
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 471

ISSN No. 0976-5697

Expanding the UVM Register Model towards Automation and Simplicity of Use

Abhishek Jain
ECE Department

Jaypee Institute of Information Technology
Noida-201309, India

Richa Gupta
ECE Department

Jaypee Institute of Information Technology
Noida-201309, India

Abstract: The standard UVM register package contains built-in test sequences library which is used to perform most of the basic register and
memory tests. These sequences are very useful at IP level verification but at SoC level verification, these sequences take very long time to run.
Similarly, currently users require strong knowledge of SystemVerilog UVM language to use UVM_REG model. Some limitations in current
UVM_REG package like no automatic data checking for memory accesses and limited support for memory burst operation were also seen.
In this paper, we are describing how we addressed the above mentioned issues. We are accessing processor programmable registers and
memories through a standard UVM_REG API. This API is aimed at writing simpler directed tests which require less or no SystemVerilog/UVM
understanding. This API can be used to facilitate dumping register access for reuse from IP to SoC, or format outputs for use in ATE test vectors
development etc. We also developed our own register/memory sequences to address the SoC level register and memory testing. Customized
code is written to enhance the features of standard UVM_REG model. IP-XACT based tools are also developed to automatically generate all
required verification environment files for using standard register model.

Keywords: IP-XACT; Register Model; Register Sequences; SystemVerilog; Universal Verification Methodology (UVM); UVM_REG

I. INTRODUCTION

Universal Verification Methodology (UVM) is the first
standard, interoperable, open, and proven verification re-use
methodology. UVM is used for the functional verification of
digital hardware, mainly using simulation. A SystemVerilog
UVM test bench consists of reusable verification
components. A verification component is a configurable,
encapsulated, ready to use, verification environment for a
design sub-module, an interface protocol, or a full system
[1, 2]. Each verification component follows a standard
architecture for stimulus generation, data/protocol checking,
and obtaining coverage information for a specific design or
protocol. The verification environment is applied to the
designs to verify implementation of the protocol or design
architecture [3]. UVM based UVM_REG register model is
mainly used to make it easier to write reusable
register/memory sequences that access hardware registers
and memory areas. The register model data structure is
designed to show an image of the Design Under Test (DUT)
hierarchy and this makes it easier to write reusable and
abstract stimulus in terms of hardware blocks, registers and
fields, memories rather than working at a lower bit pattern
level of abstraction. The register model contains a number of
read/write access methods which sequences use to read and
write registers. These methods results in conversion of
generic register transactions into the target bus transactions
[3, 4].

The UVM register package contains built-in test
sequences library which is used to perform most of the basic
register and memory tests, such as testing of register reset
values and testing of the register and memory data paths.
Using register attributes, these tests can be disabled for those
locations of the register or memory map where they are not
relevant.

Fig. 1 represents a verification environment with UVM
registers integrated [3, 12]. As a verification environment
gradually develops, verification users need to develop
analysis components such as scoreboards and functional
coverage monitors which refer to the content of the register

model in order to check behavior of the DUT or to make sure
that it has been tested in all required configurations.

Figure 1. Verification Environment with UVM Registers Integrated

In our verification environment, UVM_REG register and
memory model is used for efficient verification of register
and memory. This is used in conjunction with the
register/control bus interface UVC, so that whenever the
IP/SoC registers are read/written, the associated UVM_REG
register and memory model pre-defined registers are also
updated and IP/SoC register contents are verified by a self-
checking mechanism [5, 6]. UVM_REG built-in test
sequences are very useful at IP level verification but at SoC
level verification where number of registers are very large,
these sequences take very long time to run and testing the
internal of the IP at SoC is not that relevant. Thus, we
developed additional register and memory sequences to
address SoC level register and memory verification needs.

Predictor
reg.predict()

DUT

Hardware
Registers

Register
Database

Sequence

reg.write()
reg.read()

reg

Adaption

Layer

Sequence

bus_access()

Register Model
Register

Model based
sequence

Sequence running
directly on the

bus agent

Adapter

BUS
Agent

register_seq_item

bus_seq_item

map

SQR

bus_seq_item

MON

DRV

Abhishek Jain et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,471-480

© 2015-19, IJARCS All Rights Reserved 472

This paper is organized in paragraphs presenting the flow
we’ve developed going through an architectural
representation of the register model, including memories, and
what can be done to facilitate, and complete the register
testing on the Design Under Test. Functional tests run on a
host processor often program address mapped registers and
memories. Therefore the flow covers the use of the register
model into functional tests.

Register Model

Golden
Specification

Register Model
Golden

Specification
(machine
readable)

Uvm_reg based
model Test sequences Functional Test

API

Register testing
Ready for use
in functional

tests

√

Specification

Automated
Register
model

generation &
test

collaterals

Figure 2. Developed Flow of Register and Functional Tests

In Fig. 2, first is explained how to go from the
architecture register model golden specification to a
machine readable specification and the choices being made
there. Then the expansion and automation to the uvm_reg
register model is shown, including memories handling, and
bus considerations. Test sequences are explained, as well as
examples of a functional test API simplifying the use by non
UVM experts.

The end result is a flow that provides 100% of the register
testing capability and is a code library that facilitates the
development of functional tests. While we would like to
compare our specific register APIs against APIs developed
by others, it is not possible since there are no publicly
available register APIs for us to compare against. This
journal paper is extended version of the conference paper
(28th International Conference on VLSI DESIGN, January
2015, Bangalore) [3].

The following Section discusses the new register and
memory sequences which are mainly used for register and
memory level verification (not for functional verification).

II. RELATED WORK

K. A. Meade and S. Rosenberg covered the concepts and
goal from which the design and implementation of the UVM
was derived [1]. They also shared problems of verification
engineers and their proven solutions that were expected to
be added to the SystemVerilog UVM library in the future.

Sharon Rosenberg provided useful information to
verification engineers to either verify their current register
verification methodology or follow the right steps to move
to the UVM_REG register model. He also provided several

code examples to implement the recommendations easily.
Tudor Timisescu et al. proposed a way of leveraging the

UVM register layer’s frontdoor mechanism to write abstract
sequences that can be reused from the block level to the sub-
system level [4].

Mark Litterick et al. provided an overview of register
model operation in the UVM and then explained the key
aspects of base class code that enabled effective complex
register modeling [5]. Several possible solutions to common
modeling problems were discussed in detail with a focus on
supporting both active and passive operation. In addition the
performance impact of large register models was analyzed
and improved solutions were provided.

Methodology related to standard UVM register package
has been studied as in [1, 7]. Register and Memory built in
sequences has been studied in [3, 8, 9]. These sequences has
taken very long time to run at SoC level verification and
didn’t cover both valid as well as invalid registers and
memories address locations.

The studied papers were describing the Universal
Verification Methodology (UVM) and UVM based register
model for verification of registers and memory. Earlier
papers were not taking into account verification of both
valid as well as invalid registers and memories address
locations. Additional register and memory sequences to
address SoC level register and memory verification needs
were also not described. In our approach, we are describing
additional register and memory sequences to address SoC
level register and memory verification needs. IP-XACT
based tools are developed for automatically configuration
and development of the UVM_REG register model
verification environment for various IPs/SoCs.

III. USER SPECIFIC UVM_REG REGISTER AND MEMORY
SEQUENCES

Our specific UVM_REG register and memory sequences
are divided into two parts:

• Valid register sequences
• Mixed register sequences

Valid register sequences are covering valid registers and
memories scenarios. Generally, these sequences cover all
register and memory addresses within the valid register map.
Our specific valid register/memory sequences are described
in the following Table I:

Table I. Valid Register/Memory Sequences

Register/Memory
Sequence

Description

uvm_user_reset_regs_and
_memories_seq

It writes default reset values to all
registers and writes all memories with
predefined reset value variable
'reset_mem_data'.

uvm_user_fixed_aliasing_
seq

It writes default reset values to all
registers and writes all memories with
predefined reset value variable
'reset_mem_data'. Then writes a pattern
<w_data> to a register or memory
location, reads all the other registers and
memories and repeat the operation for
complementary value <~w_data>. It does
this for each and every register and
memory in the collection pattern and

Abhishek Jain et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,471-480

© 2015-19, IJARCS All Rights Reserved 473

issue write followed by read.

uvm_user_simple_aliasing
_seq

It writes pattern value to a register and
read it back, patterns are: 0x55555555,
0xAAAAAAAA, reset value and ~reset
value. It does this for each and every
register in the collection pattern and issue
write followed by read.

uvm_user_all_register_ne
gative_seq

It reads from read-only registers, writes
complementary read data and then read it
back. Generate UVM_ERROR if data
differ from default value. It does this for
each and every register read-only in the
collection pattern and issue write
followed by read.

uvm_user_all_register_wa
lking_one_seq

Writes all bits of 1 register to 1s while the
others are 0s, and issue read on all
registers. Do it for all registers within the
register model.

uvm_user_all_register_wa
lking_userdata_seq

Writes bits of a register to
'user_walk_data' while the others are 0
(except for walking 0, others bits are 1),
and issue read on all registers. Do it for
all bits and registers within the register
model.

uvm_user_mem_walk_bo
undaries_seq

Does an uvm_mem_walk sequence on
the memory boundaries space. After each
boundary walk, a random memory
addresses will be read.

Mixed register sequences are covering both valid as well
as invalid registers and memories address locations. These
sequences are mainly used to test that if through Host/MCU
interfaces, both valid as well as invalid address ranges of
register/memory are accessed then, system will not hang and
it will respond properly. Our specific mixed
register/memory sequences are described in the following
Table II:

Table II. Mixed Register/Memory Sequences

Register/Memory Sequence Description

uvm_user_one_invalid_base_se
q

Does 1 random read or write access
to an address selected in the invalid
address space.

uvm_user_invalid_seq Does a number (‘count’ parameter)
of random reads or writes accesses
to an address selected within the
invalid address space.

uvm_user_mixed_invalid_valid
_seq

Does a number (‘count’ parameter)
of random reads or writes accesses
to either an address selected within
the invalid or valid address spaces.

uvm_user_forced_invalid_seq Does random access to addresses
that are just before or after valid
ranges & verify previous or next
address register is not modified.

uvm_user_one_walk_invalid_v
alid_seq

Select randomly 1 address per
valid/invalid address ranges, and
write 0x55 then 0xAA per byte,
Finally read all registers and
memories.

Fig. 3 shows the example of a testcase based on our
specific uvm_user_mem_walk_boundaries_seq sequence (as
described in Table I).

Figure 3. Our Specific Memory Sequence based Testcase Example

IV. UVM REGISTER AND MEMORY APIS

The uvm_reg package uses the well-known UVM
sequence mechanism to randomize and drive register and
memory sequences [1, 5]. In a sequence, we can randomly
select a register object from the register model, randomize
its value, set the access direction (read or write), and
perform the operation. Register/memory operation
sequences look much like any other UVM sequence. Using
the sequence mechanism allows us to create reusable
sequences to support different configuration modes. It can
also use an existing sequence as a sub-sequence, traverse
through all the register in the addresses range, and do much
more [9, 10]. An API is provided to perform read and write
operations. But read and write operations of the API can be
used only in register sequence class and those operations
cannot be directly used in the testcase class (derived from
uvm_test class). Thus, users first need to create the register
sequence classes (and sometimes virtual sequence classes
also) and start them in the testcase class (derived from
uvm_test class) to perform register/memory read write
operations. This is complex.

Suppose now, in the testcase, a user needs to write
directed values in few registers only. Creating register
sequences and starting them in testcase class is a complex
mechanism for users who are not expert in SystemVerilog
and UVM. Thus, to avoid this complexity for users, we have
developed our specific API to perform register/memory read

// --
// user_mem_walk_boundaries_seq_test
// --

class user_mem_walk_boundaries_seq_test extends register_test;
 `uvm_component_utils(user_mem_walk_boundaries_seq_test)
 uvm_user_mem_walk_boundaries_seq mTestSeq;
 function new(string name = "user_mem_walk_boundaries_seq_test",
uvm_component parent);
 super.new(name,parent);
 set_config_string ("*.reg_sequencer","default_sequence",
"uvm_user_mem_walk_boundaries_seq");
 endfunction // new

 function automatic void build_phase(uvm_phase phase);
 super.build_phase(phase);

 endfunction // automatic

 extern task run_phase (uvm_phase phase);
endclass: user_mem_walk_boundaries_seq_test

task user_mem_walk_boundaries_seq_test::run_phase (uvm_phase phase);
 super.run_phase (phase);
 mTestSeq = uvm_user_mem_walk_boundaries_seq::type_id::create (
"mTestSeq", this);
 mTestSeq.model = mysve.regmodel;
 mTestSeq.mem_range_top = 10; // Memory Top Range
 mTestSeq.mem_range_bottom = 10; // Memory Bottom Range
 mTestSeq.number_mem_access = 30; // Memory Locations to be Read
 phase.raise_objection (this);
 `uvm_info (“TEST", "start reg sequence
uvm_user_mem_walk_boundaries_seq...", UVM_LOW);
 mTestSeq.start (mysve.reg_sequencer);
 `uvm_info ("TEST", "reg sequence done
uvm_user_mem_walk_boundaries_seq..", UVM_LOW);
 phase.drop_objection(this);
endtask: run_phase

Abhishek Jain et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,471-480

© 2015-19, IJARCS All Rights Reserved 474

write operations directly in the testcase class and users don’t
need to write register sequences to perform register/memory
read/write operations. All the complexity (like creating
sequences and starting them in testcases) is part of wrapper
API and users only need to call simple API directly in the
testcase. Fig. 4 shows the flow to develop user specific
register/memory API.

Figure 4. Our Specific Register/Memory API

In this section, we are describing how we access
processor programmable registers and memories through a
standard API used in test development. This API is aimed at
writing simpler directed tests which require barely
SystemVerilog/UVM understanding. This API can be used
to facilitate dumping register access for reuse from IP to
SoC, or format outputs for use in ATE test vectors
development etc. In this API, basic to more complex OS
based capability is provided. Our specific register APIs are
described in the Table III:

Table III. Specific Register APIs
Register API Description

read_field_by_name Read register field value from
DUT by first searching register
name in the register block and
then, searching register field name
inside the register.

rmw_field_by_name Read the register field by first
searching register name in the
register block and then, searching
register field name inside the
register, modify it with the value
and then write it in DUT.

read_reg_by_name Searching of the register name in
the register block and then, reading

its value from DUT.
read_reg_by_name_a
nd_comp

Searching of the register name in
the register block and then reading
its value from DUT and comparing
it with the expected value.

read_reg_by_address Searching of the register by its
address in the register block and
then, reading its value from DUT.

read_reg_by_address
_and_comp

Searching of the register by its
address in the register block and
then reading its value from DUT
and comparing it with the expected
value.

write_reg_by_name Searching of the register name in
the register block and then, writing
its value in DUT.

write_reg_by_addres
s

Searching of the register by its
address in the register block and
then, writing its value in DUT.

write_regs_using_file This API reads register names and
their values from a file. Register
names and their values should be
in a specific format. After reading
the values from file, this API
performs write operation into all
the registers in DUT.

read_field_by_name_
and_comp

Searching of the register name in
the register block and then,
searching of register field within
selected register and then reading
its value from DUT and comparing
it with the expected value.

read_mem_line_by_n
ame

Searching of the memory name in
the list of register blocks and then,
reading memory line value given a
memory offset from DUT.

write_mem_line_by_
name

Searching of the memory name in
the list of register blocks and then,
writing memory line value given a
memory offset in DUT.

read_uvm_reg_by_na
me

Searching of the register name in
the register block and then, reading
its value from uvm_reg register
model (not from DUT).

write_uvm_reg_by_n
ame

Searching of the register name in
the register block and then, writing
its value in uvm_reg register model
(not in DUT).

read_uvm_mem_line
_by_name

Searching of the memory name in
the list of register blocks and then,
reading memory line value given a
memory offset from uvm_reg
register model (not from DUT).

write_uvm_mem_lin
e_by_name

Searching of the memory name in
the list of register blocks and then,
writing memory line value given a
memory offset in uvm_reg register
model (not in DUT).

Fig. 5 shows the usage of user API in a sample testcase

example.

uvm_test

Our specific API (hiding
complexity and providing
simple interface to users)

mTestSeq =
Register_Sequence::type_id:
:create ("mTestSeq", this);

 mTestSeq.start (
mysve.reg_sequencer);

Register_Sequence

reg.write()
reg.read()

uvm_test

mTestSeq =
Register_Sequence::type_id:
:create ("mTestSeq", this);

mTestSeq.start (
mysve.reg_sequencer);

Register_Sequence

reg.write()
reg.read()

Abhishek Jain et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,471-480

© 2015-19, IJARCS All Rights Reserved 475

Figure 5. Usage of User API in a Sample Testcase Example

V. ENHANCEMENTS IN THE UVM_REG REGISTER MODEL

Unlike registers, memories are not mirrored because of
the potentially large data space. uvm_mem doesn’t store
data entries in the model. Thus, uvm_reg_predictor class is
extended to check automatically memory content. Fig. 6
shows simple example of extension of uvm_reg_predictor
class to support automatically checking of memory content.

Figure 6. Extension of uvm_reg_predictor class to Support Automatically

Checking of Memory Content

Memory enhancement work will be continued to support
huge size memories to reduce simulator memory
consumption.

The current SystemVerilog implementation of the map
do_bus_write() (and similarly do_bus_read()) method in the
UVM register library is as described in Fig. 7.

As shown in the Fig. 7, the do_bus_write() will loop over
value elements. Then in each iteration, it loops over each
item address. In each inner iteration, the method creates a
register transaction to be converted to bus transaction via the
adapter's reg2bus() method. This technique may be suitable
for low performance buses; however, it is inefficient for
high performance buses as it is not utilizing bus powerful
features lying underneath. Consider one scenario in our
verification environment where one is operating on SPI bus
and wants to do auto-increment write operation where the
slave auto increments the index after each data byte. The
sequential write operation is terminated with SPI_SS
deassertion from the master. If user writes to a 1KB memory
block; the current implementation will send 1K different
bursts on an SPI bus, this looks like an inefficient way to
operate on an SPI. Instead, 10 bursts (100 bytes each) could
be sent, or even a single burst of 1K byte if system permits
extended burst length. Each time we perform an extra
operation on SPI bus, we lose at least three cycles in the
case of a write operation and four cycles in the case of a
read operation.

task stdAPI_test::run_phase (uvm_phase phase);
 bit [63:0] value_read, expected_val;

 super.run_phase (phase);
 …….

 write_reg_by_address (32'h12,32'h12345678);
 read_reg_by_address (32'h12,value_read);
 …….
 expected_val = 1;
 read_field_by_name_and_comp ("cropper_7bitfield", expected_val);
 …….

 // Read Modify Write
 rmw_field_by_name ("cropper_7bitfield", 7'h12);
 expected_val = 7'h12;

 read_field_by_name_and_comp ("cropper_7bitfield", expected_val);
 …….

 expected_val = {7'h12, 1'b0, 11'h40};
 read_reg_by_name_and_comp ("cropper_enable", expected_val);
 …….

 write_reg_by_name ("cropper_enable", 15'h1234);
 expected_val = 15’h1234;
 read_reg_by_name_and_comp ("cropper_enable", expected_val);
 …….
 // memories accesses
 // RAM declared as 8 bit wide word, start address 'h1000, 100
words.
 read_mem_line_by_name ("RAM_model", 'h90 /* offset */,
value_read);
 write_mem_line_by_name ("RAM_model", 'h90, 'hBEEF); // RAM
is 8 bits wide - only LSB's are written
 …….

// write/read of backdoor values
 write_uvm_reg_by_name ("R5_4BYTES",'hFEDCBA98);
 read_uvm_reg_by_name ("R5_4BYTES",value);

// Write operation into all the registers in DUT using file
 write_regs_using_file ("RegWrites.txt");
…….

endtask: run_phase
…….

Format of RegWrites.txt is described below:

comment 1
R5_4BYTES 'hFEDCBA98
R5_2BYTES 'hBA98
REG1_LOWERPART 'hEEFF
REG2_UPPERPART 'h7ABC

class user_uvm_reg_predictor#(type BUSTYPE=int) extends
uvm_reg_predictor #(BUSTYPE);
 `uvm_component_param_utils(user_uvm_reg_predictor#(BUSTYPE))

 integer entries[integer];
 …….

 virtual function void write(BUSTYPE tr);

 uvm_reg_bus_op rw;

 if (adapter == null)
 `uvm_fatal("REG/WRITE/NULL","write: adapter handle is null")
 adapter.bus2reg(tr,rw);
 super.write(tr); // normal register handling
 if (map.get_reg_by_offset(rw.addr, (rw.kind == UVM_READ)) ==
null) begin // no register => Checking memory
 if (rw.kind == UVM_WRITE) begin
 entries[rw.addr] = rw.data;
 end else begin

// here we check the memory content with the expected values in
entries associative array.

 end
 end
endfunction

endclass

Abhishek Jain et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,471-480

© 2015-19, IJARCS All Rights Reserved 476

Figure 7. Current SystemVerilog implementation of the map

do_bus_write()

Maximizing the number of bursts may have severe
consequences on simulation performance imagining a test
performing hundreds of these operations. Moreover having
the burst mode operation integrated in the UVM sequence
API reflects more precisely the real usage of the serial bus
protocol, leading to a more accurate verification of the DUT.

As automatic burst handling in uvm_reg is looping
through the write values, so in our verification environment,
we have hacked the do_bus functions to avoid this loop.

Figure 8. Modified SystemVerilog implementation of the map

do_bus_write()

As shown in the above Fig. 8, in modified SystemVerilog
implementation of the map do_bus_write() method, it is not
looping over data values array for UVM_BURST_WRITE
kind. Burst data values are assigned to the packet of control
bus UVC in the adapter.

In adapter's reg2bus() method as shown in Fig. 9,
uvm_reg_item is extracted and burst length is calculated
using size of the data value array of uvm_reg item. Values
of data value array of uvm_reg_item are assigned to the
transmitter data array of master packet of SPI UVC for bus
transactions.

task uvm_reg_map::do_bus_write (uvm_reg_item rw,
uvm_sequencer_base sequencer, uvm_reg_adapter adapter);
...
//Get bus and register/field/memory information
get_bus_info(rw, map_info, n_bits, lsb, skip);
//Extract addresses from the map_info
addrs = map_info.addr;
...
//Loop over data values array in register trans
foreach (rw.value[val_idx]) begin
//Calculate byte enables in case of UVM Field
if (rw.element_kind == UVM_FIELD) begin
...
end
...
//For each address location
foreach (addrs[i]) begin
uvm_sequence_item bus_req;
uvm_reg_bus_op rw_access;
uvm_reg_data_logic_t data = (value >> (curr_byte*8)) & ((1'b1 <<
(bus_width * 8))-1);
//Update rw_access struct
//In case of UVM Field update byte enable
if (rw.element_kind == UVM_FIELD)
for (int z=0;z<bus_width;z++)
 rw_access.byte_en[z] = byte_en[curr_byte+z];
 rw_access.kind = rw.kind;
 rw_access.addr = addrs[i];
 rw_access.data = data;
 rw_access.byte_en = byte_en;
 rw_access.n_bits = (n_bits > bus_width*8) ? bus_width*8 : n_bits;
 …
//Convert the register item transaction to
//the bus transaction lying underneath
bus_req = adapter.reg2bus(rw_access);
...
//Drive transaction

bus_req.set_sequencer(sequencer);

rw.parent.start_item(bus_req, rw.prior);
...
rw.parent.finish_item(bus_req);
...
end //foreach (addrs[i])
...
end //foreach (rw.value[val_idx])
...

 endtask //do_bus_write()

task do_bus_write (uvm_reg_item rw, uvm_sequencer_base
sequencer, uvm_reg_adapter adapter);
...
if (! (rw.kind == UVM_BURST_WRITE))
 super.do_bus_write(rw, sequencer, adapter);
else begin
//Get bus and register/field/memory information
get_bus_info(rw, map_info, n_bits, lsb, skip);
//Extract addresses from the map_info
addrs = map_info.addr;
...
// No loop over data values array in register trans
uvm_reg_data_t value = rw.value[0];
//Calculate byte enables in case of UVM Field
if (rw.element_kind == UVM_FIELD) begin
...
end
...
//For each address location
foreach (addrs[i]) begin
uvm_sequence_item bus_req;
uvm_reg_bus_op rw_access;
uvm_reg_data_logic_t data = (value >> (curr_byte*8)) & ((1'b1 <<
(bus_width * 8))-1);
//Update rw_access struct
//In case of UVM Field update byte enable
if (rw.element_kind == UVM_FIELD)
for (int z=0;z<bus_width;z++)
 rw_access.byte_en[z] = byte_en[curr_byte+z];
 rw_access.kind = rw.kind;
 rw_access.addr = addrs[i];
 rw_access.data = data;
 rw_access.byte_en = byte_en;
 rw_access.n_bits = (n_bits > bus_width*8) ? bus_width*8 : n_bits;
...
//Convert the register item transaction to
//the bus transaction lying underneath
bus_req = adapter.reg2bus(rw_access);
...
//Drive transaction

bus_req.set_sequencer(sequencer);
rw.parent.start_item(bus_req, rw.prior);
...
rw.parent.finish_item(bus_req);
...
end //foreach (addrs[i])
...
endtask //do_bus_write()

Abhishek Jain et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,471-480

© 2015-19, IJARCS All Rights Reserved 477

Figure 9. Implementation of the adapter's reg2bus() method

Fig. 10 shows modified SystemVerilog implementation of
the map do_bus_read() method. Similar to do_bus_write()
method, it is not looping over data values array for
UVM_BURST_READ kind. uvm_reg_item data values are
extracted using get_cur_read_data function of adapter which
is getting the bus value of read data from the receiver data
array of master packet of SPI UVC.

Figure 10. Modified SystemVerilog implementation of the map

do_bus_read()

Although some part of modified do_bus functions are
specific to SPI UVC but same concept can be easily used for
any other control bus UVC.

VI. AUTOMATION OF VERIFICATION ENVIRONMENT USING
IP-XACT FLOW

Even if verification engineers are familiar to write the
UVM based verification environment files for verification of
the IP and SoC, writing thousands of lines of verification
environment code is tedious task for them. IP-XACT flow
based proposed method facilitates automatic generation of
UVM based verification environment files.

Accellera IP-XACT standard is used for capturing register
specifications of IP and SoC [11, 13]. The code generator
based on the IP-XACT accellera standard is used for
generation of the SystemVerilog UVM code for the
verification environment at IP level as well as for SoC level
verification. Almost all devices have thousands registers

class reg_to_spi_adapter extends uvm_reg_adapter;
 `uvm_object_utils(reg_to_spi_adapter)
 ...
 spi_master_packet m_bus_req;

 function uvm_reg_data_t get_cur_read_data(int unsigned idx);
 if (m_bus_req.rx_data.size()>idx) begin
 return m_bus_req.rx_data[idx+1];
 end else
 `uvm_warning("spi adapter", "uvm reg tries to retrieve data
from burst read, but operation does not contain enough data")
 endfunction
 // --
 // from uvm_reg to bus translation
 // --
 function uvm_sequence_item reg2bus(const ref uvm_reg_bus_op
rw);
 uvm_reg_data_t tmp_data;
 uvm_reg_item item = get_item();
 spi_master_packet transfer;
 int n_bytes=rw.n_bits/8;
 ...
 if (rw.kind==UVM_BURST_WRITE) begin
 transfer.burst_len = 1/*opcode*/+2/*address*/+
item.value.size() /*data*/;
 end
...
if(rw.kind==UVM_BURST_READ) begin
transfer.burst_len=1/*opcode*/+2/*address*/+1/*opcode*/+item.val
ue.size()/*data*/;
end
transfer.tx_data = new[transfer.burst_len];
…
if (rw.kind==UVM_BURST_WRITE) begin
 foreach (item.value[idx]) begin
 tmp_data = item.value[idx];
 for (int i=0;i<n_bytes;++i)
 transfer.tx_data[3+idx][7:0] = tmp_data; // data
 end
end
…
m_bus_req = transfer;
return transfer;

 endfunction: reg2bus

task do_bus_read (uvm_reg_item rw, uvm_sequencer_base
sequencer, uvm_reg_adapter adapter);
 …
 if (! (rw.kind == UVM_BURST_READ))
 super.do_bus_read(rw, sequencer, adapter);
 else begin
 reg_to_spi_adapter spi_adapter;
 //Get bus and register/field/memory information
 get_bus_info (rw, map_info, n_bits, lsb, skip);
 //Extract addresses from the map_info
 addrs=map_info.addr;
 …
 // No loop over data values array in register trans
 //Calculate byte enables in case of UVM Field
 if (rw.element_kind == UVM_FIELD) begin
 ...
 end
 ...
 foreach (addrs[i]) begin
 uvm_sequence_item bus_req;
 uvm_reg_bus_op rw_access;
 uvm_reg_data_logic_t data;
 if (rw.element_kind == UVM_FIELD)
 for (int z=0;z<bus_width;z++)
 rw_access.byte_en[z] = byte_en[curr_byte+z];
 rw_access.kind = rw.kind;
 rw_access.addr = addrs[i];
 rw_access.data = 'h0;
 rw_access.byte_en = byte_en;
 rw_access.n_bits = (n_bits > bus_width*8) ? bus_width*8 :
n_bits;
 if ($cast(spi_adapter, adapter)) begin
 foreach (rw.value[val_idx]) begin
 rw.value[val_idx] =
spi_adapter.get_cur_read_data(val_ idx);
 end
 end
 …
 foreach (addrs[i])
 addrs[i] = addrs[i] + map_info.mem_range.stride;
…
// Removal of lines where assignment to rw.value[0] was happening
// when element_kind was UVM_FIELD
 …
 end // if (! (rw.kind == UVM_BURST_READ))

endtask: do_bus_read

Abhishek Jain et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,471-480

© 2015-19, IJARCS All Rights Reserved 478

with few memories, which also need to be verified.
Building register and memory model for such device is very
tedious and time consuming task, building these large
amounts of registers for a given model may lead to many
human errors, and hence results to be inefficient.

Figure 11. IP-XACT Flow

Instead we generate these register model from a
specification given in .docx/.mif format which is converted
to an IP-XACT standard XML format (with help of
spec2spirit internal tool) as shown in Fig. 11. Various IPs
are connected together to build a subsystem and various
subsystems are integrated together to build a SoC. Thus, at
SoC level, there is large number of IPs connected together.
For each IP, register specification file in .docx/.mif format is
written. Specification files of all IPs are merged together
using spec2spec (Specification to Specification) script to
generate XML description of the SoC level register/memory
specification.

Figure 12. spirit2uvm script

This XML is then used as an input to spirit2uvm internal
tool. spirit2uvm generates the SystemVerilog UVM files to
build the register model [13, 16]. It also generates standard
sequences such as register read-write sequence, register read
sequence and register write sequence. The work of the
verification engineer is simplified and bullet proof with a
guarantee of 100% correctness of register model compared
to the specification.

Figure 13. XML to REG_DEF File Conversion

As the specifications are also coming in a standard
format, it leads to less ambiguities on writing specification
of design, and hence provides higher levels of automation.
spirit2uvm tool is used not only for register model and
standard sequences but also for other SystemVerilog UVM
files (such as test-case file, top-environment file, virtual
sequence file, virtual sequencer file and address map file)
used in verification of the design as shown in the Fig. 12.
 The Fig. 13 shows sample example of input XML file
and generated output register definition (reg_def) file.
The xml file provides all the basic information
related to the IP such as IP’s base address
(<spirit:baseAddress>0x000</spirit:baseAddress>), register
name (<spirit:name>MUX<spirit:name>), register field bit
width (<spirit:bitWidth>4</ spirit:bitWidth>), register field
bit offset (<spirit:bitOffset >0</spirit:bitOffset>), register
field accessibility (<spirit:access>read-only< /spirit:access>)
etc. From the given information in input XML file,
corresponding register definition (reg_def) file is generated
using spirit2uvm tool.

Register Description

file

Sequences file

Testcase file & Top

Environment file

Address Map

file

Functional Coverage

file

xml file

Interface

Information

spirit2uvm

script

spirit2uvm spirit2uvm

spec2spec

IP
Specification/

Datasheet

IP
Specification/

Datasheet

IP XML
Description

TOP XML
Description

IP Level
SystemVerilog

UVM based
Verification
Environment

Files

SoC Level
SystemVerilog

UVM based
Verification
Environment

Files

spec2spirit

……………
<spirit:version>0.0</spirit:version>
 <spirit:memoryMap>
 <spirit:name>mux_address_block</spirit:name>
 <spirit:addressBlock>
 <spirit:baseAddress>0x000</spirit:baseAddress>
 <spirit:width>32</spirit:width>
 <spirit:register>
 <spirit:name>MUX< spirit:name>
 <spirit:field>
 <spirit:name>soft_reset</spirit:name>
 <spirit:description>Soft reset of the IP</spirit:description>
 <spirit:bitOffset>0</spirit:bitOffset>
 <spirit:bitWidth>4</spirit:bitWidth>
 <spirit:access>read-only</spirit:access>
 </spirit:field>
 ……………

class MUX_type extends uvm_reg;

 rand uvm_reg_field major_version;
 rand uvm_reg_field minor_version;
 rand uvm_reg_field patch_version;
 rand uvm_reg_field enable;
 rand uvm_reg_field soft_reset;

 `uvm_object_utils(MUX_type)

 virtual function void build_configuration();
 soft_reset = uvm_reg_field::type_id::create(
"soft_reset");
 soft_reset.configure(this, 4, 0, "RO", 0, 0, 1, 1, 0);
 ……………

REG_DEF
FILE

XML FILE

Abhishek Jain et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,471-480

© 2015-19, IJARCS All Rights Reserved 479

VII. RESULTS AND DISCUSSION

Certain experiments are performed on IP and SoC level
functional verification environment of various devices in
order to assess the effectiveness of the proposed
enhancements in the UVM_REG register model (user
specific registers/ memories sequences, register APIs,
development of IP-XACT based tools, automatically
checking of memory content and improving burst handling
in UVM_REG model) in terms of coverage, verification
environment development time and simulation runtime.

Development of user specific registers/memories
sequences added more features to cover the register/memory
verification corner conditions like testing the memory
boundaries space, accessing both valid and invalid address
ranges etc. These sequences are executed in less simulation
time as compared to standard built in sequences e.g. suppose
we want to perform read/write operations on SoC memory
having 32 bit wide 1000 words. Using uvm_reg register
model built-in memory sequence
(uvm_mem_single_walk_seq), ~3K memory read/write
operations will be performed covering full range of valid
memory locations, whereas user specific memory sequence
(uvm_user_mem_walk_boundaries_seq) with configuration
setup of performing read/write operations in 10 upper and
lower boundary locations of memory and then performing
30 random memory access operations in remaining memory
locations will perform only necessary 120 memory
read/write operations as covering all locations of memory is
not required at SoC level.

 Development of register APIs provided simple interfaces
to less UVM experts. These register APIs can be directly
called in uvm_test class. Enhancements in the UVM_REG
register model helped to automatically check memory
contents and to improve burst handling in UVM_REG
model. Simultaneously, development of IP-XACT based
tools helped to generate thousands of lines of code of
verification environment in very short time. This resulted in
significant improvement in verification quality and
reduction in product verification time.

Comparison between register and memory built in
sequences and our specific sequences is described in the
following Table IV:

Table IV. Built in Sequences and Our Specific Sequences Comparison
Table

Comparison
Features

Register and Memory
Built in Sequences

Our Specific
Register and Memory

Sequences

Coverage of
both valid as
well as invalid
registers and
memories add-
ress locations.

No specific sequence is
available to cover invalid
registers and memories
address locations.

Users need to add dummy
registers/memories models
in invalid address locations
in the register block to test
invalid registers and
memories address
locations.

Corner conditions are not

Mixed register/memory
sequences are covering
both valid as well as
invalid registers and
memories locations.

All corner conditions are
covered.

covered.

Time taken to
execute
register/
memory test
sequence.

Executed in more
Simulation Time.

e.g. Number of memory
read/write operations (for

memory having 32 bit
wide 1000 words) = 3K

operations (for
uvm_mem_single_walk_s

eq memory sequence)

Less Simulation Time.

e.g. Number of memory
read/write operations

(for memory having 32
bit wide 1000 words) =

120 operations (for
uvm_user_mem_walk_b
oundaries_seq memory

sequence as described in
Fig. 3)

VIII. CONCLUSION

Methodology related to standard UVM register package
has been studied as in [1, 15]. Register and Memory built in
sequences has been studied in [3, 14]. These sequences take
very long time to run at SoC level verification and don’t
cover both valid as well as invalid registers and memories
address locations.

This paper presented the work done in automation of
register and memory models used in IP and SoC level
verification, the flow, and the set of tests and APIs aimed at
ensuring correctness at the 1st time on the register model,
provide simple interfaces to less UVM experts or even
beginners on register and memory tests development,
including supporting the functional test development.
Verification Environments with UVM_REG register model
integrated are used to verify a variety of devices covering
various protocols, applications and domains like the Internet
of Things (IoT).

IX. ACKNOWLEDGMENT

The authors would like to thank Giuseppe Bonanno

(Manager, STMicroelectronics), Dr. Vineet Khandelwal
(JIIT, Noida) and Prof. Alka Tripathi (JIIT, Noida) for their
guidance and support. We would also like to thank
management and team members of Imaging Division,
STMicroelectronics; Faculty members and peer scholars of
ECE Department, Jaypee Institute of Information
Technology for their support and guidance.

X. REFERENCES

[1] S. Rosenberg, and K. Meade, A Practical Guide to Adopting
the Universal Verification Methodology (UVM), 2nd ed., San
Jose, Cadence Design Systems, 2010.

[2] A. Jain, G. Bonanno, H. Gupta, and A. Goyal, “Generic
System Verilog Universal Verification Methodology Based
Reusable Verification Environment for Efficient Verification
of Image Signal Processing IPs/SOCs,” International Journal
of VLSI Design & Communication Systems, vol. 3, no. 6,
2012, pp. 13-25.

[3] A. Jain, and R. Gupta, “Scaling the uvm_reg model towards
automation and simplicity of use,” in Proc. VLSID,
Bangalore, 2015, pp. 164-169.

[4] T. Timisescu, and U. Simm, “Leveraging the UVM Register
Abstraction Layer for Memory Sub-System Verification,” in
Proceedings of DVCon 2015, Munich, Germany, 2015.

Abhishek Jain et al , International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,471-480

© 2015-19, IJARCS All Rights Reserved 480

[5] M. Litterick, and M. Harnisch, “Advanced UVM Register
Modeling,” Proc. Design and Verification Conference &
Exhibition Europe (DVCon Europe) 2014, Munich, Germany,
2014.

[6] S. Holloway, “The UVM Register Layer – Introduction,
Experiences and Recipes,” DVClub, 2012.

[7] A. Jain, P. K. Gupta, H. Gupta, and S. Dhar, “Accelerating
System Verilog UVM Based VIP to Improve Methodology
for Verification of Image Signal Processing Designs Using
HW Emulator,” International Journal of VLSI Design &
Communication Systems, vol. 4, no. 6, 2013, pp. 13-25.

[8] S. Iman, Step-by-Step Functional Verification with
SystemVerilog and OVM, 1st ed., San Francisco, Hansen
Brown Publishing, 2008.

[9] A. Jain, H. Gupta, S. Jana, and K. Kumar, “Early
Development of UVM based Verification Environment of
Image Signal Processing Designs using TLM Reference
Model of RTL,” International Journal of Advanced Computer
Science and Applications, vol. 5, no. 2, 2014, pp. 77-82.

[10] S. Rosenberg, “Register This! Experiences Applying UVM
Registers,” in Proc. DVCon, San Jose, 2012, pp. 1–9.

[11] A. Jain, and R. Gupta, “Unified and Modular Modeling and
Functional Verification Framework of Real-Time Image
Signal Processors,” VLSI Design, vol. 2016, pp. 1-14.

[12] Mentor Graphics. (2017, Jan.). UVM/OVM Cookbook.
[Online]. Available: https://verificationacademy.com/
cookbook

[13] Accellera. (2017, Jan.). Standard Universal Verification
Methodology Class Reference, Release 1.2. [Online].
Available: www.accellera.org

[14] Universal Verification Methodology, UVM 1.0, 2011.
[15] IEEE Standard for SystemVerilog-Unified Hardware Design,

Specification, and Verification Language, IEEE 1800-2009,
2009.

[16] Accellera. (2017, Jan.). Spirit information. [Online].
Available: http://accellera.org/xmlschema/spirit

Abhishek Jain received the M.Sc. degree in
electronics from Delhi University, Delhi, India, in 2002 and the
M.Tech. degree in computer science from IETE, Delhi, India, in
2006. He is currently pursuing the Ph.D. degree in electronics &
communication engineering at JIIT, Noida, India.

He has more than 14 years of experience in industry and
currently working as Senior Staff Manager at Qualcomm. He is
driving key activities on functional verification flow. His current
research interests include Digital Image Processing, Advanced
Functional Verification Methods and System Design and
Verification especially UVM based Verification,
Emulation/Acceleration and Virtual System Platform. He is a
member of IETE (MIETE).

Dr. Richa Gupta is a post graduate in Information
Systems from Indian Institute of Technology, Kanpur and has
subsequently earned her Ph.D. degree in the area of Information
Theory and Coding.

She is primarily associated with JIIT as a faculty in the area of
ECE. Her research interests include Image Processing, Image
Verification, Speech Processing, Joint Source Channel Coding and
Mathematical Modelling of Signals and Systems. She has
published many papers in reputed journals. She has served as the
secretory of the board of trustees of Forum for Interdisciplinary
Mathematics for 2 years.

http://www.accellera.org/�

	Introduction
	Related Work
	User Specific Uvm_Reg Register and Memory Sequences
	Uvm Register and Memory APIs
	Enhancements in the Uvm_Reg Register Model
	Automation of Verification Environment using IP-XACT Flow
	Results and Discussion
	Conclusion
	Acknowledgment
	References

