 
13. 552 213.3 0.229 0.076 0.194 33. 851 697.48 0.413 0.314 0.278 
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S. 
No 

EF
H 

CP1 Proper 
Decimal 
EFH 
(Actual 
Effort) 

Proper 
Decimal 
CP1 

Predicted 
 Effort 

S. 
No 

EFH CP1 Proper 
Decimal 
EFH 
(Actual 
Effort) 

Proper 
Decimal 
 CP1 

Predicted  
Effort 

14. 268 217.36 0.054 0.078 0.227 34. 861 778.75 0.42 0.354 0.25 
15. 491 258.72 0.192 0.098 0.226 35. 1016 851.44 0.515 0.39 0.29 
16. 417 263.72 0.146 0.1 0.156 36. 840 864.27 0.407 0.396 0.258 
17. 482 267.8 0.186 0.102 0.219 37. 998 1095 0.504 0.51 0.273 
18. 638 268.45 0.282 0.103 0.207 38. 1261 1263.1 0.666 0.593 0.397 
19. 396 278.72 0.133 0.108 0.225 39. 1414 1386.3 0.76 0.653 0.284 
20. 366 287.97 0.115 0.112 0.228 40. 1803 2090.7 1 1 0.316 

 
Table 3 shows the Final Predicted Effort of forty project dataset. 
 
4.3 SOFTWARE SIZE VS. EFFORT GRAPH BASED 
ON CP1 
Figure 3 depicts the relationship between Software Size 
(Class Points) and Actual Effort.  
 

 
Figure 3 Software Size vs. Effort Graph based on CP1 

 
4.4 SOFTWARE SIZE VS. EFFORT GRAPH 
(PROPER DECIMAL) BASED ON CP1 
 
Figure 4 depicts the relationship between Software 
Size(Proper Decimal) and Effort(Proper Decimal) based on 
CP1. Proper Decimal means that values lies between 0 and 1 

 
Figure 4 Software Size vs. Effort Graph (Proper Decimal) 

based on CP1 ` 
 
 

4.5 ACTUAL EFFORT VS. PREDICTED EFFORT 
GRAPH BASED ON CP1 
 
Figure 5 depicts the relationship between Actual Effort and 
Predicted Effort. It shows that Predicted Effort and Actual 
Effort are somewhat close to each other i.e. there is little 
difference between the values of Actual effort and predicted 
effort.  
 

 
Figure 5 Actual Effort vs. Predicted Effort Graph based on 

CP1 
 
5. CONCLUSIONS 
 
The research work proposed in this research paper is 
beneficial for software developers, system analysts, and 
product experts. Class Point Approach (CPA) is used for 
object-oriented software and I have extended this approach 
by employing Stochastic Tree Boosting Technique to 
provide more precise estimation result. I have observed 
different results (error and prediction accuracy values) 
obtained using STB and comparisons are made using 
graphs. The results show that the STB-based effort 
estimation model possesses lower MMRE, NRMSE and 
higher prediction accuracy. So, we can conclude that effort 
estimation using the STB-based model provides results with 
better precision. 
 
6. FUTURE SCOPE OF WORK 
 
This research work can be further extended by applying 
some other machine learning techniques for the software 
development effort estimation purpose. There are various 
machine learning methods such as Decision Tree Forest, 
Random Forest and Support Vector Regression etc. which 
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can be implemented and compare their results with the 
results of the STB technique to measure their precision. 
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