
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 2747

ISSN No. 0976-5697

Reliable Task Scheduling Based on Resource Availability in Cloud Computing

Chitra S

Research Scholar

Dept. of Computer Science and Engineering

New Horizon College of Engineering

Bangalore, India
chitraravi.cr@gmail.com

Dr. Prashanth C S R
Professor and Head

Dept. of Computer Science and Engineering

New Horizon College of Engineering

Bangalore, India
drprashanthcsr@gmail.com

Abstract— With ever increasing scale of cloud computing systems, to execute compute intensive parallel applications, in an

environment where cloud resource availability is dynamic, effective task scheduling with reliability is an important factor to be

considered. Virtual machines provided by current cloud infrastructures do not exhibit a stable performance due to network

connectivity as well as computational nodes and may have a significant impact while scheduling workflows on clouds. Since the

resources are not dedicated and can be used by other users simultaneously, there are load variations on resources, resulting in

fluctuations in resource availability that affects the schedules. In this paper, a new reliable task scheduling algorithm based on

resource availability is proposed, where task scheduling decision is based not only on task ready time but the processor available

time slots that affect finish time of task. The main objective of the proposed technique is to reduce the overall execution time

without increasing resource need. When algorithms that assume full resource availability are executed in that scenario, resource

non-available slots contribute to delays thus increasing makespan. The proposed algorithm takes into consideration the resource

availability factor during the prediction interval of application execution, while mapping tasks to resources during scheduling

decisions, thus increasing reliability.

Keywords: Directed Acyclic Graphs, Makespan, Reliability, Resource Availability, Schedule Length Ratio, Speedup, Time slots

I. INTRODUCTION

In heterogeneous distributed computing systems like grids

and clouds, resources are shared heavily. Also virtualization

and heterogeneity of non-virtualized hardware in clouds

result in a variability in the performance of resources[1] [2].

Quite complex scientific and business workflow

applications consisting of multiple tasks with precedence

constraints, are executed in such environments. In such

systems, effective task scheduling is a very important

concern for the execution of performance driven

applications. Virtual machines in clouds use underlying

hardware such as processor, memory, power, storage and

network bandwidth, etc. They are in different autonomous

domains and the computing power available for large

applications varies over time. Each virtual machine is

allocated a portion of the underlying hardware resources by

the hosts, based on factors such as user defined resource

limits, total available resources for the host, the number of

virtual machines powered on and resource usage by those

virtual machines, overheads for virtualization[3]. In

dynamic environments, task execution time estimates

become unpredictable[4]. Information regarding the

availability levels of resources must be considered while

scheduling the tasks. Schedulers that effectively predict the

availability of resources, and use these predictions to make

scheduling decisions, can improve performance. Ignoring

resource availability characteristics can lead to delays in

makespan and can affect reliability[5]. A probabilistic

estimate of resource availability can be considered while

making scheduling decisions.

With scale of cloud computing systems increasing,

reliability is an important factor to be considered in order to

execute compute intensive parallel applications. Many static

list scheduling algorithms like HEFT[6], PETS[7], ECTS[8]

in literature only consider minimizing makespan assuming

resources are always available based on earliest finish time.

The performance variation of Virtual Machines (VM) in

Clouds affects the overall execution time (i.e. makespan) of

the workflow[9] due to variations in CPU performance and

network resources[1].
.
 It also increases the difficulty to

estimate the task execution time accurately[10].This

indeterminism makes it extremely difficult for schedulers to

estimate runtimes and make accurate scheduling decisions to

fulfil user Quality of Service (QoS) requirements. Other

sources of uncertainty in cloud platforms that contribute to

unreliable task execution are VM provisioning and

deprovisioning delays[1]. Resource monitoring can be done

to collect the resources information like CPU load, memory

usage, network bandwidth[10]. This information could be

used for task scheduling, which in turn will improve

performance of scheduling algorithm.

We propose a new Reliable task Scheduling algorithm based

on resource availability (RSRA) in cloud computing

systems. Resource availability is predicted with resource

monitoring tools for a certain prediction interval depending

on the probability of availability of the underlying hardware

to the Virtual machines. Available and non-available time

slots are determined, and this is considered in the VM

selection phase while making scheduling decisions, making

it more reliable. The main objective of the proposed method

is to reduce the overall execution time without increasing

resource need. The actual task execution times that take into

account the resource availability factor increases reliability

in getting parallel applications executed in such systems.

This algorithm is compared with existing algorithms which

Chitra S et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2747-2755

© 2015-19, IJARCS All Rights Reserved 2748

assume full resource availability while making scheduling

decisions and is found to be more reliable and performing

better than the existing algorithms when executed in the

scenario considering resource availability factor.
Section 2 specifies problem statement. Section 3 gives an

overview of application model, resource model and

workflow scheduling algorithms as background. Section 4

contains related work. In Section 5 the proposed RSPA

algorithm is discussed. In Section 6, Simulation Study is

discussed. Results are discussed in Section 7. In Section 8

conclusions are given.

II. PROBLEM STATEMENT

To devise efficient scheduling algorithm for scheduling

parallel applications represented by tasks with precedence

constraints modelled by Directed Acyclic Graphs onto a

network of heterogeneous processors such that all the data

precedence constraints are satisfied and the overall

execution time of the DAG is minimized, factoring the

temporal availability of resources [11]. A new Reliable task

Scheduling algorithm based on Resource Availability

(RSRA) is proposed, where task scheduling decision is

based on earliest finish time by considering processor

availability time slot during the predicted time interval and

task ready time so as to minimize makespan.

III. BACKGROUND

In this section, a brief overview of the Application Model,

Cloud Resource Model and Workflow Scheduling

algorithms is presented. Figure 1 shows a sample workflow

application modeled by DAG scheduled by Workflow

Scheduler onto Cloud resources.

Figure 1: DAG application deployment on Cloud Resources

Application Model

Applications like Weather Forecasting, Earthquake

Analysis, Bio Informatics, Astronomy, and a host of other

engineering and scientific applications that require

enormous computing capabilities are called High-

Performance Applications. Workflows can be used to

represent complex computational problems that can be

efficiently processed in distributed environments. Parallel

applications that consist of sub-tasks with precedence

constraints can be modeled by Directed Acyclic

Graphs[6][6]. The nodes represent the tasks in the parallel

application and the edges represent the data transfer between

tasks. Predecessor nodes are set of nodes in a DAG which

have an edge directed towards a node ni and are denoted by

PRED(ni)[12]. The set of nodes which have a directed edge

from a node ni are called its successor nodes and are denoted

by SUCC(ni). Nodes in a DAG that do not have a

predecessor are called start nodes and nodes that do not have

a successor node are called exit nodes. The upward rank

ranku or blevel(ni) is the bottom level of ni and is length of

the longest path from ni to any exit node including the

weight of ni. The length of a path in a DAG is the sum of its

node and edge weights. The downward rank rankd or

tlevel(ni) is the top level of ni and is the length of the longest

path from a start node to node ni excluding the weight of ni.

The longest path in a DAG is called the critical path[6][6]

[12]. A DAG may have multiple critical paths. Node

weights in a DAG represent average execution times of

nodes over all the processors in the target execution system.

Edges represent precedence constraints between nodes. An

edge (ni,nj) indicates that node nj cannot start execution until

ni completes execution and receives all the required data

from it. The time taken to transfer data from parent task to

child task is represented by edge-weights. If a DAG has

multiple start nodes, then a dummy node with a zero weight

is added and zero weight edges are added from the dummy

start node to the multiple start nodes. Likewise, if a DAG

has multiple exit nodes, a dummy exit node with zero

weight and zero weight edges from multiple exit nodes to

the dummy exit node are added. In a DAG, the time

difference between the beginning of execution of the start

node and the completion of execution of the exit node is

called the makespan[12]. Figure 2 shows a sample Task

DAG. Table 1 specifies the Computation cost matrix that

represents the expected task execution times of each task on

the various heterogeneous processors considered for task

allocation.

Figure 2 : Example Task Graph

Chitra S et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2747-2755

© 2015-19, IJARCS All Rights Reserved 2749

Table 1 : Computation Cost Matrix

Tasks
Resources

R1 R2 R3

T1 25 10 15

T2 16 22 20

T3 23 15 12

T4 10 23 12

T5 16 19 13

T6 21 18 11

T7 23 10 14

T8 13 19 10

T9 16 10 11

T10 23 14 20

Cloud Resource Model

Cloud computing is a specialized form of distributed

computing that has highly extensive infrastructure that

offers pools of IT resources that can be leased using a pay-

for-use model[13]. Physical resources such as CPU cores,

disk space and network bandwidth will be shared among

virtual machines. Virtual machine characteristics include the

number of CPUs, amount of memory, size of virtual disks

and network bandwidth. The Virtual Infrastructure manager

orchestrates resources so as to rapidly and dynamically

provision resources to the applications, aggregating

resources from multiple computers by continuously

monitoring utilization across virtualized resource pools and

reallocating available resources among VMs according to

application requirements[13]. Cloud providers allow the

users to select VMs based on number of cores, amount of

memory and virtual images to run on machines. Varying

VMs are available for a wide range of application

requirements. The state of the cloud changes frequently as

new VMs get added while some shut down. Service Level

Agreements (SLA) specify details of services to be provided

including availability and performance guarantees.

Scheduling Algorithms

Scheduling workflows is an NP complete problem.

Scheduling strategies may be static, dynamic or hybrid. In

Static algorithms[1], the task to VM mapping is produced in

advance and executed once. The mapping is not altered

through the runtime. These algorithms are extremely

sensitive to execution delays and inaccurate task runtime

estimation. They can adapt to the uncertainties of cloud

environments, by adopting more sophisticated strategies

such as conservative runtime prediction strategies,

probabilistic QoS guarantees, and resource performance

variations. In Dynamic algorithms[1], task to VM mapping

decisions are taken at runtime. These are based on the

current state of the system and the workflow execution.

Once a workflow is ready for execution, scheduling decision

for the first workflow task is done once at runtime. This

allows them to adapt to changes in the environment so that

the scheduling objectives can still be met. However, the

quality of schedules produced suffers due to local task level

optimizations. In Hybrid algorithms[1], there is a trade-off

between the adaptability of dynamic algorithms and the

performance of static algorithms.

IV. RELATED WORK

A. Heterogeneous Earliest Finish Time Algorithm

In this paper, the authors of [6] have presented two

algorithms Heterogeneous Earliest Finish Time (HEFT) and

Critical Path on a Processor(CPOP) for a bounded number

of heterogeneous processors with an objective of

simultaneously meeting high performance and fast

scheduling time. The application is represented by Directed

Acyclic Graph model DAG in which application tasks are

represented by nodes and inter-task dependencies are

represented by edges. The objective function is to allocate

tasks onto processors for execution with task precedence

constraints being satisfied and with minimal overall

completion time. The scheduling algorithms are static in that

execution times of tasks, the data size of communication

between tasks, and task dependencies are known earlier.

Upward rank ranku (ni) is the length of the critical path from

task ni to the exit task, including the computation cost of task

ni.

It has two phases: Task prioritization and Processor

selection. Tasks are prioritized for scheduling based on

upward ranking. Tasks are arranged in decreasing order of

upward rank to generate the task priority list. Tie-break is

random[6] [11].

In the processor selection phase, the selected task is

assigned to processor with minimum Earliest Finish Time

(EFT) using insertion-based approach. There is a possible

insertion of a task in an earlier idle time slot between two

already scheduled tasks on a processor, however ensuring

that precedence constraints are maintained.

The complexity of the HEFT algorithm is O(e x r) where e

is the number of edges and r is the number of processors.

For a dense graph, it is O(v
2
 x r) where v is number of nodes

and r is the number of processors[6][11] .

B. Expected Completion Time based Scheduling

In this paper [8], the authors propose a list scheduling

heuristic for a bounded number of processors based on the

expected completion time of task for heterogeneous

distributed environment. The objective is to generate

schedule so as minimize schedule length. The application is

modelled by Directed Acyclic Graph (DAG) and the target

execution system is heterogeneous distributed environment

consisting of a certain number of processors in a fully

connected network topology. The assumptions made were

that all inter-processor communications are performed

without contention; computation can be overlapped with

communication and task execution of a given application is

non-pre-emptive.

This algorithm has Task Prioritization and Processor

selection phases. The Task Prioritization phase consists of

two stages. In the first stage the priority of each task at each

level is computed based on their average computation cost

and maximum data arrival cost, and in the second stage,

tasks are selected from all levels based on their priority. The

Average Computation Cost (ACC) of a task is calculated as

the ratio of sum of computation cost of the task on each

processor by the number of available processors. Maximum

Data Arrival Cost (MDAC) of a task is the highest amount

Chitra S et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2747-2755

© 2015-19, IJARCS All Rights Reserved 2750

of time that the task needs to spend to receive data among its

parents. In the task selection stage, all tasks at each level are

sorted in non-increasing order of their Expected Completion

Time value, and then prioritized. The Expected Completion

Time (ECT) of a task is computed by summing the average

computation cost of that task and maximum data arrival cost

of the same task. In the second phase, the selected task is

allocated to the processor on which EFT is minimum using

the insertion-based scheduling policy. The task is assigned

to processor which minimizes its EFT compared to other

processors. If two processors are producing same EFT for a

selected task, then a processor can be selected randomly, or

that which is lightly loaded, or that which is based on

minimum processor utilization. The comparison metrics

used for evaluation of the algorithm are Schedule Length

Ratio (SLR) and Speedup.

C. Scheduling Parallel Tasks onto Opportunistically

Available Cloud Resources

In this paper [14], the authors have brought out both

challenges and opportunities to the problem of scheduling

parallel tasks in cloud computing environment. Scientific

computing, Graph processing in a large scale and Big Data

MapReduce applications are resource intensive and contain

tasks with synchronization requirements that spread over

multiple servers. It is very difficult to schedule the backend

tasks in an opportunistic manner, as the front end activities

are responsible for the available slots on individual servers.

On the other hand, the virtualized cloud environment allows

management of tasks more effectively. Particularly,

migration of the VMs of interrupted backend tasks to other

available servers is possible rather than waiting indefinitely.

Migration is possible at an operational cost due to the data

and VM state transfer. The strategy of opportunistically

scheduling tasks, has been used to share resources between

jobs of different priorities while being non-intrusive to high-

priority jobs. The emphasis is thus on optimizing the

performance of low-priority jobs for given available

resources. Low priority tasks are scheduled onto

underutilized resources either by migrating or waiting. The

problem is to schedule the tasks so that the combined cost

due to waiting and migration is minimized. The server

availability is modeled by Markov chains ON/OFF[14]. An

efficient scheduling policy is proposed by the authors by

formulating the problem as restless Multi-Armed Bandits

(MAB) under relaxed synchronization. The scheduling

policy which is based on Whittle’s index reduces the

complexity of the optimal policy remarkably while

achieving consistently good performance under a variety of

server dynamics.

D. A Monte-Carlo Approach for Full-Ahead Stochastic

DAG Scheduling[4]

Just-in-time scheduling and rescheduling are two DAG

scheduling approaches to deal with the unpredictability of

task execution times. Just-in-time scheduling approach

means that every task is scheduled only when it becomes

ready i.e. when all its parent task have completed execution.

Rescheduling suggests that an initial schedule for the DAG

application is produced based on static prediction. Then, the

allocated tasks are rescheduled according to an assessment

of variations during run-time. In many cases, rescheduling

can indeed improve application performance in comparison

with the schedule generated based on static prediction. The

predicted task execution times can be modelled in a

stochastic manner. In this paper, the authors have proposed a

novel Monte-Carlo based DAG scheduling[4] to generate a

static schedule before run-time that minimizes the expected

makespan. The input space, the set consisting of random

execution time predictions of application, is defined. A set

of static predictions are derived by sampling each random

sample in prediction space. With a DAG and static set of

associated predictions, a heuristic is applied to generate

static schedule.

V. PROPOSED WORK

Reliable task Scheduling based on Resource Availability

(RSRA)

We propose a new Reliable task Scheduling algorithm based

on Resource Availability where task scheduling decision is

based on earliest finish time of task considering the

available and non-available time slots, so as to minimize

makespan. In the Markov Chain Model, the probability of

an event occurrence at any time is a function of the

probabilities of the occurred events at previous time periods.

The probabilities of resource availability can be predicted

for a certain prediction interval, using the two states

ON(available) and OFF(non-available) states with a 2 x 2

initial probability matrix depicting probability of 0 changing

to 1 and 1 changing to 0. This can generate n prediction

steady state vector. It may sometimes happen that a job

does not complete before the start of an unavailability period

of the resources. The processing of the job is therefore

interrupted until the unavailability period elapses. The

unavailability periods are stochastic and can occur

randomly. Task execution times vary with each processor

because of the variation in the CPU speeds due to

heterogeneity. The estimated times and actual times vary

due to delays caused by non-availability of processors.

When a job is ready for execution, upon satisfying the

precedence constraints and based on availability of

processors, sub tasks are placed in the ready queue of

allotted VMs. To improve reliability, probability of

processor availability is considered in scheduling decisions.

In the proposed algorithm that has two phases, the first

phase is Task Prioritization where tasks are ordered in the

descending order of the upward ranks. This helps maintain

the precedence constraints in the application graph. In the

processor selection phase, the earliest start time of a task

not only depends on the maximum available time of VM on

completion of execution of previous task and task ready

time but also the non-available time slots that are due to

other factors such as down time, system failure, network

failure, etc. The earliest finish time is the sum of earliest

start time and task execution time on that VM considering

the resource non available time slots. For all tasks in the

priority list, the earliest start time and earliest finish time of

each task on every VM is computed. The VM, which gives

minimum earliest finish time is allocated for executing that

task. There is a possible insertion of a task in an earliest idle

time slot between two already scheduled tasks on a VM.

Tasks are scheduled on the VM that gives minimum earliest

finish time by taking into consideration the non-available

time slots which actually introduce a certain amount of

Chitra S et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2747-2755

© 2015-19, IJARCS All Rights Reserved 2751

delay. However this increases reliability as provision is

made to account for resource non-availability time slots in

scheduling decisions.

BEGIN RSRA ALGORITHM

// N is set of vertices of DAG

// P is set of Processors

//RdyTskLst is the ready task list

// 𝑝𝑝𝑎(1, 𝑝𝑗) is probability of resource availability of

processor pj for a prediction time interval generated

randomly

// 𝑎 𝑝𝑗 , 𝑡 is resource availability matrix for processor pj

consisting of t timeslots generated based on ppa matrix

//aslot(pj) contains starting position of next available slots

on processor pj

For all pj in P

Generate random 𝑝𝑝𝑎(1, 𝑝𝑗)

End for

For all pj in P

Generate a(pj,t)

End for

Priority List <- based on upward rank

RdyTskLst ← StartNode

While RdyTskLst is NOT NULL do

ni ← Node in the RdyTskLst

For each processor pj in P

Compute aslot(pj)

𝐸𝑆𝑇 𝑛𝑖 , 𝑝𝑗 =

 𝑚𝑎𝑥 (𝑇𝑎𝑣𝑎𝑖𝑙 𝑗 ,𝑚𝑎𝑥𝑛𝑚 ∈𝑝𝑟𝑒𝑑 (𝑛𝑖)
(𝐸𝐹𝑇 𝑛𝑚 , 𝑝𝑘 + 𝑐𝑚 ,𝑖))

If EST(ni,pj) < aslot(pj)

 EST(ni,pj) = aslot(pj)

Endif

𝐸𝐹𝑇 𝑛𝑖 , 𝑝𝑗 = 𝑤𝑖 ,𝑗 + 𝐸𝑆𝑇(𝑛𝑖 , 𝑝𝑗) + nonavailable slots

End For

Allocate node ni on processor pj with least EFT

Update T_Avail[pj] and RdyTskLst

END RSRA ALGORITHM

The complexity of this algorithm is O(e x r) where e is the

number of edges and r is the number of processors.

When resource availability is not considered in scheduling

decisions, the makespan increases due to delays caused by

resource non-available time slots. In this algorithm we

consider the probability of resource availability based on

which available and non-available time slots are generated

for a certain prediction time interval and considered for

scheduling decisions. Thus the proposed algorithm RSRA is

more reliable than the existing static scheduling algorithms

that do not consider resource availability. The advantage is

that the scheduling objectives of minimizing makespan

without increase in the resource need and reliability are met.

VI. SIMULATION STUDY

Our simulated framework first executes Random Directed

A-cyclic Graph Generator Program [15]

for generation of

Random DAGs that model parallel applications. Graphs of

varying number of nodes 10,20,30,40,50 were generated for

testing the performance of the proposed algorithm, followed

by execution of the proposed RSRA and algorithms

specified in related work for comparison such as HEFT and

ECTS. Weighted Directed Acyclic Graphs were generated

with a certain number of edges generated randomly based on

number of nodes given. Communication cost weighted

sparse matrix was generated randomly. Heterogeneity factor

[6][7][8] for processor speeds depends basically on the

range percentage of computation costs on processors η =

{0.1,0.5,1.0} and higher the percentage, higher the degree of

heterogeneity. The average computation cost WDAG of the

given graph is set randomly in the graph based on the graph

size. The computation cost of each task ni on resource pj in

the system [7] is randomly from the following range:

𝑊𝑖 ∗ 1 −
η

2
 ≤ 𝑤𝑖𝑗 ≤ 𝑊𝑖 ∗ 1 +

η

2

Resource availability probability for the given number of

VMs is generated randomly. Resource availability matrix

with available and non-available slots for a predicted time

interval is generated randomly based on resource

probability. Based on this, maximum number of resource

non-available time slots is computed for all VMs for a

certain prediction interval. This is randomly distributed over

the prediction interval.

Performance Metrics:

The performance metrics[6] considered for the study are as

follows:

 (i) Makespan is the Actual Completion Time of exit node

in the DAG which represents a parallel application. It is also

called Schedule Length.

(ii) Schedule Length Ratio (SLR) is ratio of makespan to

summation of minimum computation cost of critical path

nodes.

(iii) Speedup is ratio of sequential execution time of parallel

application to its parallel execution time. It is the ratio of

minimum of summation of computation costs of tasks on

processors to makespan.

The makespan was determined for the proposed algorithm

RSRA and then other performance metrics Schedule Length

Ratio and Speedup were computed based on schedules. The

delay for HEFT and ECTS schedules based on the resource

availability time slots matrix for the predicted time interval

was estimated. These performance metrics were compared

with HEFT and ECTS algorithms simultaneously for the

same set of experiments.

VII. RESULTS AND DISCUSSIONS

The comparative results of the proposed algorithm RSRA

with HEFT and ECTS are presented. Randomly generated

DAGs of sizes 10, 20, 30, 40 and 50 nodes were generated

and used to test the performance of RSPA algorithm, while

comparing with HEFT and ECTS. The RSRA algorithm was

also tested with real life application scientific workflows in

the area of Astronomy and Bio-Informatics such as

Montage and Epigenomics. The performance of RSRA was

studied for parallelism and speedup by executing a random

graph of 50 nodes for varied number of processors 9, 12 and

15 processors. The algorithms were executed to determine

the performance metrics of Average Makespan, Average

Schedule Length Ratio and Average Speedup for

RSRA,HEFT and ECTS algorithms.

(i) Test Case 1

Chitra S et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2747-2755

© 2015-19, IJARCS All Rights Reserved 2752

Here RSRA algorithm performance is compared with HEFT

and ECTS algorithm on the basis of various graph sizes.

Since HEFT is robust, has low running time, and is tested to

give stable performance over wide range of graph

structures[6], it is considered for comparison. ECTS

algorithm performs better than HEFT and employs level

sorting in task prioritization phase and hence is also

considered for performance comparison. Randomly

generated DAGs of sizes 10,20,30,40 and 50 nodes are

considered for performance testing of algorithms. For each

random DAG generated, our algorithm was executed 200

times with different probability of processor availability

based on which processor availability matrix was generated

for a certain prediction interval. The probable delay due to

processor non-availability for HEFT and ECTS were

determined. From the results, we observe makespan of

RSRA is better that HEFT and ECTS in this scenario which

considers processor availability factor. The proposed RSRA

algorithm is reliable as the resource availability factor is

incorporated in our scheduling decisions. Comparative

results for the performance metrics Makespan, Schedule

Length Ratio and Speedup are shown below. Figure 3 shows

the comparison of RSPA with HEFT and ECTS based on

Average Makespan.

Figure 3 : Comparison of RSRA with HEFT and ECTS

based on Average Makespan

Figure 4 shows comparison of RSRA with HEFT and ECTS

on the basis of Average SLR. The lower the SLR, the better

the performance. It is seen from the figure that RSPA

performs better than HEFT and ECTS.

Figure 4: Comparison of RSRA with HEFT and ECTS

based on Average SLR

Figure 5 shows comparison of RSRA with HEFT and ECTS

on the basis of Average Speedup. The higher the speedup,

the better the performance. It is seen from the graph that

RSPA performs better that HEFT and ECTS.

Figure 5: Comparison of RSRA with HEFT and ECTS

 based on Average Speedup

 (ii)Test Case 2

Here, the proposed algorithm is tested for performance on

scientific workflow application graphs such as Montage and

Epigenomics. Montage workflow[1] created by

NASA/IPAC is an astronomy application characterized by

being I/O intensive that is used to create custom mosaics of

the sky based on a set of input images. A composite image

of a region of the sky that is too large to be taken by

astronomical camera or images that have been measured

with different wavelengths and instruments can be

generated. During the workflow execution, the geometry of

the output image is calculated from that of the input images.

Afterwards, the input data is re-projected so that they have

the same spatial scale and rotation. This is followed by a

standardization of the background of all images. Finally, all

the processed input images are merged to create the final

mosaic of the sky region. The structure of this workflow is

shown in Figure 4. The Epigenomics[1] workflow of

Bioinformatics field, is a CPU intensive application that

automates the execution of various genome sequencing

operations. This workflow is created by the USC

Epigenome Center and the Pegasus Team. It is used

to automate various operations in genome sequence

processing. Figure 6 shows a sample Montage Workflow.

Figure 6 : Sample Montage Workflow

Figure 7 shows the comparison of RSRA with HEFT and

ECTS based on Average Makespan.

Chitra S et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2747-2755

© 2015-19, IJARCS All Rights Reserved 2753

Figure 7 : Comparison of RSRA with HEFT and ECTS

 based on Average Makespan

Figure 8 and 9 show comparison of the proposed algorithm

with HEFT and ECTS based on Average SLR and Average

Speedup respectively.

Figure 8:Comparison of RSRA with HEFT and ECTS

based on Average SLR

Figure 9: Comparison of RSRA with HEFT and ECTS

based on Average Speedup

Figure 10 shows a sample Epigenomics Workflow used

in Bioinformatics. Figures 11,12,13 compare the proposed
RSRA algorithm with HEFT and ECTS algorithms based on
Average Makespan, Average SLR and Average Speedup

Figure 10 :Sample Epigenomics Workflow

Figure 11:Comparison of RSRA with HEFT and ECTS based on Average

Makespan

Figure 12:Comparison of RSRA with HEFT and ECTS
based on Average SLR

Figure 13: Comparison of RSRA with HEFT and ECTS
based on Average Speedup

(iv) Test Case 3

Here we study the performance of RSRA algorithm for

parallelism, considering a large 50 node random directed

acyclic graph being executed with various number of

processors such as 9,12,15. Figure 14 shows that average

Chitra S et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2747-2755

© 2015-19, IJARCS All Rights Reserved 2754

makespan decreases with increase in the number of VMs

used. As the number of VMs increase which indicates

higher parallelism, the makespan reduces.

Figure 14: Average Makespan of 50 node random graph

for varying number of processors

VIII. CONCLUSIONS

Virtual machines provided by cloud infrastructure do not

exhibit a stable performance[1] due to network connectivity

as well as computational nodes and may have a significant

impact while scheduling workflows on clouds[1].Since the

resources are not dedicated and can be used by other users

simultaneously, there are load variations on resources,

resulting in fluctuations in resource availability that affects

the schedules. In this paper, we propose our new algorithm

Reliable task Scheduling Algorithm (RSPA) based on

Processor Availability for scheduling application graph on

to heterogeneous computing environment. Our algorithm

performs better than HEFT algorithm in a scenario where

resource availability factor is considered. We have presented

four test cases, in the comparative experimental study of

performance of RSPA. When algorithms such as

RSPA,ECTS, HEFT were executed, in an environment

considering resource availability factor, the performance

metrics such as makespan, SLR and speedup were found to

be better in RSPA than in others, for random graphs with

varying sizes and real life application graphs Montage and

Epigenomics in the areas of Astronomy and Bio-

Informatics. For various sizes of graphs with 10,20,30,40,50

nodes, the performance improvement of RSPA when

compared with HEFT, is ranging between 35% and 43%.

When RSPA is compared with HEFT, on an average, the

overall percentage reduction in makespan for graphs of

various sizes is 37%. When RSPA is compared with ECTS

algorithm, the percentage reduction in makespan ranges

from 11% to 45% for various sizes of graphs. On an

average, the overall percentage reduction in makespan for

graphs of various sizes when RSPA is compared with ECTS

is 30%. Also there is considerable percentage reduction in

makespan for real life application graphs such as Montage

and Epigenomics. The simulation results show that RSPA

algorithm performs better and is more reliable in

environment where resource availability is continuously

varying than other algorithms that assume full processor

availability while scheduling tasks.

.

REFERENCES

1] M. A. Rodriguez and R. Buyya, "A Taxonomy and Survey on

Scheduling Algorithms for Scientific Workflows in IaaS Cloud

Computing Environments", CONCURRENCY AND

COMPUTATION: PRACTICE AND EXPERIENCE,

Concurrency Computat.: Pract. Exper. 0000; 00:1–32,Published

online in Wiley InterScience (www.interscience.wiley.com). DOI:

10.1002/cpe.4041

2] M. A. Rodriguez and R. Buyya, “Deadline Based Resource

Provisioning and Scheduling Algorithm for Scientific Workflows

on Clouds.” IEEE Transactions on Cloud Computing, Volume 2,

Issue 2, Pages: 222-235, 2014.

3] vSphere Resource Management ESXi 6.5 vCenter Server 6.5

Documentation, VMware

4] Wei Zheng, Rizos Sakellariou," A Monte-Carlo Approach for

Full-Ahead Stochastic DAG Scheduling",2012 IEEE 26th

International Parallel and Distributed Processing Symposium

Workshops & PhD Forum

5] Brent Rood and Michael J. Lewis, “Grid Resource Availability

Prediction-Based Scheduling and Task Replication,” Journal of

Grid Computing, 2009.

6]Haluk Topcuoglu, Salim Hariri and Min-You Wu, “Performance

Effective and Low Complexity Task Scheduling for Heterogeneous

Computing", IEEE Transactions on Parallel and Distributed

Systems, Vol.13, No.3, March 2002, : 260-274

7] E. Illavarasan and P. Thambidurai, "Low complexity

performance effective task scheduling algorithm for heterogeneous

computing environments", January 2007, Journal of Computer

Science[Online]. 3(2). pp. 94-103.

8] R. Eswari and S. Nickholas, " A Level-wise Priority Based Task

Scheduling for Heterogeneous Systems", International Journal of

Information and Education Technology, Vol. 1, No. 5, December

2011, p.p. 371-376 ISSN: 2010-3689,DOI:

10.7763/IJIET.2011.V1.60 (ECTS)

9] Deepak Poola, Saurabh Kumar Garg, Rajkumar Buyya, Yun

Yang, and Kotagiri Ramamohanarao,"Robust Scheduling of

Scientific Workflows with Deadline and Budget Constraints in

Clouds", 2014 IEEE 28th International Conference on Advanced

Information Networking and Applications

10] Mustafa M. Al-Sayed, Sherif Khattab, Fatma A. Omara,"

Prediction mechanisms for monitoring state of cloud resources

using Markov chain model", Journal of Parallel Distributed

Computing 96 (2016) 163–171,Elsevier

11] Chitra S and Prashanth C. S. R, "Probabilistic Availability

based Task Scheduling Algorithm," 2015 International Conference

on Trends in Automation, Communications and Computing

Technology (I-TACT-15), Bangalore, 2015, pp. 1-4.doi:

10.1109/ITACT.2015.7492649

12] S. Baskiyar and P. C. SaiRanga, "Scheduling directed a-cyclic

task graphs on heterogeneous network of workstations to minimize

schedule length," 2003 International Conference on Parallel

Processing Workshops, 2003. Proceedings., 2003, pp. 97-103.

doi: 10.1109/ICPPW.2003.1240359

13] Buyya R, Broberg J, Goscinski A,"Cloud Computing:

Principles and Paradigms", Wiley Publications

Chitra S et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2747-2755

© 2015-19, IJARCS All Rights Reserved 2755

14] T. He, S. Chen, H. Kim, L. Tong and K. W. Lee, "Scheduling

Parallel Tasks onto Opportunistically Available Cloud

Resources," 2012 IEEE Fifth International Conference on Cloud

Computing, Honolulu, HI, 2012, pp. 180-187,doi:

10.1109/CLOUD.2012.15

15] Yinfeng Wang, Zhijing Liu, Wei Yan, “Algorithms for

Random Adjacency Matrixes Generation Used for Scheduling

Algorithms Test”, International Conference on Machine Vision and

Human-Machine Interface (MVHI), 2010

