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Abstract: This paper is concerned with transient thermoelastic problem in which we need to determine the temperature distribution, displacement 
function and thermal stresses of a thin annular disc due to partially distributed heat supply, when the boundary conditions are known. Integral 
transform techniques are used to obtain the solution of the problem.   . 
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INTRODUCTION 
 
    In 1957, Nowacki [1] studied The state of stress in a thick 
circular plate due to a temperature field. Carslaw et al. [2] 
has written a book on Conduction of heat in solids. Boley et 
al.[3] developed Theory of thermal stresses. Nowacki [4] 
studied Thermo elasticity on different solids. Marchi  et al. 
[5] discussed Heat conduction in hollow cylinder with 
radiation. Sabherwal [6] studied An inverse problem of 
transient heat conduction. Marchi et al.[7] discussed Heat 
conduction in sector of hollow cylinder with radiation. 
Ozisik [8] studied Boundary value problems of heat 
conduction. Patel [9] discussed Inverse problems of 
transient heat conduction with radiation. Roychaudhari [10] 
has succeeded in determining the quasi-static thermal 
stresses in a thin circular plate subjected to transient 
temperature along the circumference of circular upper face 
with lower face is at zero temperature and the fixed circular 
edge thermally insulated.. 
    Wankhede [11] has determined the quasi-static thermal 
stresses in circular plate subjected to arbitrary initial 
temperature on the upper face with lower face at zero 
temperature. Ishihara et al. [12] studied Theoretical analysis 
of thermoelastic plastic deformation of a circular plate due 
to partially distributed heat supply. Noda et al.[13] studied 
Thermal Stresses on different shapes of solid bodies. Ghadle 
et al. [14] discussed An inverse unsteady- state 
thermoelastic problem of a thin annular disc in Marchi-
Fasulo transform domain. Durge et al. [15] studied An 
inverse steady- state thermoelastic problem of a thin annular 
disc in Marchi-Zgrablich transform domain. Singru et al. 
[16] discussed Steady-state thermoelastic problem of a thin 
annular disc in Marchi-Fasulo transform domain. Durge et 
al. [17] studied Analysis of stress functions in a thin annular 
disc due to partially distributed heat supply. Khobragade et 
al. [18] discussed An inverse transient thermoelastic 
problem of a thin annular disc. Durge et al. [19] studied An 
inverse unsteady- state thermoelastic problem of a thin 
annular disc in Marchi-Zgrablich transform domain, 
Gaikwad et al.[20] studied  An inverse heat conduction 
problem in a thick annular disc. 
In the present paper, an attempt is made to study the 
transient thermoelastic problem in which we need to 
determine the temperature (in heating and cooling process), 

displacement and stress functions of the disc occupying the 
space hzbra ≤≤≤≤ 0,  with the stated boundary 
condition. Here finite Fourier sine transform and Marchi-
Zgrablich transform have been used to find the solution of 
problem. The numerical estimate for the temperature has 
been obtained at any point of the disc and depicted 
graphically. 
 
STATEMENT OF THE PROBLEM (HEATING 
PROCESS) 
 
Consider a thin annular disc occupying the space 

hzbraD ≤≤≤≤ 0,: .  The initial temperature of the disc 
is the same as the temp of the surrounding medium which is 
kept constant for the time 0=t  to 0tt =  the disc is 
subjected to a partially distributed axisymmetric heat supply 
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 at  point 0=z .  After that the heat supply is 

removed and disc is cooled by surrounding medium. 
The derived equation governing the displacement function  

),,( tzrU  as (Roy Choudhary [10] )is 
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with 0=rU  at r = a and r = b.  

where ν  and ta  are Poisson’s ratio and linear coefficient of 
thermal expansion of the material of the disc respectively. 

),,( tzrT  is the heating temperature of the disc at time t 
satisfying the equation (Roy Choudhary [10]): 
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Subjected to initial condition 
),(|),,( 0 zrFtzrT t ==                                                        (2.4) 

The boundary condition 
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[ ] ),(),,( trgtzrT hz ==                                                    (2.8) 

Where λ&k  are the thermal diffusivity and conductivity of 
the material of the disc respectively, 21 & kk  are radiation 
constant on the curved surface of the disc respectively. 
The stress function rrσ  and θθσ  are given by (Roy  
Choudhary [10]) : 
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Equations (2.1) to (2.10) constitute the mathematical 
formulation of the problem under consideration. 

 
 
SOLUTION OF THE PROBLEM 
 
Applying finite Marchi-Zgrablich transform [5] to the 
equation (2.3), one obtains 
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Now applying Fourier sine transform  to the equation (3.1) 
we get 
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The solution of differential equation (3.3) is 
tkpetmnT

2
),,(* −=   

                     











+′+′−′× ∫ ′

t
tkp CtdetnfQtngQ

0
121

2
)),(),(( ψ  

At t = 0,  ),(),( * mnFCzrFT =⇒=   

Therefore 

 

tkpetmnT
2

),,(* −=   












+′+′−′× ∫ ′

t
tkp mnFtdetnfQtngQ

0

*
121 ),()),(),((

2
ψ     (3.4) 

                                                                       
Applying inverse Fourier sine transform and inverse 
Marchi-Zgrablich transform to equation (3.4) we get 
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STATEMENT OF THE PROBLEM (COOLING 
PROCESS) 
 
The temperature change ),,( tzrT ′  for the cooling process 
satisfies the equation (Noda et.al.[13]): 
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The boundary condition 
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Where ),,( tzrT ′  is the cooling temperature of the disc at 
time t.  
 
DETERMINATION OF TEMPERATURE  
 
Applying finite Marchi-Zgrablich transform [5] to 
equation (4.1) one obtains 
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Now applying finite Fourier sine transform to the equation 
(5.1), one obtains 
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The solution of differential equation (5.2) is given by 
tkpetmnT
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Applying inverse Fourier sine transform and inverse 
Marchi-Zgrablich transform, we get 
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which is the required solution. 
 
DISPLACEMENT FUNCTION  
 
Substituting value of ),,( tzrT  from equation (3.5) in 
equation (2.1) one obtains thermoelastic displacement 
function ),,( tzrU  as 
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STRESS FUNCTIONS  
 
Substituting the value of equation (6.1) in equation (2.9) and 
(2.10) one obtains 
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SPECIAL CASE  
 

Set rzeeQzrF −−=
λ

0),(                                                   (8.1) 

Applying Marchi-Zgrablich transform [5] to the above 
equation we get 
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And )( rJ p µ  and  )( ry p µ  are Bessel’s function of 1st and 
2nd

The eigen values  
 kind respectively 

nµ  are the positive roots of the 
characteristic equation 
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Applying Fourier sine transform to above equation we get 
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Now set   
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Applying Marchi-Zgrablich transform to above equation, we 
get 
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Applying Marchi-Zgrablich transform to above equation we 
get 
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Thus the final expression for temperature distribution is 
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NUMERICAL RESULTS  
 
Set 
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MATERIAL PROPERTIES 
 
The numerical calculation has been carried out for an 
Aluminum (Pure) annular disc with the material properties as, 
Density ρ = 169 lb/ft3 
Specific heat = 0.208 Btu/ lb0F 
Thermal conductivity k  = 117 Btu/(hr.ft0F) 
Thermal diffusivity α  = 3.33 ft2/hr 
Poisson ratio ν  = 0.35 
Coefficient of linear thermal expansion tα = 12.84 610−× 1/F 
Lame constant µ  = 26.67 
 
DIMENSIONS 
 
The constants associated with the numerical calculation are  
taken as 
Radius of disc a = 1.5ft 
Radius of disc  b = 2ft 
Height of disc h = 0.25ft 
 
CONCLUSION 
 
The temperature distribution, displacement function and 
thermal stresses at any point of the disc have been 
determined when the other boundary condition are known 
with the aids of finite Fourier sine transform and Marchi 
Zgrablich transform techniques. 
The expression are obtained in the form of infinite series 
and are represented graphically. Any particular case of 
special interest can be derived by assigning suitable values 
to the parameters and functions in the equation. 
The results presented here will be more useful in 
engineering problems particularly in the determination of 
the state of strain in the disc constituting the foundation of 
container for hot gases or liquid in foundation for furnaces 
etc.  
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Graph 1. Temperature distribution vs. radius 
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 Graph 2. Radial stresses vs. radius 

-1.50E+00

-1.00E+00

-5.00E-01

0.00E+00

5.00E-01

1.00E+00

1.50E+00

0.5 0.6 0.8 0.9 1.0

r

t=0.5
t=1.
t=1.5
t=2.0

 
Graph 3. Tangential stresses vs. radius 
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