
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1447

ISSN No. 0976-5697

Prediction Model to Investigate Influence of Code Smells on Metrics in
Apache Tomcat

Sharanpreet Kaur
Research Scholar

IKGPTU
Jalandhar, India

Dr. Satwinder Singh
Assistant Professor, Centre for Computer Science & Engg.

School of Engineering & Technology
Central University of Punjab Bathinda, India

Abstract: For advancing software maintenance process, attempts are necessitated at developers end. One such endeavour is applying refactoring
to eliminate code smells from the software. The aim of refactoring process is to identify the smelly areas known as Code Smells. It makes the
code livelier, easier to read and hence understanding of code increases. The aim of the paper is to perform an empirical analysis on the code
smells and metrics. A set of object oriented metrics are selected for the study. Hence the study introduces a metric based prediction model of
code smells. The paper initially introduces the statistical relationship between code smells and metrics. Based on the results neural network
model development is made possible. The accuracy of the developed model is validated on machine learning algorithms. Four versions of
Apache Tomcat (6.0, 7.0, 8.0, 8.5.11) are selected for the work. Successive versions of Tomcat source code are applied for validation of study.
The results from the study revealed that metrics can predict smelly classes effectively

Keywords: code smells; refactoring; anti-pattern; open source software

I. INTRODUCTION

For achieving good quality of software product regular
maintenance is necessary. Maintenance is performed in
various forms like software testing, code inspections,
walkthroughs and refactoring. Despite of these efforts faults
still remain in the software. So the target of the developers
should be at the root cause of faults. The cause for faults
could be identified easily if the location where fault exists is
examined. M. Fowler [1] had introduced a book on
refactoring which revealed the problematic area in the code
commonly known as “Code Smell”. The main objective of
the paper is to identify such areas in the code and then apply
metrics based heuristics to aid the maintenance process.
As object oriented metrics express internal quality attributes
of software very effectively hence we consider them along
with code smells. Software metrics are a great support to
perform such type of empirical studies.
Object-oriented metrics [2] are used for the development of
prediction model. We have used various object oriented
metrics at package level; class level and method level which
covers almost all concepts of object oriented programming
such as encapsulation, inheritance, coupling, complexity and
cohesion. The selected metrics are widely accepted in the
literature by the researchers [3].
In this paper we have performed an empirical analysis on
Apache Tomcat source code. It is a java based open source
project. Tomcat is also called “Tomcat Server” which is a
product of Apache Software Foundation (ASF) [4]. Tomcat
is an implementation of Java Servlet and Java Server Pages
(JSP) technologies. Four versions of Apache Tomcat (6.0,
7.0, 8.0, 8.5.11) are selected for the work.
We have performed the statistical analysis for developing
the metrics based prediction model of code smells. Based on
the results neural network model development is made
possible. The accuracy of the developed model is validated

on machine learning algorithms. Successive versions of
Tomcat source code are applied for validation of study. The
results from the study revealed that metrics can predict
smelly classes effectively.

II. RELATED WORK

Some of the studies have been found in the literature aimed
at performing refactoring which are given below.
Tom Mens et al. [5] revealed that refactoring could be
possible at five different types. Five classes of source code
i.e. Document, ASCIIDoc, PSDoc, PDFDoc, Printer, and
Previewer are used to apply refactoring process. S. Counsell
et al. [6] performed an empirical analysis to remove code
smells from the source code of java source software. At least
21 code smells were being removed from the code.
Raed Shatnawi [6] tried to improve the quality of two open
source projects - Eclipse & Struts using refactoring.
Hierarchal approach had been used for quality management.
Seema Kansal [8] introduced new type of refactoring in
order to remove code smells. Macro definitions had been put
into the code where refactoring is demanded. Miryung Kim
et al. [9] introduced pros and corns of refactoring at
Microsoft. Three methods had been performed which
involved a detailed investigation, structure consultations
with software experts along with analysis of historical data.
The study concluded that refactoring leads to minimizing
risks and costs if faults are identified with time.
Davide Arcelli et al. [10] divulged that code performance
could be achieved using Queuing Network Model of code
smells and anti-patterns. Anshu Rani and Harpreet Kaur [11]
performed an empirical investigation Intellij idea And
Eclipse by comparing their results. Various refactoring
characteristics have been studied along with refactoring
tools.
Seyyed Ehsan Salamati Taba et al. [12] justified that
relationship exists between faults and code smells. A fault
prediction model has been proposed by considering the
source code of open source projects- ArgoUML and Eclipse.

Sharanpreet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1447-1452

© 2015-19, IJARCS All Rights Reserved 1448

The study finalized that classes containing code smells are
more prone to faults. Mesfin Abebe and Cheol-Jung Yoo
[13] collected a huge data for performing refactoring from
1999 for applying refactoring.
M. Lakshmanan and S.Manikandan [14] revealed that
identifying code smells in the source code is still a difficult
task for developers. Although a wide range of detection
tools are available. Yann-Gael Gueheneuc et al. [15]
introduced a novel tool PTIDEJ for the detection of code
smells, metrics and micro architectures. C++, Java code
could be located easily for the design anomalies.
Sharanpreet Kaur and Satwinder Singh [16] performed a
detailed systematic literature survey for detecting the
categories of code smell detection. These techniques range
from traditional to visualization based, semi automatic and
automatic approach. Satwinder Singh and K.S .Kahlon [17]
introduced a refactoring model which identifies code smells
and its types in open source project Firefox. Relationship
between OO metrics and code smells is justified based on
results obtained. Two new types of metrics- PuF and EncF
have been proposed. Satwinder Singh and Puneet Mittal [18]
developed a model that discloses flaws in Firefox Mozilla
based on metric value. High, Medium and Low category
bugs are highlighted based on the approach. For generating
the results from object oriented metrics tool named
Columbus Wrapper Framework has been used.

III. DATA COLLECTION

The study involves the collection of four rereleases of
Apache Tomcat version 6.0, 7.0, 8.0, 8.5.11. Only those

releases of tomcat are shortlisted I which at least 5-7 %
classes contains code smells. We have gathered information
about code smells form Iplasma tool [19, 20, and 21] which
is s a famous reverse engineering tool.
The metrics and code smells data is collected from tool.
Selected metrics for the work empirical study are – ATFD,
CBO, FDP, FANOUT, CC, CM, WOC, WMC, AMW,
NOA, LOCC, DIT, HIT, NOD, NOAM, NOPA and TCC.
Table I to IV represents the summarized metrics statistics
results for Tomcat versions 6.0, 7.0, 8.0 and 8.5.11.
Code smells selected are- God Class, Data Class,
Schizophrenic Class and Refused Parent Bequest. The
metrics results are consolidated at class level. A short
description about every code smell is given below.

a. God Class – It is a class which is enormously
larger in size as compare to other classes in the
system.

b. Data Class - The data class code smells reefers to a
class which contains large amount of data while it
is lacking in complex details.

c. Schizophrenic Class - It refers to a class in which
many modifications are made for different reasons.
It is also known as Divergent Change.

d. Refused Parent Bequest – This code smell is
found where inheritance is applied in the source
code. Such classes do not use the functionalities of
the parent class.

.

Table I. Summarized Metrics Statistics of Tomcat Version 6.0

 Tomcat 6.0 Percentile
Quality

Dimension

Metric Mean Std
Dev

Min Max 25 50 75 90

Coupling ATFD 2.51 7.093 0 81 0.00 0.00 2.00 7.00
CBO 3.32 6.109 0 53 0.00 1.00 4.00 10.00
FDP 0.92 2.095 0 21 0.00 0.00 1.00 3.00

FANOUT 9.82 21.627 0 206 0.00 1.00 9.00 29.00
CC 2.35 10.763 0 286 0.00 0.00 1.00 5.00
CM 6.77 40.990 0 1139 0.00 0.00 2.00 11.00

Complexity WOC 0.6672 0.36377 0 1.00 0.3600 0.7800 1.0000 1.0000
WMC 29.29 56.034 0 691 2.00 9.00 31.00 79.00
AMW 1.9862 2.14934 0 29.00 1.0000 1.5000 2.5925 4.4970
NOA 5.98 10.846 0 126 0.00 2.00 7.00 16.00

LOCC 255.32 434.288 2 5962 40.00 109.50 286.25 649.70
Encapsulation NOAM 3.02 8.034 0 102 0.00 0.00 3.00 8.00

NOPA 0.40 1.892 0 36 0.00 0.00 0.00 1.00
Inheritance DIT 0.63 0.929 0 5 0.00 0.00 1.00 2.00

NOD 1.10 4.242 0 56 0.00 0.00 0.00 2.00
HIT 0.31 0.688 0 4 0.00 0.00 0.00 1.00

Cohesion TCC 0.3521 0.39162 0 1.00 0.0000 0.1900 0.6700 1.0000

Table II. Summarized Metrics Statistics of Tomcat Version 7.0

Sharanpreet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1447-1452

© 2015-19, IJARCS All Rights Reserved 1449

 Tomcat 7.0 Percentile
Quality

Dimension

Metric Mean Std
Dev

Min Max 25 50 75 90

Coupling ATFD 2.25 8.268 0 192 0.00 0.00 1.00 6.00
CBO 3.28 6.394 0 63 0.00 1.00 4.00 9.00
FDP 0.87 2.384 0 33 0.00 0.00 1.00 2.00

FANOUT 8.82 20.645 0 251 0.00 1.00 8.00 25.00
CC 2.25 11.327 0 289 0.00 0.00 1.00 4.00
CM 6.08 42.458 0 1041 0.00 0.00 2.00 9.00

Complexity WOC 0.6599 0.38552 0 1.00 0.3300 0.8300 1.0000 1.0000
WMC 25.89 54.169 0 759 1.00 7.00 26.00 70.00
AMW 1.9205 2.20182 0 36.00 0.8600 1.4000 2.5800 4.1760
NOA 5.19 10.030 0 140 0.00 2.00 6.00 13.00

LOCC 232.58 436.128 2 7099 31.00 93.00 235.00 576.00
Encapsulation NOAM 2.47 7.820 0 136 0.00 0.00 2.00 6.00

NOPA 0.21 1.432 0 36 0.00 0.00 0.00 0.00
Inheritance DIT 0.71 1.070 0 5 0.00 0.00 1.00 2.00

NOD 1.15 5.083 0 86 0.00 0.00 0.00 2.00
HIT 0.33 0.703 0 5 0.00 0.00 0.00 1.00

Cohesion TCC 0.3522 0.40163 0 1.00 0.0000 0.1700 0.7100 1.0000

Table III. Summarized Metrics Statistics of Tomcat Version 8.0

 Tomcat 8.0 Percentile
Quality

Dimension

Metric Mean Std
Dev

Min Max 25 50 75 90

Coupling ATFD 0.82 3.444 0 67 0.00 0.00 0.00 2.00
CBO 1.12 2.699 0 44 0.00 0.00 1.00 3.00
FDP 0.38 1.272 0 19 0.00 0.00 0.00 1.00

FANOUT 2.51 6.744 0 72 0.00 0.00 2.00 7.00
CC 0.69 4.320 0 128 0.00 0.00 0.00 1.00
CM 1.37 9.383 0 272 0.00 0.00 0.00 2.00

Complexity WOC 0.6533 0.41224 0 1.00 0.2200 0.9300 1.0000 1.0000
WMC 15.67 42.819 0 827 0.00 4.00 14.00 37.00
AMW 1.5658 1.87144 0 15.50 0.0000 1.0000 2.0000 3.7710
NOA 3.43 7.398 0 126 0.00 1.00 4.00 8.00

LOCC 134.83 224.532 2 3139 22.00 62.00 146.00 330.40
Encapsulation NOAM 1.56 5.794 0 140 0.00 0.00 1.00 4.00

NOPA 0.15 1.455 0 36 0.00 0.00 0.00 0.00
Inheritance DIT 0.62 0.950 0 5 0.00 0.00 1.00 2.00

NOD 0.84 3.409 0 41 0.00 0.00 0.00 2.00
HIT 0.28 0.658 0 5 0.00 0.00 0.00 1.00

Cohesion TCC 0.2962 0.41613 0 1.00 0.0000 0.0000 0.6725 1.0000

Sharanpreet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1447-1452

© 2015-19, IJARCS All Rights Reserved 1450

Table IV. Summarized Metrics Statistics of Tomcat Version 8.5.11

 Tomcat 8.5.11 Percentile
Quality

Dimension
Metric Mean Std

Dev
Min Max 25 50 75 90

Coupling

ATFD 0.88 4.105 0 66 0.00 0.00 0.00 2.00
CBO 1.09 2.838 0 44 0.00 0.00 1.00 3.00
FDP 0.39 1.357 0 19 0.00 0.00 0.00 1.00

FANOUT 2.50 7.853 0 122 0.00 0.00 1.00 7.00
CC 0.68 4.173 0 122 0.00 0.00 0.00 1.00
CM 1.43 9.369 0 267 0.00 0.00 0.00 2.00

Complexity WOC 0.6555 0.41370 0 1.00 0.2175 0.9600 1.0000 1.0000
WMC 15.21 43.188 0 827 0.00 4.00 12.25 34.90
AMW 1.5022 1.79991 0 15.50 0.0000 1.0000 2.0000 3.6970
NOA 3.39 7.653 0 142 0.00 1.00 4.00 8.00

LOCC 131.73 232.928 2 3139 21.00 58.00 137.00 317.70
Encapsulation NOAM 1.53 5.756 0 140 0.00 0.00 1.00 4.00

NOPA 0.15 1.456 0 36 0.00 0.00 0.00 0.00
Inheritance DIT 0.61 0.960 0 5 0.00 0.00 1.00 2.00

NOD 0.80 3.051 0 39 0.00 0.00 0.00 2.00
HIT 0.29 0.638 0 4 0.00 0.00 0.00 1.00

Cohesion TCC 0.2933 0.41699 0 1.00 0.0000 0.0000 0.6725 1.0000

Table V. UMR Analysis of Tomcat Versions

UMR
Test

Tomcat 6.0 Tomcat 7.0 Tomcat 8.0 Tomcat 8.5.11

B Sig. B Sig. B Sig. B Sig.

ATFD -.035 .861 .095 .000 .337 .000 .075 .794

CBO -.073 .000 .031 .740 .334 .000 -.228 .000

DIT -.852 .000 -1.047 .000 -1.235 .000 -1.537 .000

HIT -.243 .677 .011 .962 .003 .993 .027 .956

LOCC -.009 .000 -.003 .000 -.011 .000 -.005 .000

NOA -.033 .000 .038 .487 .009 .711 .008 .737

NOD .005 .949 .005 .874 .000 .999 1.211 1.000

NOM .584 .000 .101 .000 .273 .000 .224 .000

WMC -.015 .000 -.015 .000 .127 .001 .061 .000

AMW -.073 .540 -.099 .000 -.368 .007 -.260 .000

FANOUT .009 .389 -.085 .000 -.159 .000 -.004 .914

WOC .247 .533 3.980 .000 5.333 .000 4.066 .000

CC -.834 .000 -.079 .298 -11.35 .995 .861 .000

CM .202 .000 -.049 .718 -.105 .000 -.122 .000

NOAM -.807 .000 -.178 .000 -.633 .000 -.462 .000

NOPA -.660 .000 -.324 .000 -.684 .000 -.518 .000

In the empirical analysis we have used logistic regression for
code smell prediction based on metrics value. Initially
Regression Analysis is applied to examine the relationship
among variables. We have applied Univariate Multinominal
Regression (UMR) test to evaluate the relationship between
metrics and code smells based upon the cut off p-value (.05).
Metrics are selected as independent variables for the study.

The independent variables are removed from the analysis
using PCA (Principle Component Analysis). For the
development of prediction model Neural Network MLP is
applied which is a powerful tool support for prediction. The
accuracy of predicted model is confirmed by testing model
successive versions. The area under Receivable Operating
Characteristics (ROC) Curve is used to evaluate the accuracy

Sharanpreet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1447-1452

© 2015-19, IJARCS All Rights Reserved 1451

of the model. Testing of model is verified with machine
learning algorithms.

IV. RESULTS

In this section we present the results obtained from the
mentioned datasets and their concluded outputs obtained.

IV a. UNIVARIATE MULTINOMINAL REGRESSION

We have performed Univariate Multinominal Regression
(UMR) upon the code smells and the metrics results obtained.
Table V depicts the results after UMR Test. P-value is
examined and metrics values less than .05 are omitted from the
study. All the selected metrics p-value is less than .05 except
few metrics like HIT, NOA and NOD. So we are omitting
HIT, NOA and NOD metrics.
Similarly CC and CM metrics are fulfilling the p value for
only two versions of Tomcat. So these are also omitted. TCC
metric is excluded from the study after PCA. Hence the final
set of metrics is - ATFD, CBO, FDP, FANOUT, WOC,
WMC, AMW, LOCC, DIT, NOAM, and NOPA which is used
for prediction model development.

IV b. NEURAL NETWORK

Neural Network Model MLP (Multi Layer Perception) is used
for the development of prediction model. Hyperbolic Tangent
Function and Softmax Activation Function are applied for
Hidden Layer and Output Layer respectively. We have
calculated the area under ROC curve for the evaluation of
model. The ROC curve plots the probability between true
positives and false positives for the curve range between 0 and
1. The range of the discrimination is as follows:

• 0.5 <= ROC < 0.6 It means no discrimination
• 0.6 <= ROC < 0.7 It means poor discrimination
• 0.7 <= ROC < 0.8 It means good discrimination
• 0.8 <= ROC < 0.9 It means excellent discrimination
• 0.9 <= ROC < 1 It means outstanding discrimination

The NN MLP area under ROC curve is represented in Table
VI which is given below. The model generates an excellent
discrimination for the results

 Table VI. Area under ROC curve for NN model

Tomcat Versions Class Level

Tomcat 6.0 .871

Tomcat 7.0 .852

Tomcat 8.0 .853

Tomcat 8.5.11 .861

IV c. EVALUATING MODELS ON NEXT RELEASES

The aim of the paper is to develop the model to predict code
smells based on metrics value. For the validation of work
successive models are applied on the releases of Tomcat. We
have applied Tomcat 6.0 on Tomcat 7.0, 8.0 and 8.5.11 and so
on. Table VII reveals the results.

 Table VII. Testing of Code smells prediction model

Applications of
Model

Applying Tomcat 6.0

Tomcat
7.0

Tomcat
8.0

Tomcat
8.5.11

0.981 0.921 0.947

Applying Tomcat 7.0 - 0.972 0.965

Applying Tomcat 8.0 - - 0.987

V. CONCLUSION

We have tried to develop the metric based code smells
prediction model. Although from the set of selected metrics all
are not fulfilling the p-value in the UMR Analysis. So we have
used the metrics accomplishing the task of model
development. A good accuracy has been shown by the ROC
curve. So we conclude that the predicted model can work
satisfactory in general.

VI. REFERENCES

[1]. Martin Fowler, Martin Beck, Kent Brant, John Opdyke, William

Roberts, “Refactoring- improving the design of existing code”
1st Ed. Addison-Wesley, June 1999.

[2]. Szabo, R. and Khoshgoftaar, T. “An assessment of software
quality in a C++ environment”, Proceedings of the 6th Int.
Symposium on Software Reliability Engineering, pp.240–249
1995.

[3]. Francesca Arcelli Fontana, Mika V. Mantyla, Marco Zanoni and
Alessandro Marino, “Comparing and experimenting machine
learning techniques for code smell detection”, Empirical
Software Engineering pp 1143–1191 2015.

[4]. Online Sources: http://tomcat.apache.org/.
[5]. Tom Mens and Tom Tourw, “A Survey of Software

Refactoring”, IEEE Transactions On Software Engg. Vol. 30,
No. 2, February 2004

[6]. S. Counsell, R.M. Hierons, H. Hamza, S. Black and M. Durrand,
“Exploring the Eradication of Code Smells: An Empirical and
Theoretical Perspective”, Advances in Software Engineering
Volume 2010, Article ID 820103, pp 1-12

[7]. Raed Shatnawi, “An Empirical Assessment of Refactoring
Impact on Software Quality Using a Hierarchical Quality
Model”, International Journal of Software Engineering and Its
Applications Vol. 5 No. 4, October, 2011 127

[8]. Seema Kansal, “Refactor Code: A Review” IJCST Vol. 2, Issue 2
June2011.

[9].Miryung Kim, Thomas Zimmermann and Nachiappan Nagappan,
“Field Study of Refactoring Challenges and Benefits”
SIGSOFT/FSE’12 November 2012, Raleigh, NC, USA
Copyright 2012 ACM.

[10]. Davide Arcelli, Vittorio Cortellessa,Catia Trubiani,
“Antipattern-Based Model Refactoring for Software
Performance Improvement” , ACM 2012.

[11]. Anshu Rani and Harpreet Kaur, “Refactoring Methods and
Tools” International Journal of Advanced Research in Computer
Science and Software Engineering Research Volume 2, Issue 12,
December 2012.

[12]. Seyyed Ehsan Salamati Taba,Foutse Khomh ,Ying Zou, Ahmed
E. Hassan, and Meiyappan Nagappan, “Predicting Bugs Using

http://tomcat.apache.org/�

Sharanpreet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1447-1452

© 2015-19, IJARCS All Rights Reserved 1452

Antipatterns” ICSM '13 Proceedings of the IEEE International
Conference on Software Maintenance pp 270-279 2013.

[13]. Mesfin Abebe and Cheol-Jung Yoo Chonbuk, “Trends,
Opportunities and Challenges of Software Refactoring: A
Systematic Literature Review” International Journal of Software
Engineering and Its Applications Vol.8, No.6 (2014), pp.299-
318.

[14]. M.Lakshmanan, S.Manikandan, “Multi-Step Automated
Refactoring For Code Smell” IJRET: International Journal of
Research in Engineering and Technology, Volume: 03 Issue: 03
| Mar-2014.

[15]. Yann Gael Gueheneuc, Herve Albin-Amiot and Ecole des
Mines de Nantes, “Using Design Patterns and Constraints to
Automate the Detection and Correction of Inter-class Design
Defects”, Paper accepted at TOOLS USA 2001.

[16]. Sharanpreet Kaur and Satwinder Singh, “Influence of Anti-
Patterns on Software Maintenance: A Review”, International
Journal of Computer Applications, International Conference on
Advancements in Engineering and Technology (ICAET 2015)
pp 14-19 2015.

[17]. Satwinder Singh and K.S .Kahlon, “Effectiveness of
Refactoring Metrics Model to Identify Smelly and Error Prone
Classes in Open Source Software”, ACM SIGSOFT Software
Engineering Notes Page 1 March 2012 Volume 37 Number 2 pp
1-11.

[18]. Satwinder Singh and Puneet Mittal, “Empirical model for
predicting high , medium and low severity faults using object
oriented metrics in Mozilla Firefox”, Int. J. Computer
Applications in Technology, Vol. 47, Nos. 2/3, 2013 pp 110-
124.

[19]. R.Marinescu, “Detection Strategies: Metrics-Based Rules for
Detecting Design Flaws”, In: Proc. 20th Int. Conf. Software
Maintenance, pp. 350-359, 2004.

[20]. Francesca Arcelli Fontana, Vincenzo Ferme, Alessandro
Marino, Bartosz Walter, Pawel Martenka, “Investigating the
Impact of Code Smells on System's Quality: An Empirical Study
on Systems of Different Application Domains”, 2013 IEEE
International Conference on Software Maintenance pp 260-269.

[21]. Francesca Arcelli Fontana, Elia Mariani , Andrea Morniroli,
Raul Sormani, Alberto Tonello, “An experience report on using
code smells detection tools”, Proceedings - 4th IEEE
International Conference on Software Testing, Verification, and
Validation Workshops, ICSTW 2011, pp 450-457

	Introduction
	related work
	data collection
	.

	RESULTS
	CONCLUSION
	references

