
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1147

ISSN No. 0976-5697

Malware Detection and Analysis

Mohd. Hamzah Khan
Department of Computer Science and Engineering

Jamia Hamdard
New Delhi, India

Ihtiram Raza Khan
Department of Computer Science and Engineering

Jamia Hamdard
New Delhi, India

Abstract: The purpose of malware analysis is to obtain and provide the information needed to rectify a network or system intrusion. Our goals
will be to find out exactly what happened, and to make sure that all infected machines and files are located . When we analyse potential
malware, the intended result is typically to determine what a suspected malware can do, how to detect it once it is in our network, and how to
measure and contain the damage. Once we identify which files require full analysis, it’s time to develop signatures to detect malware infections
on our network. Malware analysis can be used to develop host-based and network signatures. This paper makes the detection and analysis of
malware simpler by introducing a framework for detection of unwanted signatures. Framework makes user aware of the contents of the binary
file and help them to analyze malicious executables using simple programming languages such as python. Readily scan through the otherwise
complex code to derive useful structural information that may provide a valuable insight into the specific functional behaviour of the malware.
Using existing tools and techniques the normal users can make their computers more secure by using python scripts.

Keywords: Malware, Framework, Static analysis, Dynamic analysis, Remote analysis, Local analysis

I. INTRODUCTION

The reason for malware examination is typically to obtain
the data we need to react to a system interruption. Our
objectives will regularly be to decide precisely what happened,
and to guarantee that we've found every single tainted machine
and records. When dissecting presumed malware, our objective
will commonly be to decide precisely what a specific malware
can do, how to identify it on our system, and how to remove
and contain its harm[2]. When we recognize which records
require full examination, it's a great opportunity to create marks
to identify malware on our system. Malware examination can
be utilized to create have based and arrange marks. Have based
marks, or pointers, are utilized to distinguish harmful code on
infected PCs. These markers regularly recognize documents
made or adjusted by the malware or particular changes that it
makes to the registry. Not at all like antivirus marks, malware
pointers concentrate on what the malware does to a framework,
not on the attributes of the malware itself, which makes them
more compelling in recognizing malware that progress in shape
. Arrange marks are utilized to identify malicious code by
checking system activity. Arrange marks can be made without
malware investigation, yet marks made with the assistance of
malware analysis are as a rule much more successful, offering a
higher identification rate and less false positives. In the wake of
getting the marks, the last target is to make sense of precisely
how the malware functions. This is frequently the most made
inquiry by senior administration, who need a full clarification
of a noteworthy interruption. The top to bottom methods will
enable you to decide the reason and capacities of malware.
Malware Analysis Systems Frequently, when performing
malware investigation, we'll have just the malware executable,
which won't be intelligible. With a specific end goal to
comprehend it, we'll utilize an assortment of modules and traps,
each noteworthy a little measure of data. we'll have to utilize an
assortment of modules keeping in mind the end goal to see the
full picture.

There are two principal ways to deal with malware analysis:
Static and Dynamic analysis[1][5][7][9][10].

• Static Analysis includes analyzing the malware without
running it. Dynamic analysis includes running the malware.
Both systems are additionally sorted as essential or as
progressed. Static analysis comprises of inspecting the
executable document without survey of the genuine guidelines.
Static analysis can affirm whether a document is harmful, give
data about its usefulness, and then give data that will enable
you to create basic system marks. Static analysis is clear and
can be speedy, however it's generally ineffective against refined
malware, and it can miss imperative practices[1][2].

• Dynamic analysis methods include running the malware
and watching its conduct on the framework so as to terminate
the contamination, deliver successful marks, or both. Before
you can run malware securely, we should set up a situation that
will enable us to concentrate the running malware without
danger of harm to our framework or system[5]. When
performing malware examination, by using identifying features
that can be found that you can regularly accelerate your
investigation by making instructed surmises about what the
malware is attempting to do. Obviously, you'll have the
capacity to improve security to the event that you know against
the sorts of things that malware generally does[1][2][4][5].

II. TYPES OF MALWARE

Classes that most malware falls into are[3]:
• Backdoor malicious code that introduces itself onto a PC

to permit the intruder get indirect access to interface with the
PC with practically zero confirmation and execute commands
on the PC.

• Botnet Like a secondary passage, permits the attacker
access to the framework, however all PCs tainted with the same
botnet get similar guidelines from a solitary in-charge and
control server[3][4].

• Data Theft Malware, It gathers data from a victim PC and
sends it to the intruder. Cases incorporate sniffers, watchword
hash grabbers, and keyloggers. This malware is commonly
used to access online records, for example, email or web based
managing an account[3][4].

Mohd. Hamzah Khan et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,1147-1149

© 2015-19, IJARCS All Rights Reserved 1148

• Rootkit Code intended to hide the presence of other code.
Rootkits are normally combined with other malware, for
example, a secondary passage, to enable remote access to the
intuder and make the code troublesome to identify[3][4].

• Scareware Malware intended to panic a contaminated
client into purchasing something. It more often than not has a
UI that makes it resemble an antivirus or other security
program. It illuminates clients that there is vindictive code on
their framework and that the best way to dispose of it is to
purchase their "product," when truly, the product it's offering
does just expel the scareware[3][4].

• Spam-sending Malware that contaminates a client's
machine and afterward utilizes that machine to send spam. This
malware creates income for assailants by enabling them to offer
spam-sending softwares[3][4][8].

• Worm or Virus that can duplicate itself and taint extra
PCs. Malware has numerous classes. For instance, a program
may have a keylogger that gathers passwords and a worm part
that sends it to the intruder[3][4][9].

• Malware can further be grouped on whether the
aggressor's goal is mass or focused on. Mass malware, for
example, scareware, adopts the shotgun strategy and is
intended to influence however many machines as would be
prudent. Of the two destinations, it's the most widely
recognized, and is generally the less modern and simpler to
identify and guard against in light of the fact that security
programming targets it. Directed malware, similar to a stand-
out indirect access, is customized to a particular target.
Directed malware is a greater danger to systems than mass
malware, in light of the fact that it is not known and your
security items presumably won't shield you from it. Without
thorough examination of focused malware, it is almost difficult
to secure your system against that malware[2][3].

III. MALWARE DETECTION TECHNIQUES

The paper is based on the static analysis technique of malware
analysis. The analysis has been done by:

A. Local Analysis
The analysis is being done on the local machine, i.e. on the users

system. Modules further associated with local analysis are:
• Suspicious Api
• Anti-virtual machine
• Anti- debugger
• Url analysis
• File information
• String analysis
• Packer information

B. Remote Analysis
The executables are checked via online antivirus with the

help of API’S provided by antivirus and automating them with
python scripts[6][9].

IV. EXISTING SYSTEMS

The existing systems consist of security frameworks like
Metasploit, Backtrack etc, in which several software based attacks
were performed and hence these are not safe for performing
pentesting. Existing systems are vulnerable to malware intrusion and
need more security measures to secure it.

V. PROPOSED SOLUTION

Upon application of this paper to develope a framework the user
can use the framework where the user can directly run the code or
they can also use the GUI provided to directly perform the
penetration testing in their system or network[9].

The framework has been divided into various modules which

analyze the various aspect of the malware. Inspection of each is as
follows.

A. Remote analysis
During the Remote Analysis technique, the malicious

executable is being sent to various anti viruses. The executable
is then checked using the API’S provided by each antivirus.
Thus, the result achieved by remote analysis is to check
whether a particular executable is malicious or not using a mass
scrutiny via various anti viruses. If all the anti viruses in the
remote analysis show the executable is malicious then it can be
seen as a executable of high malicious intensity as different anti
viruses use different analysis technique. Using the result of this
analysis, the analyst can decide whether the malware is to be
dissected using static analysis or dynamic analysis[1][2][8][9].

B. Local analysis
This analysis is used to analyze the following modules in various

aspects to find malware:
• SUSPICIOUS: Checks for suspicious API’S, Functions and dll’s.

Executable is checked against list of suspicious API’S, if the list
matches with the import table of executable, alert is generated. The
suspicious module can be implemented using the Pefile module of
python 2.7 which is used to extract the metadata out of the executable.
Thus all the suspicious functions and API’s can be extracted out of the
malicious executable. Some of the suspicious API functions can be:
accept', 'AddCredentials', 'bind', 'CertDeleteCertificateFromStore',
'CheckRemoteDebuggerPresent', 'closesocket', 'connect',
'ConnectNamedPipe', 'CopyFile’ etc. The suspicious API’S and other
suspicious functions are matched with the coded functions and the
alert is generated.

• Anti-Virtual Machine: Malware can Hide or alter its
functionality attempt to breakout by Looking for VM artifacts in
processes, file system, or registry Look for VM artifacts in memory
,Look for VM-specific virtual hardware, Look for VM-specific
processor instructions and capabilities. Anti-VM techniques are most
commonly found in malware that is widely deployed, such as bots,
scareware, and spyware ,mostly because honeypots often use virtual
machines and because this malware typically targets the average user’s
machine, which is unlikely to be running a virtual machine. The
ANTI-VM module is implemented using the RED Pill technique of
VM detection. The instructions are detected using Regular expression
module in python, thus regular expression module is imported using
IMPORT RE.

• Anti-debugger: Malware can be made anti-debug so that it
cannot be debug and hence making it hard to dissect it and its working.
Malware uses a variety of techniques to scan for indications that a
debugger is attached, including using the Windows API, manually
checking memory structure for debugging artifacts, and searching the
system for residue left by a debugger. Debugger detection is the most
common way that malware performs anti-debugging.

• URL Analysis: Malwares are analyzed of suspicious connection
with: Dll, Strings, functions. Malwares sometimes connects to certain
websites and servers to send information about the compromised
system. URL analysis analyze which function and API’S used in the
executable is establishing a connection.
This is achieved using URLLIB module of python and PEFILE format
to extract the executable.

• Strings analysis: This is a really very important step for any
forensics investigator or reverse engineers who is dissecting the
malware. This is not rocket science. String analysis is nothing but
analyzing the sequence of all those characters that are written in the
code. This may include print messages, URLs, and comments and it
may reveal information about the website, the malware’s functionality,
the author’s name/nickname, and more. .” A program contains strings
if it prints a message, connects to a URL, or copies a file to a specific

Mohd. Hamzah Khan et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,1147-1149

© 2015-19, IJARCS All Rights Reserved 1149

location. Scanning every string can be a way to get a idea about the
functionality of a program. For example, if the program accesses a
URL, then you will see the URL accessed stored as a string in the
program

• Packing analysis : Malware writers often use packing or
obfuscation to make their files more difficult to detect or analyze.
Obfuscated programs are whose real purpose the malware author has
attempted to hide. Packed and obfuscated code will often include at
least the functions LoadLibrary and GetProcAddress, which are used
to load and gain access to additional functions. All packer programs
take a executable file as a input and produce a packed executable file
as output which is much more harder to re-engineer and identify. Most
packers use a compression algorithm to compress the original
executable. A packer designed to make the file difficult to analyze
may encrypt the original executable and employ anti-reverse-
engineering techniques, such as anti-disassembly, anti-debugging, or
anti-VM. Packers can pack the entire executable, including all data
and the resource section, or pack only the code and data sections. To
maintain the functionality of the original program, a packing program
needs to store the program’s import information. The information can
be stored in any format, and there are several common strategies.

Figure 1. Design flow of framework.

VI. CONCLUSION

Today the threat of malware has increased many times than
before, with the ease of resource availability and technical know
how new malwares are emerging every day with intention of not
being detected. In order to protect important information,

security and privacy there a need of a technique that helps in
malware analysis on hand and keeps the user safe from further
similar attempts by providing necessary security.

 In this paper we have described the types of malware and after
discussing both techniques of malware analysis it can be concluded
that upon development of a framework using the above research a
successfull technique can be developed that can prevent against
malware attacks of many different types. Remote analysis and Local
analysis both modules are important in their own respect as they
broaden the users ability to mitigate the malware attack themselves
.The framework will provide user safety from anti-debugger ,
packaged /obfuscated malware that tries to conceal its true
functionality. Although with the latest development in malware threats
such as polymorphic, metamorphic malware etc, this technique does
not completely safeguard against those threats . More work is further
to be done in this direction to protect the users from such malware.
Machine learning is being used to further combat this malware threat
by learning the identifying features of malware and deploying them to
further identify similar malware before they can cause damage.

VII. REFERENCES

[1] Syarif Yusirwan S, Yudi Prayudi, Imam
Riadi,2015,Implementation of Malware Analysis using
Static and Dynamic Analysis Method, International
Journal of Computer Applications ,Volume 117 – No. 6,
May 2015.

[2] Savan Gadhiya, Kaushal Bhavsar,2013, Techniques for
Malware Analysis, International Journal of Advanced
Research in Computer Science and Software Engineering,
Volume 3, Issue 4, April 2013.

[3] Dolly Uppal,Vishakha Mehra, Vinod Verma,2014, Basic
survey on Malware Analysis, Tools andTechniques,
International Journal on Computational Sciences &
Applications (IJCSA) ,Vol.4 No.1, February 2014.

[4] M. Asha Jerlin, C. Jayakumar,2015, A Dynamic Malware
Analysis for Windows Platform - A Survey, Indian
Journal of Science and Technology, October 2015.

[5] Navroop Kaur, Amit Kumar Bindal, 2016, A Complete
Dynamic Malware Analysis, International Journal of
Computer Applications (0975 – 8887),Volume 135 –
No.4, February 2016.

[6] Ekta Gandotra, Divya Bansal, Sanjeev Sofat,2014,
Malware Analysis and Classification,A Survey, Journal of
Information Security, 2014, 5, 56-64.

[7] Nirmal Singh, Dr. Sawtantar Singh Khurmi,2015,
Malware Analysis, Clustering and Classification: A
Literature Review, International Journal of Computer
Science And Technology Vol. 6, Issue 1 Spl- 1 Jan-March
2015.

[8] M. Wagner,, F. Fischer, R. Luh, A. Haberson, A. Rind, D.
A. Keim, W. Aigner,2015, A Survey of Visualization
Systems for Malware Analysis, Eurographics Conference
on Visualization (EuroVis) (2015).

[9] Gray Hat Python – Python Programming for Hackers and
Reverse Engineers, 2009 by Justin Seitz.

	Introduction
	TYPES OF MALWARE
	MALWARE DETECTION TECHNIQUES
	Local Analysis
	Remote Analysis

	EXISTING SYSTEMS
	PROPOSED SOLUTION
	Remote analysis
	Local analysis

	Conclusion
	References

