
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 321

ISSN No. 0976-5697

An Optimal Solution for small file problem in Hadoop

Mansoor Ahmad Mir
SEST, Jamia Hamdard

New Delhi, India

Jawed Ahmed
SEST, Jamia Hamdard

New Delhi, India

Abstract: Hadoop is an open source Apache project and software framework for distributed processing of large dataset across large clusters of
computers with commodity hardware(used mainly for processing of big Data).HDFS(Hadoop distributed file system and MapReduce(a
programming model) are Hadoop’s main two components). Hadoop does not perform well while processing large number of small sized files(of
the size of the hundreds of KB’s or few MB’s) posing a heavy burden on NameNode of HDFS and increases the execution time of MapReduce.
Hadoop being designed to handle large sized files thus pays the penalty for handling small sized files. This research work provides an
introduction to the Hadoop, Big Data and review of the existing work and proposed better efficient technique to handle small file handling
problem with Hadoop based on file merging technique, hashing and caching. This technique results in saving memory at NameNode, average
memory usage at DataNode and improves the access efficiency as compared to the existing techniques

Keywords: NameNode, DataNode, Amazon EC2, Merging, PreFetching

I. INTRODUCTION

All Hadoop is one of the most popular high performance
distributed computing paradigm for Big data analytics. It
provides reliable, scalable, distributed computing and
storage with the advantage being open source. With the
advent of digital technology, as data explosion took place
because of the web and grew beyond the ability to be
handled by traditional computing system, Apache Hadoop
[1] was created by Doug Cutting. It has two main layers one
is Hadoop distributed file system (HDFS) and the other is
MapReduce programming model. HDFS the storage part,
stores large files pretty suitable for streaming and being
distributed in nature. It runs on commodity hardware. HDFS
can scale to thousands of machines each running each
providing same set of functionality and thus providing very
high fault tolerance. HDFS has a client server type
architecture with the NameNode server playing the master
role and the several data nodes performing the client role
(slave role)[2] . One of the main strength of the HDFS is its
data protection. It protects data by replication to multiple
nodes, by default replication factor is 3. MapReduce is a
programming model used to process large datasets and make
use of computing resources of each of the available server’s
CPU. It is the processing part. MapReduce as the name
suggest consists of two phases one is Map phase and other is
Reduce Phase. Map phase divides the files for distributed
computing and generates a key value pair and then its
followed by the reduction phase. MapReduce uses
Jobtracker and TaskTrackers [2].
 In Hadoop the storage and computing system are not
separate. Hadoop divides the large files into small sized
blocks generally of the size of 64MB. NameNode stores the
metadata about the data blocks and Data node tores the
actual blocks. These blocks are then processed by the
MapReduce[3]. But since Hadoop was designed to handle
large sized files it suffers when a large number of small
sized files need to processed putting heavy burden on the
NameNode [4]. Since the memory of the NameNode is
limited and processing small files takes more time in I/O
rather than processing. Hence posing a challenge. The small

sized files are generally word, pdf, PowerPoint, mp3type
files.
This research makes use of the caching and file merging
techniques to handle this large number of small sized files
problem. The technique reduces the memory at the
NameNode and DataNode by merging several small sized
files. Also the access time and processing is improved by
using the concept of caching, which not only results in
saving of time but also results in the traffic to the
NameNode.

II. REVIEW OF LITERATURE

1. Hadoop Archive
Hadoop Archive (HAR) is the first technique based on archiving
technique which packs number of small files into HDFS blocks
more efficiently. Files in a HAR need not expanded as they can
be accessed directly (HAR is different from rar, zip), as this
access is done in main memory. The following diagram
illustrates the data model for archiving small files [5].

 Fig 1. Data model for archiving Small Files [4] [5]

Creating HAR reduces the storage overhead of data on
NameNode and reduced map operations in MapReduce program
increases the performance.

Mansoor Ahmad Mir et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,321-325

© 2015-19, IJARCS All Rights Reserved 322

Creating HAR file: A HAR file can be created using the Hadoop
archive command
hadoop archive -archiveName name -p <parent> <source>*
<destination> [5]
Which adds all the files being archived into a smaller number of
HDFS files by running map reduce job.
Example: hadoop archive -archiveName firstfile.har -p
/user/hadoop directory1 directory2 /user/Manu
HAR File layout overhead: File access in this technique requires
two index-file read operations as well as one data-file read
operations there is a small time overhead in accessing of files. In
order to access the required client file, the request is sent to the
index of metadata that the archive consists of through the
metadata of the archive [5]. File reading in HAR is less efficient
and slower than file reading process in HDFS. Map process fails
to operate through all the files in the HAR co-resident on a
HDFS block. Also upgrading HAR requires the changes to the
HDFS architecture, which may become difficult [5].

2 .Improved HDFS
The improved HDFS structure comprises of two parts:
Client component which integrate small sized files into a big file
and data node component which satisfies the cache resource
management [6]. An improved HDFS framework is represented
diagrammatically in figure 5 presented below.

 Fig 2. Improved HDFS framework [6]

Improved HDFS model is an index-based model. As per file
dependency, files belonging to the same directory are merged
into a big file and accordingly indexes are generated for each
small file to reduce waste caused by them which reduces the
burden of NameNode. Cache policy is used to increase the
reading efficiency of small files. The cache manager positioned
at DataNode, when reading small sized file data each time, the
data in the Cache is checked first. If this resource is not present
in the cache, resource can be found in the disk of DataNode.
Smaller sized files are sort based on the data present. The small
files are integrated into a big file and each big file has an index
file which contains the offset and length of each small file. In
order to store big file in a single block, the total size of the big
file should be less than size of the block. If the size is greater
than block size then the multiple blocks are used to store big files
separately [6].

3. New HAR
Basically NHAR consist of two aspects:
• Merging small files into larger file to reduce file number and

increase access performance.

• Extending the functionality of file management within HAR
is similar to a typical file system [7].

NHAR creates the indexing structure to improve the metadata
mainframe of HDFS and file accessing performance without
changing the HDFS architecture. This design allows NHAR to
add more files to be added to the existing archive which is
HARs well-known limitation. While reading file from HAR,
indexes need to be accessed twice which creates overhead. In
order to improve the access performance NHAR model use
single-level indexing. NHAR uses index information to create a
hash table instead of master-index. This information is divided
over multiple index files, as shown in fig.3

 Fig 3. NHAR file structure[7]

Locating the index file containing the metadata is dependent
upon the number of index files present. To generate hash code,
file names are used which then mods with number of index files
[7].
The actual file will be stored in part file, similar to HAR. Fig. 3
presents the hashing mechanism of NHAR.

 Fig 4. New archive technique [7]

To add a new file to the HAR file, a new HAR file should be
created, which is inefficient. In terms of NHAR there is no need
to reconstruct a new NHAR file. It allows to add additional files
to the existing NHAR file. The inserting process involves three
steps: Archiving the new files, merging index files and moving
the new file part [7].

Mansoor Ahmad Mir et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,321-325

© 2015-19, IJARCS All Rights Reserved 323

Table I. comparison Analysis [10]

III. PROPOSED APPROACH

While handling small files in Hadoop, the first problem
encountered is the overhead of the NameNode. This
involves keeping separate metadata for all the small sized
files, which in turn uses more mappers.
The proposed approach resolves this by the process called
“merging”. In this process the small files will be merged
into one file upto the size of the data block [8]. By doing so
Namenode will not be required to treat all the small files
individually rather it will treat whole block as one. The
larger files will be allowed to pass through directly to the
NameNode.
Along with every block we will put index table which is
hash indexing based. Which will remove the drawback of
using two index mechanism as already used in advanced
archived Hadoop based solution.
A caching mechanism will be used along with the file, for
fast retrieval/processing of the information [9]. We will be
moving metadata and corresponding hash tables into the
cache so that whenever the user tries to access the
information, its tried to be sorted from cache first if not
present in the cache then only it will be moved to
NameNode level . This process we call “Fetching”. This will
remove the performance issue of the NameNode while
Dealing with the small sized files. As the access time of data
from Cache is very low as compared to access time from the
memory.

1. Algorithm for Merging
(1) Read file name and file size.
(2) If file size is greater than threshold, ignore to add in

list (Default Threshold value=80% of HDFS block
size, default block size is 64MB)

(3) Consider the file name and apply hashing.
(4) Maintain a hash value for all the files stored in a data

block.
(5) Append the hash index with the corresponding block.
(6) Pass the block (entire list) to the reducer.
(7) After this flush the list and take the new input.

2. Algorithm for fetching
(1) Take the file name to be accessed and determine

hash.
(2) Check the cache for the corresponding block.
(3) If not present in cache then access the file

information from NameNode.
(4) Go to the corresponding block based on block value

and the hash value.
(5) Access the element
(6) Copy the metadata of corresponding block to the

cache along with the hash index file.

IV. EXPERIMENTAL SET UP

The experiment was done on Amazon elastic compute cloud
(EC2). EC2 is a web service that provides elastic compute
capacity in cloud for making web scale computing easier for
developers. For our experiment we have two types of
instances . One is “m1.medium” and another is “m1.small”.
M1.medium is based on Intel® Xenon® CPU E5-2650 with
2.00GHZ processor with 3.7GB ram and operating system is
64 bit Ubuntu server 12.04.3LTS. M1.small has Intel® with
1.7GB RAM ,500GB hard disk and Ubuntu server
12.04.3LTS. Hadoop 2.5.2 and 64 bit java JDK is installed
in both the instances. “m1.medium” was used as the
NameNode and “m1.small” as the data node by us.

V. METHODOLOGY

In order to handle the size problem at NameNode the
proposed solution uses the merging process. In merging
process the small files are merged into a single block until
the block size becomes less to handle anymore file.
NameNode maintains only the metadata of the merged files
rather than the individual files and hence result in saving a
lot of memory of the memory at NameNode [10].
In merging process we are not concerned with the files
whose file size is greater than the block size. We will let
them go to the mapper directly. When file of size less than
our threshold size arrives its hash is calculated using its
Name and the file is added to block. The files are added
continuously until the block gets filled. In order to fill the
vacant space which can’t be filled by any small sized file is
filled using boundary filling fragment.

Figure 5. The schematic representation of merging

process

Mansoor Ahmad Mir et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,321-325

© 2015-19, IJARCS All Rights Reserved 324

A. Prefetching and caching Strategy
Prefetching and caching technologies have been used widely
for storage optimization. Prefetching although adds a little
bit of complexity but it does wonder to the response time
and data fetching. Prefetching uses principle of locality of
reference and using cache to keep the fetched data. In this
work we have assumed the files are in logical order relation
in a merged file [11].
In the proposed method, a three-level prefetching and
caching strategy is used, and is composed of index
prefetching, metadata caching, and prefetching of correlated
files.

(1) Metadata caching: When a file is requested by the client,

mapping needs to be done to a merged file to get the
metadata of the merged file from NameNode. If the
client has cached the metadata of the merged file already,
then the metadata can be directly obtained from cache
i.e. our first location of search is cache wherein we will
start the search, and thus minimize the communication
overhead with NameNode, then original files of the
merged file are then requested and data is read. However
if it’s not present in the cache we need to fetch its
metadata from the NameNode and this can be done when
the client passes the name of the small file to be accessed
and the merged file to the name node. Then NameNode
will forward the metadata of the file which includes the
block number, DataNode on which the fragment is
actually present.

(2) Index prefetching: The metadata of a merged file, helps
client in identification of block and DataNode which
should be connected with to get the user requested file.
The actual location can be determined after calculating
the hash of the file name and compared with the
metadata table which will guide to the local index file. If
the above said index file has been already retrieved from
DataNode, then we can calculate the value and fetch the
file, else what we are going to do is we will fetch whole
index file and cache that index file i.e. preftech rest of
the index which are most likely to be requested next by
the client. Thus improving the access performance to a
great extent.

(3) Correlated file prefetching: As we have already said
files are assumed to be logically ordered in a merged file
and intuitional correlations. Once the file requested by
the system end user is returned to him, we will prefetch
the related files (files in same block) which shall be auto
trigger based. The logical order among the files will
determine the file prefetch preference, related files in the
same block will be prefetched into the cache for further
likely access. This will reduce i/o access time and thus
improve access efficiency

Figure 6. The schematic diagram of handling small
sized files in hadoop [11]

VI. RESULTS AND OBSERVATIONS

Suppose that there are N number of small files, which we
have merged into M big files, K1, K2, Ky, and KM, with
lengths denoted as LK1, LK2,……, LKM
(1)Storage Efficiency: The consumed memory at
NameNode can be calculated as under :

.

 MNN
Where B= number of blocks.

=250*N+(368+β)*B (1)

 N= number of merged files
 250 bytes = Size metadata file takes.
 386 bytes= default three replica value for each
block.
 As can be seen from the above formula, the memory
consumption of the NameNode is independent of the
number of number of original files and depends only on
the number of merged files N, also the number of blocks
is very less. Thus saving the memory overhead of the
NameNode.
(2)Access efficiency: In this proposed work, in order to
read a file the hash of the requested file is checked with
the hash table at NameNode which gives the metadata to
access the file from the disk. When the access request
comes the DataNode will look into the cache for the
information required, saving access time, And making
NameNode performance better as there will be low load
on the NameNode. If the data is not present in the cache
we will be accessing the NameNode for required
information that’s the data file
 we are looking for. Once we get the metadata and address
of that location we will be moving whole block into the
cache and thus making use of the locality of Reference
principle, Which makes the access performance better and
hence help in removing the performance bottleneck of the
small size file handling problem of Hadoop. The
processing time of small sized files has reduced up to
85.67% as compared to the existing HAR based technique

Mansoor Ahmad Mir et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,321-325

© 2015-19, IJARCS All Rights Reserved 325

Table II- Memory usage at NameNode

Approach Memory Usage(MB)

Existing HAR Approach 598
Proposed Approach 310

Figure 7 : Memory Usage at Name Node comparison

TableIII- Map, Reduce and Total CPU Time

Approach Map time

(sec)
Reduce
 time (sec)

Total
CPU time
(sec)

Existing
 HAR
Approach

61 10 65

Proposed
Approach

38 9 15

Figure 8: Memory map reduce and total CPU time

VII. CONCLUSION AND FUTURE WORK

Hadoop being wide area of research and one of the topics of
research is handling of small files in HDFS, so this research
focuses on a MapReduce approach to handle small files,
considering mainly two parameters. Firstly, execution time
to run file on Hadoop Cluster and secondly the memory
utilization by NameNode. By considering these parameters,
proposed algorithm improves the result compared to existing
approaches. It can handle both sequence file and text file
efficiently and also avoid files whose size is greater than
threshold.
This work presents a solution to handle small files problem
in Hadoop based on file merging and caching techniques.
The possibility of making the searching faster with the help
of prefetching and hashed index file has been exploited in
this work. The experimental evaluation has demonstrated
that the proposed technique has reduced the NameNode
memory consumption and has improved the efficacy of
storage and access of small files in HDFS
In future, the reason and theoretical formula to determine
edge points between the hefty and small files will be further
analyzed. We will scrutinize the relationship among storage,
access efficiencies and the size of a merged file, with the
objective to obtain an optimized file merging strategy and to
get the peak size of a merged file.

VIII. REFERENCES

[2] Shvachko, Konstantin, et al. "The hadoop distributed file
system." Mass storage systems and technologies (MSST),
2010 IEEE 26th symposium on. IEEE, 2010.

[1] "Welcome to Apache™ Hadoop®!", Hadoop.apache.org,
2017. [Online]. Available: http://hadoop.apache.org/.
[Accessed: 10- March- 2017].

[3] White, T. 2010. Hadoop: The Definitive Guide. 2nd ed.
O'Reilly Media, Sebastopol, CA. 41-45

[4] White, Tom. "The small files problem." Cloudera Blog, blog.
cloudera. com/blog/2009/02/the-small-filesproblem (2009).

 [6] Chen, Jilan, et al. "An improved small file processing method
for hdfs." International Journal of Digital Content Technology
and its Applications 6.20 (2012): 296.

[5] "Hadoop Archives Guide", Hadoop.apache.org, 2017.
[Online].Available:https://hadoop.apache.org/docs/r1.2.1/hado
op_archives.html. [Accessed: 16- May- 2017].

 [7] Vorapongkitipun, Chatuporn, and Natawut Nupairoj.
"Improving performance of small-file accessing in Hadoop."
Computer Science and Software Engineering (JCSSE), 2014
11th International Joint Conference on. IEEE, 2014.

[8] Korat, Vaibhav Gopal, and Kumar Swamy Pamu.
"Reduction of Data at Namenode in HDFS using harballing
Technique." International Journal of Advanced Research in
Computer Engineering & Technology 1.4 (2012): 2278-1323.

[9] Chen, Jilan, et al. "An improved small file processing method
for hdfs." International Journal of Digital Content Technology
and its Applications 6.20 (2012): 296.

[10] Jayakar, Kashmira P., and Y. B. Gurav. "Efficient Way for
Handling Small Files using Extended HDFS." (2014).

[11] Vorapongkitipun, Chatuporn, and Natawut Nupairoj.
"Improving performance of small-file accessing in Hadoop."
Computer Science and Software Engineering (JCSSE), 2014
11th International Joint Conference on. IEEE, 2014.

	INTRODUCTION
	REVIEW OF LITERATURE
	PROPOSED APPROACH
	EXPERIMENTAL SET UP
	METHODOLOGY
	Prefetching and caching Strategy

	RESULTS AND OBSERVATIONS
	CONCLUSION AND FUTURE WORK
	REFERENCES

