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Abstract: Oxy-haemoglobin is an important metallo-protein, which helps in oxygen binding and transporting to the tissues. The objective of the 
present study was to detect hot spots and design of smart libraries for engineering protein stability, substrate specificity, tunnels and cavities as 
well as suitable mutability position of oxy-haemoglobin protein by using a software, HotSpot Wizard, version 2.0., is a free online software. The 
prediction results were obtained in output interface for functional hot spots, stability hot spots (structural flexibility), correlated hot spots and 
stability hot spots (sequence consensus). In conclusion, pocket identification and mutability prediction of oxy-haemoglobin can lead to detect 
structural alternation mainly in disease diagnosis and space for ligand binding pocket in new drug development for disease therapy. This 
computational prediction is suggesting to compare with experimental hotspots for oxy-haemoglobin in relation to therapeutic efficacies and 
druggability assessment. 
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I. INTRODUCTION 
 
The oxy-haemoglobin protein is an important metallo-
protein, which play a vital role in transport of oxygen [1-3]. 
It is well known that each subunit of haemoglobin (Hb) 
contains globular protein along with heme group. The 
protein tetramer comprises of two α- and two β-chains 
assembled to form symmetrical (αβ) dimers. In the centre of 
each heme group is a Fe2+. De and Girigoswami [4] and 
Furuyama et al. [5] have described that the haemoglobin 
exists in functionally important two isomeric forms the R 
form (oxy/ligand bound state), which helps in proper 
coordination between upload of oxygen. Lack of this protein 
lead to anaemia in human. 
Generally, protein-protein interaction, which indicated 
residues of ΔΔG ≥ 2kcal/mol, is termed as hot spot [6]. In 
other words, certain residues in protein-protein interactions, 
termed as hot spots. These residues have unique and variety 
of energetic properties, can be designed an important target 
of protein-protein complex [7]. Several experiments resulted 
that only a small subset of contact residues showed 
significance binding free energy. These residues have been 
termed ‘hot spots’ and if mutated then they can disrupt the 
interaction [8]. Most conserved amino acids are found in hot 
spot residues. As per experimental study, Hb variants 
determined through physical examination and/or routine 
laboratory testing, which found in the patients of diabetes, 
anaemia, cyanosis, etc. [6; 9-10]. Globin gene mutation 
causes the structural globin proteins or Hb variants, and 
these are associated with deletions, multiple amino acid sub-
stitutions, anti-termination mutations, and altered post-
translational processing. It is well known naturally occurring 
Hb mutations cause biochemical abnormalities, some of 
which employ clinically significant symptoms [6]. 
Bloom et al. [11] have emphasized that stability of proteins 
is of great concern, those who are working on protein 
engineering research for the implementation of enzymes in 
industrial sector. Now-a-days the study of protein stability 
has led to develop in future utilization of biomolecules in 

different sectors viz. biocatalyst, disease diagnosis and 
therapy, nanoscience etc. [12]. In general, stability means 
protein gets unfold and refold during unfavourable 
environmental conditions as temperature or solvent, etc. 
It is interesting to note that all proteins are simplest form 
and suitable example of evolvable biological systems as per 
their potent biochemical functions in which alterations can 
be noted due to few mutations [13]. Wagner [14] has 
revealed that evolvability is robustness to mutations, and 
proteins are often quite mutationally robust. It was found in 
experimental study that several proteins are retaining their 
native functions due to more than half number of single 
mutant [11; 15-17]. 
Since decades, the function and properties determination 
have developed through automated simulation by several 
researchers to know molecular mechanisms of any protein 
but still unclear the sequences of protein encode the exact 
function [18-19]. Generally, enzyme is known as 
biocatalyst, which has specific substrate binding ability as 
lock and key strategy for maintaining biochemical reactions 
in an organism. In recent trend of research, several 
computational tools for protein engineering have been 
developed by researchers mainly detection for tunnel and 
cavity, smart libraries, mutation positions, functions etc. [12; 
20-27]. 
In the present study an attempt was done for oxy-
haemoglobin protein to detect of hot spots and design of 
smart libraries for engineered protein stability, substrate 
specificity, tunnels and cavities as well as suitable 
mutability position through computational prediction by 
using HotSpot Wizards, version 2.0 and the protein was 
used oxyhaemoglobin because this is an important protein 
for blood related disease identification and also prevention.  
 
II. MATERIALS AND METHODS 
 
The oxy-haemoglobin, the crystal structure of protein, .pdb 
files as PDB ID: 1hho were selected and incorporated 
separately in the input interface of HotSpot Wizard (version 
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2.0) online software. In this automated prediction study, 
chains were not specified manually. 
HotSpot Wizard 2.0 is free online software for automatic 
detection of hot spots and design of smart libraries for 
engineered proteins’ stability, cavity and tunnels, catalytic 
activity, substrate specificity and enantioselectivity  [20; 27-
28]. On the other hand, this present tool can be utilized for 
the annotation of protein structures. This tool is modified 
version of previous software launched in 2009 [20]. This 
present online server comprises sequence, structural and 
evolutionary information obtained from 3 databases and 20 
computational tools. According to Bendl et al. [27] and 
Sebestova et al. [29], this online tool integrates annotated 
residues, which can be known easily for mutagenesis and 
designed for suitable codons for each implemented strategy. 
Ultimately, this software helps in comprehensive 
annotations of protein structures and engineering with the 

stable design of site-specific mutations and targeted 
libraries.  
In the present study, this software was calculated 
automatically hotspots for function, stability, correlated and 
consensus sequences for oxy-haemoglobin (Fig. 1). Bendl et 
al. [27] have developed the workflow steps in HotSpot 
Wizard, the calculation is based on the particular protein 
annotations, mutagenesis hot spots and smart library design 
as first, second and final phases respectively. 
For statistical analysis, Z scoring values were obtained for 
each computational tools such as DCA (Direct Coupling 
analysis), ELSC (Explicit Likelihood of Subset Variation), 
McBASC (McLachlan Based Substitution correlation), MI 
(Mutual Information), aMIc (All Microarray Clustering), 
OMES (Observed Minus Expected Squared) and SCA 
(Statistical Coupling Analysis). 

 
   

 
 
 

Figure 1. Hotspot wizard input interface for oxy-haemoglobin (1hho) 
 
III. RESULTS AND DISCUSSION 
 
In the present results, the oxy-haemoglobin engineering 
strategies through automated computational prediction were 
observed. Fig. 2. showed results as output interface through 
Hotspots wizard for four separate prediction data such as 
functional hot spots, stability hot spots (structural 
flexibility), correlated hot spots and stability hot spots 
(sequence consensus).  
In functional hot spots, the data were obtained for activity, 
substrate specificity and selectivity and also this step 
identified residues, which were forming catalytic pocket or 

accessible tunnel that were not directly participated in the 
catalysis or located at the evolutionary-conserved position.  
For stability hot spots (structural flexibility), the prediction 
was done to identify the residues in flexible structure, which 
is observed mainly residues with highest B-factors.  
In case of the study of correlated hot spots, the data were 
obtained same as functional hot spots along with the 
identification of correlated position through consensus 
approach resulted data from other computational tools viz. 
DCA (Direct Coupling analysis), ELSC (Explicit Likelihood 
of Subset Variation), McBASC (McLachlan Based 
Substitution correlation), MI (Mutual Information), aMIc 
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(All Microarray Clustering), OMES (Observed Minus 
Expected Squared) and SCA (Statistical Coupling Analysis). 
For stability hot spots (sequence consensus), consensus 
design is an important strategy for the stabilization of 

proteins. It helps amino acid conservation in sets of 
homologous protein to identify likely beneficial as well as 
deleterious mutations of the target protein. 

 

 
Figure 2. Protein engineering strategies of oxy-haemoglobin 

 
Fig. 3 (A, B and D), revealed that oxy-haemoglobin showed 
different hotspots through HotSpot Wizard tool. In general, 
hot spot determines the energy distribution along with the 
interface region without homogenous in nature, where 
certain residues do not contribute majorly for free energy 
binding [30-35]. The hot spot prediction detects the exact 
protein binding sites, which helps for designing specific 
therapeutic agents in protein interactions [34]. In Fig. 3 (C), 
sequence consensus was obtained for oxyhaemoglobin. In 
this observation, wild-type and mutated consensus 
sequences were obtained based on hot spots (Richter et al., 
2007). Bendl et al. [27] supported the concept of molecular 
mechanisms of any protein, still unclear to researchers, how 
the sequences of protein encode the exact function? Still 
have not yet answered [18-19]. It was documented that 
experimental evolution work suffered major problems when 
occurred by several irregular study of mutagenesis and 
detecting of large sequence libraries to evaluate the 
mutational landscape and proteins showed important 
structural and functional properties [19; 27; 37-39]. 
 
Table I, describes the functional hotspot of oxyhaemoglobin 
where only chain B attached to residues like Ala at 135 
position, Gly at 83 position and Leu at 81 position while 
correlated residues like Gly at 136 position, Leu, Ser, Gly, 
met, Gly, Asn at 3, 9, 29, 55, 136, 139 positions 
respectively. The pockets and tunnels were obtained in 14 
and 1, 2 (from pocket 16), 0 and & 2 (from pocket 16) and 
16 (catalytic) & 1, 2 (from pocket 16) in which B-factor 
values 22.67, 49.39 and 46.80 Å2 respectively. The B-factor 
values mainly influenced by crystal contacts and solvent 
conditions, various theoretical methods have used to predict 
flexible regions, which help to determine the targets for 

stabilization [40-41]. The mutability rate was observed high 
and score values were 9, 8 and 6 respectively. According to 
Weinkam and Salia [42], haemoglobin is a protein of 
complex system, which undergoes conformational changes 
in response to oxygen, allosteric effectors, mutations, and 
environmental changes. It was observed in previous study 
that haemoglobin has evolved with complex allosteric 
mechanism, which showed point mutations at different sites 
[43]. Weinkam and Salia [42], predicted and suggested 
naturally occurring mutations can be tolerated due to 
structural symmetry of several types of haemoglobins. 
 

    
A 
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B. 

 
C   

   
D. 
 

Figure 3. Oxy-haemoglobin protein (1hho): A = functional 
hotspot; B = stability hotspot; C = sequence consensus and 

D = correlated hotspot 

 
Table I. Study of functional hotspots 

Studied 
Protein 

Chains Residues & 
position 

Secondary 
structures 

Pockets & 
tunnels 

Average B-
factor (in 

Å2) 

Mutability rate 
& score 

Correlated 
residues & 

position 
1hho B Ala & 135 Alpha helix 

(H) 
14 & 1, 2 

(from pocket 
16) 

22.67 High & 9 Gly & 136 

 B Gly & 83 Alpha helix 
(H) 

- & 2 (from 
pocket 16) 

49.39 High & 8 --- 
 

 B Leu & 81 Alpha helix 
(H) 

16 (catalytic) 
& 1, 2 (from 
pocket 16) 

46.80 High & 6 Leu, Ser, Gly, 
Met, Gly, Asn 
& 3, 9, 29, 55, 

136, 139 
 

 
      Table II. Values obtained from different tools for functional hot spots 

Chains Consensus z-scoring values 
aMIc DCA ELSC McBASC MI OMES SCA 

B 0.42 4.37 4.12 1.01 5.26 4.05 7.57 
B - - - - - - - 
B 2.93 1.70 4.69 1.02 5.77 9.24 7.84 
 2.55 1.90 4.51 0.88 6.14 7.45 6.34 
 2.28 1.10 7.94 1.47 3.40 7.89 4.32 
 2.21 0.96 9.12 1.43 4.42 6.11 5.98 
 3.43 1.58 11.26 1.57 5.29 9.58 4.74 
 1.98 1.42 9.76 0.42 4.82 7.81 3.18 

 
In Table II, consensus z-scoring value was obtained for 
different parameters such as aMIc 0.42 Gly, 2.93 Leu, 2.55 
Ser, 2.28 Gly, 2.21 Met, 3.43 Gly, 1.98 Asn; DCA 4.37 Gly, 
1.70 Leu, 1.90 Ser, 1.10 Gly, 0.96 Met, 1.58 Gly, 1.42 Asn; 

ELSC 4.12 Gly, 4.69 Leu, 4.51 Ser, 7.94 Gly, 9.12 Met, 
11.26 Gly, 9.76 Asn; McBASC 1.01 Gly, 1.02 Leu, 0.88 
Ser, 1.47 Gly, 1.43 Met, 1.57 Gly, 0.42 Asn; MI 5.26 Gly, 
5.77 Leu, 6.14 Ser, 3.40 Gly, 4.42 Met, 5.29 Gly, 4.82 Asn; 
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OMES 4.05 Gly, 9.24 Leu, 7.45 Ser, 7.89 Gly, 6.11 Met, 
9.58 Gly, 7.81 Asn  and SCA 7.57 Gly, 7.84 Leu, 6.34 Ser, 
4.32 Gly, 5.98 Met, 4.74 Gly, 3.18 Asn were obtained 
through this tool for oxy-haemoglobin as per correlated 
residues.  
 
In Fig. 4, it was obtained that the amino acid residues 
fulfilling the criterion of minimal frequency in the multiple 
sequence alignment. The wild type variety was observed Ala 
(42%), Gly (58%) and Leu (52%) as per positions of 
different amino acids frequencies of oxy-haemoglobin (Fig. 
4A, B and C). Fig. 5 states that mutational landscape, which 
mainly showed the estimation of the probability in relation 
to preservation of protein function for individual substitution 
at a particular site of oxy-haemoglobin. It was obtained that 
higher deleterious mutation in Fig 5 C, followed by Fig 5 B 
and Fig 5A. In the present computational study, the results 
were obtained for β subunits, which indicated a strong 
linking with the quaternary transitions than the α subunits 
for human oxy-haemoglobin, which is supported by 
previous molecular dynamic simulation of unliganded 
haemoglobin for quaternary and tertiary T to R transitions 
(Hub et al., 2010). It has been documented that molecular 
docking study for both T-state haemoglobin and oxy-
haemoglobin with different ligands of natural origin showed 
allosteric effects [45-46]. 
 
It was reported that mutability scale is ranged between 1 to 9 
i.e. lower to higher rate. In the present study high mutability 
rate was observed 9, 8 and 6 respectively (Table I). In Fig. 

5A, amino acids viz. Trp, Tyr (47%), Glu, Pro, Arg (45%) 
and Asp (43%), Fig. 5B, Cys, Phe, Thr, Trp (43%), Pre 
(39%), Ile, Tyr (31%), Val (27%) and Fig. 5C Phe (47%), 
Met, Val (43%), Ala, Cys, Tyr (27%), Gln, Trp (25%), Ser, 
Thr (23%), Gly, His, Asn, Pro (18%), Lys (12%), Asp, Glu, 
Arg (10%) were observed deleterious mutation of amino 
acids. It was reported when diseases occur then amino acid 
of haemoglobin undergoes mutation. According to Thom et 
al. [6], there are several haemoglobin variants that occurred 
amino acid substitutions and diseases viz. Ala>Pro, Tyr>Phe 
and Val>Phe (haemolytic anaemia and reticulocytosis); 
Val>Ala, His>Arg and Ala>Asp (haemolytic anaemia); 
Arg>Ser (anisocytosis and hypochromia), His>Tyr 
(anaemia), Phe>Ser (microcytosis); Pro>Ser (haemolytic 
anaemia and microcytosis); Phe>Leu (Heinz body 
haemolytic anaemia), Leu>Arg (Heinz body haemolytic 
anaemia and dominant inclusion body thalassemia), etc. 
found due to gene mutation in globin protein that lead to 
structural abnormalities of globin protein by single amino 
acid substitution while Pro>Arg, Lys>Glu and Lys>Asn 
have been detected as normal (without disease). The present 
prediction of oxy-haemoglobin with an evidence of high 
mutability score in oxyhaemoglobin (PDB ID: 1hho), which 
may be a clinical symptom in future research. According to 
Weinkama and Salia [42], haemoglobin is not a simple 
system and easily allows conformational changes in relation 
to oxygen, allosteric effectors, mutations, and environmental 
changes. 
 

 
A. 

 
B.  
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C. 

Figure 4. Amino acids frequencies as per positions 
 

 
A. 

 
B.  

 
C. 

Figure 5. Amino acids mutability landscape 
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However, the prediction of different hotspots can be 
facilitated drug designing and development. It was 
suggested that the starting point of a binding site of a 
receptor in the hotspots may be granted to analyse docking 
of ligands [47]. On the other hand, rigid docking lead to an 
achievement the comparatively least flexible hotspots, 
which lead to an upgradation in protein docking has been 
performed by creating dominant conformation of the hotspot 
side chains resulted through molecular dynamics probing 
rather than the unbound X-ray conformation [7; 48-49]. 
Thus, the prediction of hotspots is a suitable tool to identify 
exact functional mechanisms of particular protein to identify 
mutant residue(s) in relation to cause of disease and new 
drug development. 
 
IV. CONCLUSIONS 
 
In conclusion, HotSpot Wizard (version 2.0) is an online 
computational tool, which helped easily to obtain results for 
oxy-haemoglobin through protein engineering protocol by 
the integration of several inbuilt databases derived from 
other bioinformatics tools and all the data generated within 
short duration to prevent laborious jobs of experiment [27]. 
This software also helped to incorporate only .pdb file as an 
input of studied protein without prior knowledge of 
computational biology to set up input interface. The 
parameters like pocket identification and mutability 
prediction of oxyhaemoglobin can lead to know structural 
alternation of particular in disease diagnosis as well as space 
for ligand binding pocket in new drug discoveries [42-43]. 
The present prediction work is suggesting to compare with 
experimental hotspots for oxy-haemoglobin in relation to 
therapeutic efficacies and druggability assessment. 
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