
Volume 7, No. 2, March-April 2016

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 35

Improvement of Apriori Algorithm by Reducing Number of Database Scans and
Generation of Candidate Keys

Anneshya Ghosh

Department of Computer Science
Birla Institute of Technology, Mesra, Kolkata Campus

Kolkata, India

Ambar Dutta
Department of Computer Science

Birla Institute of Technology, Mesra, Kolkata Campus
Kolkata, India

Abstract: Finding frequent itemsets is a key step in various data mining applications to find interesting patterns from databases. Association rule
mining is an important technique in data mining. Apriori algorithm is most basic, simplest and classical algorithm of association rule mining.
This algorithm is considered as an efficient algorithm, but still it has some drawbacks. In the literature, there exist a number of improvements for
mining association rules based on Apriori algorithm. According to the problem that the traditional Apriori algorithm needs to scan database
frequently, an improved strategy and corresponding algorithm is put forward in this paper. A comparative study of the traditional Apriori,
existing improvements and proposed improved version of Apriori algorithm is presented in this paper with the help of different databases.

Keywords: Data Mining; Apriori algorithm; Support; Database; Frequent Itemsets.

I. INTRODUCTION

Data Mining [1] is a process where information or
knowledge is being extracted or mined from a large set of
dataset. Here the sequential patterns that are present in the large
databases are mined. Sequential Pattern Mining was first
introduced by Agarwal and Srikant in the year 1994. Sequence
patterns are those set of data which occurs in a specific order
that is sequentially, out of all the data patterns in a given set.
And finding out of these patterns which occurs sequentially out
of all the other patterns is Sequential Pattern Mining. An
example of sequential pattern is as follows; suppose a customer
buys a laptop then the customer will buy a mouse then an
antivirus and a printer following it sequentially. Some terms
which are constantly being used here are item-set, support and
confidence. Let there be a set of items L = {l1, l2 …}, a sub set
of these items is knows as item-set. For a given database D,
support of an item, let be X, is defined as the ratio of the
number of sequences in the database which contain the item X
to the total number of sequences that are present in the
database. And, for a given database D, confidence of a
sequence that contains X as well as Y is defined as the
percentage of the number of sequences that contains X as well
as Y to the total number of sequences which contains X.

Mining of sequential patterns can be classified into three
different categories, they are as 1. Mining based on candidate
generation (example, Apriori algorithm), 2. Mining without the
involvement of any candidate generation (example, FP-Growth
Tree algorithm) and 3. Mining item sets which have vertical
format (example, ECLAT algorithm).Apriori algorithm is the
algorithm which involves Candidate generation. According to
this algorithm, first the 1-itemsets are found then the database
is scanned to find the support count. The itemsets with support
count less than minimum support count are discarded. The
resultant itemsets are then used to find the frequent 2-itemsets
in the same process. Likewise we find all the (k+1)-itemsets
from the frequent k-itemsets, until no more frequent itemsets
can be found out. In FP-Growth tree algorithm [2], candidate
keys are not generated and database is scanned for two times
only. It uses a tree like structure to store the database and uses a

divide and conquer method. And in ECLAT algorithm [2],
depth first search method is used. During the first scan of the
database, a Transcation Id (TID) list is provided to each single
item. It is followed by the generation of (k+1) itemsets from the
k itemsets using apriori property and depth first search method
by taking the intersection of the TID - set of frequent k-
itemsets. This process is continued, until no more candidates
itemset can be found.

In this paper, Apriori algorithm is taken into consideration.

In the next section, section II, Apriori algorithm is discussed in
details. In section III, some of the existing improved algorithms
are discussed with examples. Then in section IV, the proposed
improved Apriori algorithm is discussed. In section V
comparisons between the original, existing and the proposed
improved Apriori algorithm is shown. Finally conclusion is
drawn in section VI.

II. APRIORI ALGORITHM

A. Description
The first and the most basic algorithm which was developed

to find out the sequential patterns from a database was the
Apriori algorithm [3]. This algorithm involves candidate
generation and was first proposed by R. Agarwal and R.
Srikant in the year 1994. In Apriori algorithm, the original
database is first scanned and the support count of each of the
individual items is found out. And those items whose support
count is less than the minimum support count are discarded.
The resultant item set is then used to find out the frequent 2-
items set. From where again support count of each item-set is
calculated and only those items whose support count is more
than minimum support count are kept and others are discarded.
Next we find out the frequent 3-item set and then frequent 4-
item set, till no more frequent item sets can be generated. The
final frequent item set which is generated and satisfies the
minimum support count is our final frequent pattern.

Table I. Original Database

Sr. No. Transaction Items

Anneshya Ghosh et al, International Journal of Advanced Research in Computer Science, 7 (2), March- April, 2016,35-41

© 2015-19, IJARCS All Rights Reserved 36

1 T1 ABD

2 T2 ABCD

3 T3 ABE

4 T4 BEF

5 T5 ABDF

6 T6 AE

7 T7 C

8 T8 EF

Table II. Support Count (Minimum Support Count=2)

Table III. Frequent 2-Item Set

Table IV. Frequent 3-Itemset

Sr. No. Items Support
Count

1 ABD 3

2 ABE 1 (X)

3 ABF 1 (X)

4 ADE 0 (X)

5 AEF 0 (X)

6 BDE 0 (X)

7 BDF 1 (X)

8 BEF 1 (X)

Total number for scans required for finding out the frequent 1-
itemset = 6x8 = 48.
Total number of scans required for finding out the frequent 2-
itemsets = 15x8 = 120.
Total number of scans required for finding out the frequent 3-
itemsets = 8x8 = 64.

B. Limitations
The advantage of Apriori algorithm is that it is a simple

algorithm and can be implemented easily. But it still has some
disadvantages also. The main disadvantage is that here the
entire database needs to be scanned at each step. Also in this
algorithm, a large number of candidate keys are generates. And
if the database is very large than scanning in each step not only
consumes a lot of time but the generation of a large number
candidate keys consumes a lot of memory also, which can be
sometimes limited. Therefore this algorithm can work well for
small database but not for large database.

III. EXISTING IMPROVED APRIORI ALGORITHMS

A number of improvements for Apriori algorithm have been
proposed to overcome the limitations of the algorithm. In this
section we will discuss some of the improvements and compare
them. We will take into consideration those improvements
which will reduce the number of scans and also the number of
candidate key generation.

A. Algorithm for reducing the number of scan
(Algorithm 1)

In this algorithm [4], Apriori algorithm is improved by
reducing the number of scans. In this algorithm the first step is
same as the classical Apriori algorithm. But in the second step,
from each of the frequent 2-item set the one with minimum
support count is first found out and then the transactions where
that item is present. Next only from that transaction the
frequent 2-items set are checked and the support count of
individual set are found out. For all the next frequent item set
the same process is followed. In this the number of scans gets
reduced. The algorithm works as shown in Table II, Table V
and Table VI.

Table V. Frequent 2-Itemsets

Sr. No. Items Items

With
Min_Sup

Support
Count

Transactions Number
Of Scans

1 AB A 4 T1,T2,T3,T5,T6 5

2 AC C 1 (X) T2,T7 2

3 AD D 3 T1,T2,T5 3

4 AE E 2 T3,T4,T6,T8 4

5 AF F 1 (X) T4,T5,T8 3

6 BC C 1 (X) T2,T7 2

7 BD D 3 T1,T2,T5 3

8 BE E 2 T3,T4,T6,T8 4

9 BF F 2 T4,T5,T8 3

10 CD C 1 (X) T2,T7 2

11 CE C 0 (X) T2,T7 2

12 CF C 0 (X) T2,T7 2

13 DE D 0 (X) T1,T2,T5 3

14 DF D 1 (X) T1,T2,T5 3

15 EF F 2 T4,T5,T8 3

Table VI. Frequent 3-Itemsets

Sr.
No.

ITEMS ITEM
WITH

MIN_SUP

SUPPORT
COUNT

TRANSACTIONS NUMBER
OF

SCANS
1 ABD D 3 T1,T2,T5 3

2 ABE E 1 (X) T3,T4,T6,T8 4

3 ABF F 1 (X) T4,T5,T8 3

Sr. No. Items Support
1 A 5

2 B 5

3 C 2

4 D 3

5 E 4

6 F 3

Sr. No. Items Support
Count

1 AB 4

2 AC 1 (X)

3 AD 3

4 AE 2

5 AF 1 (X)

6 BC 1 (X)

7 BD 3

8 BE 2

9 BF 2

10 CD 1 (X)

11 CE 0 (X)

12 CF 0 (X)

13 DE 0 (X)

14 DF 1 (X)

15 EF 2

Anneshya Ghosh et al, International Journal of Advanced Research in Computer Science, 7 (2), March- April, 2016,35-41

© 2015-19, IJARCS All Rights Reserved 37

4 ADE D 0 (X) T1,T2,T5 3

5 AEF F 0 (X) T4,T5,T8 3

6 BDE D 0 (X) T1,T2,T5 3

7 BDF D 1 (X) T1,T2,T5 3

8 BEF F 1 (X) T4,T5,T8 3

Number of scans required for finding out frequent 2-itemsets =
(5+2+3+4+3+2+3+4+3+2+2+2+3+3+3) = 44.
Number of scans required for finding out the frequent 3-
itemsets = (3+4+3+3+3+3+3+3) = 25.

B. Algorithm for reducing database size and number of
scans (Algorithm 2)

In this algorithm [5], Apriori algorithm was improved by
both reducing the number of scans as well as cutting down the
size of the database and removing some transactions which are
not required. As a result the search time gets reduced by two
times. In this algorithm also the first step is same as the original
Apriori algorithm. And the for frequent 2-item set, all the
transactions from the database which has less than 2 items are
first deleted, then for each individual 2-item sets, the item with
the minimum support among the two are first found and for the
2-ietms sets only in those transactions where the minimum
support items are present are searched and their support count
are calculated. Those item-sets which support count less than
the minimum support count are removed. From the resultant set
we find frequent 3-item set and so on. The algorithm is
illustrated by Table II, Table VII, Table VIII, Table IX and
Table X.

Table VII. Reduced Database For Frequent 2-Itemset

Sr. No. Transaction Items
1 T1 ABD

2 T2 ABCD

3 T3 ABE

4 T4 BEF

5 T5 ABDF

6 T6 AE

7 T7 C (X)

8 T8 EF

Table VIII. Frequent 2-Itemset

Sr.
No.

ITEMS ITEM
WITH

MIN_SUP

SUPPORT
COUNT

TRANSACTIONS NUMBER
OF

SCANS
1 AB A 4 T1,T2,T3,T5,T6 5
2 AC C 1 (X) T2 1
3 AD D 3 T1,T2,T5 3
4 AE E 2 T3,T4,T6,T8 4
5 AF F 1 (X) T4,T5,T8 3
6 BC C 1 (X) T2 1
7 BD D 3 T1,T2,T5 3
8 BE E 2 T3,T4,T6,T8 4
9 BF F 2 T4,T5,T8 3
10 CD C 1 (X) T2 1
11 CE C 0 (X) T2 1
12 CF C 0 (X) T2 1
13 DE D 0 (X) T1,T2,T5 3
14 DF D 1 (X) T1,T2,T5 3
15 EF F 2 T4,T5,T8 3

Table IX. Reduced Table for Frequent 3-I

Sr. No. Transaction Items
1 T1 ABD

2 T2 ABCD

3 T3 ABE

4 T4 BEF

5 T5 ABDF

6 T6 AE (X)

7 T7 C (X)

8 T8 EF (X)

Table X. Frequent 3-Itemset

Sr.
No.

ITEMS ITEM
WITH

MIN_SUP

SUPPORT
COUNT

TRANSACTIONS NUMBER
OF

SCANS
1 ABD D 3 T1,T2,T5 3

2 ABE E 1 (X) T3,T4 2

3 ABF F 1 (X) T4,T5 2

4 ADE D 0 (X) T1,T2,T5 3

5 AEF F 0 (X) T4,T5 2

6 BDE D 0 (X) T1,T2,T5 3

7 BDF D 1 (X) T1,T2,T5 3

8 BEF F 1 (X) T4,T5 2

Number of scans required for finding out the 2-itemset =
(5+1+3+4+3+1+3+4+3+1+1+1+3+3+3) = 39.
Number of scans required for finding out the 3-itemset =
(3+2+2+3+2+3+3+2) =20.

C. Transaction Reduction and Matrix Method
(Algorithm 3)

In this proposed algorithm [6], items (In) and transactions
(Tm) from the database are mapped into a matrix with size
mXn. In this matrix, transactions are represented by the rows
and the items are represented by the columns. The elements on
this matrix are either 0 or 1 and is decides as follows:

Martix = [aij] = 1, if in transaction i there is item j, and
Matrix = [aij] = 0, otherwise.

In the matrix, the sum of the row vector gives the sum of the
transactions (S-O-T) and sum of the column vector gives the
support count of each of the items. Now according to the
algorithm, the items sets by the above 2 rules are first
generated. Then for each frequent 1-item sets, the column
vector is calculated and checked if or not the value is more than
the minimum support. If it is less, then the particular column is
deleted. Then as it is frequent 1-item set all rows whose row
sum is equal to 1 or less than 1 are deleted. Now from the
resultant matrix the frequent 2-item set are found out by joining
and deleting columns with column sum less than minimum
support and row sum less than or equal to 2. Similarly the same
steps are proceeded for all the other frequent k-item sets by
deleting columns with column sum less than minimum support
and row sum less than or equal to k, until no more frequent
patterns are found. In this method the number of scans is
reduced and also we don’t have to check the whole database
and has also reduced the I/O time spending in scanning
database but still it some overhead as it has to maintain the
updated database after each matrix generation. The algorithm is
explained in Figure 1, Figure 2 and Figure 3.

Anneshya Ghosh et al, International Journal of Advanced Research in Computer Science, 7 (2), March- April, 2016,35-41

© 2015-19, IJARCS All Rights Reserved 38

Figure 1. Frequent 1-itemsets.

Number of scans required for 1-itemset = 6X8 = 48.

Figure 2. Frequent 2-itemsets.

Number of scans required for 2-itemset = 15X8 =120.

Figure 3. Frequent 3-itemsets.

Number of scans required for 3-itemset =8X5 = 40.

IV. PROPOSED ALGORITHM

In our proposed algorithm, the database size, the number of
database scans as well as the number of candidate keys
generated is reduced. For finding each (k+1) frequent itemset
all the items from the database that have number of items less
than (k+1) are removed. And secondly, according to the
algorithm, the database for those k-frequent itemsets whose
number of transaction is less than minimum support is not
scanned. This 2 steps will reduce the number of database
scans. And for candidate key generation, only those (k+1)
itemset whose individual pair are present in frequent k-itemset
is consider. This will reduce the number of candidate key
generation and also unnecessary scan of the database.

A. The algorithm
1. First, 1-itemset from the database is found out.

Repeat step 2-7, until no more frequent patterns
can be found out.

2. The support count of them is calculated by
scanning the database. Those item whose support
count is less than the minimum support count are
removed.

3. Before finding out (k+1)-itemsets, all the
transaction from the database which have
number of items less than k are removed.

4. Then the join operation of the frequent k-itemset
is performd to find out the (k+1)-itemset.

5. For finding out (k+1)-itemsets each pair of k-
itemsets are first checked whether are frequent or
not. If all the individual k-itemsets are frequent
then only that particular (k+1)itemset is
considered frequent.

6. For each (k+1) itemset, the item with the
minimum support count among each of the (k+1)
items is first found out and then the transactions
where that item is present. Only those
transactions are then scanned for that particular
(k+1) items in the whole database.

7. Now, if the number of transactions found out is
less the minimum support count than those items
are discard, and the database is not scanned for
those items.

The algorithm is explained in Table II, Table VII, Table IX,
Table XI and Table XII.

Table XI. Frequent 2-Itemset

Sr.
No.

ITEMS ITEM
WITH

MIN_SUP

SUPPORT
COUNT

TRANSACTIONS NUMBER
OF

SCANS
1 AB A 4 T1,T2,T3,T5,T6 5

2 AC C 1 (X) T2 1 (X)

3 AD D 3 T1,T2,T5 3

4 AE E 2 T3,T4,T6,T8 4

5 AF F 1 (X) T4,T5,T8 3

6 BC C 1 (X) T2 1 (X)

7 BD D 3 T1,T2,T5 3

8 BE E 2 T3,T4,T6,T8 4

9 BF F 2 T4,T5,T8 3

10 CD C 1 (X) T2 1 (X)

11 CE C 0 (X) T2 1 (X)

12 CF C 0 (X) T2 1 (X)

13 DE D 0 (X) T1,T2,T5 3

14 DF D 1 (X) T1,T2,T5 3

15 EF F 2 T4,T5,T8 3

Table XII. Frequent 3-Itemsets

Sr.
No.

ITEMS ITEM
WITH

MIN_SUP

SUPPORT
COUNT

TRANSACTIONS NUMBER
OF

SCANS
1 ABD D 3 T1,T2,T5 3

2 ABE E 1 (X) T3,T4 2

3 BEF F 1 (X) T4,T5 2

Anneshya Ghosh et al, International Journal of Advanced Research in Computer Science, 7 (2), March- April, 2016,35-41

© 2015-19, IJARCS All Rights Reserved 39

In the TABLE 12, scan for itemsets AC, BC, CD, CE and CF
is not done because the number of transactions for these
itemsets are less than minimum support count. So the support
count for these particular itemsets will automatically be less
than the minimum support count. And hence scans for these
itemsets are not required. In TABLE 14, candidate key ABF is
not considered as {AF} is not present in frequent 2-itemsets.
Similarly, ADE, AEF. BDE and BDF are also not considered
as {DE}, {AF}, {DE}, {DF} are not present in frequent 2-
itemsets respectively.

Number of scans for 2-itemsets = (5+3+4+3+3+4+3+3+3+3) =
34.
Number of scans for 3-itemsets = (3+2+2) =7.

V. RESULTS AND DISCUSSION

The efficiency of the proposed algorithm is evaluated with the
help of the following two criteria and a number of databases.

1. The number of scans has been reduced by reducing
the database and also not by scanning for those
itemsets whose support count will be already less
than minimum support count.

2. The number of candidate keys generated has also
been reduced by not considering few candidate keys
which does not satisfies the condition.

In all the above algorithms, the result is same that is {ABD}.
In Table XIII and Table XIV we compare the number of scans
required for each of the above discussed algorithms and find
that in the proposed algorithm the number of scans is
minimum. And also for the number of candidate keys
generated, the proposed algorithm find out the minimum
number of candidate keys.
Candidate keys generated in 1-itemset in proposed and all the
other above algorithms = 6 (A, B, C, D, E, F),
Candidate keys generated in 2-itemset in proposed and all the
other above algorithms= 15 (AB, AC, AD, AE, AF, BC, BD,
BE, BF, CD, CE, CF, DE, DF, EF).
Candidate keys generated in 3-itemsets in proposed algorithm
= 3 (ABD, ABE, BEF).
Candidate keys generated in 3-itemset in the other above
discussed algorithms = 8 (ABD, ABE, ABF, ADE, AEF, BDE,
BDF, BEF).
The comparisons between the number of scans and candidate
keys generated are shown in Table XIII and Table XIV.

Table XIII. Comparison among the Number of Scans

Algorithm Number Of Scans

1-Itemset 2-Itemset 3-Itemset Total

Normal Apriori
algorithm

48 120 64 232

Algorithm 1 48 44 25 117

Algorithm 2 48 39 20 107

Algorithm 3 48 105 40 193

Proposed Improved
Algorithm

48 34 7 89

Table XIV. Comparison among the Number of Candidate Keys Generated

Algorithm Number Of Candidate Keys
1-Itemset 2-Itemset 3-Itemset Total

Normal Apriori
algorithm,
Algorithm 1, 2 and
3

6 15 8 29

Proposed Improved
Algorithm

6 15 3 24

In order to establish the improvement of the proposed
improvement of Apriori algorithm, the algorithms considered
in this study are compared with the help of one more database.
The comparison is made on the basis of the number of scans
required in each of the algorithms and the number of candidate
keys generated in the proposed algorithm as compared to the
original Apriori algorithm.

A. Algorithm for reducing the number of scan (Algorithm
1)

Table XV. Original Database (Min_Support=3)

Table XVI. Frequent 1-Itemset

Sr. No. Items Support Transaction_IDs

1 I1 5 T1,T3,T7,T9,T10

2 I2 7 T2,T3,T4,T5,T6,T7,T8

3 I3 9 T1,T2,T3,T4,T5,T6,T7,T8.T10

4 I4 3 T5,T7,T8

5 I5 1 T5 (X)

6 I6 2 T7,T8 (X)

7 I7 2 T1,T2 (X)

Table XVII. Frequent 2-Itemset

Sr.
No.

Transaction Items

1 T1 I1,I3,I7

2 T2 I2,I3,I7

3 T3 I1,I2,I3

4 T4 I2,I3

5 T5 I2,I3,I4,I5

6 T6 I2,I3

7 T7 I1,I2,I3,I4,I6

8 T8 I2,I3,I4,I6

9 T9 I1

10 T10 I1,I3

Sr.
No.

Items Support Item with
Min_support

Transaction_IDs

1 I1I2 2 (X) I1 T1,T3,T7,T9,T10

2 I1I3 4 I1 T1,T3,T7,T9,T10

3 I1I4 1 (X) I4 T5,T7,T8

4 I2I3 7 I2 T2,T3,T4,T5,T6,T7,T8

5 I2I4 3 I4 T5,T7,T8

6 I3I4 3 I4 T5,T7,T8

Anneshya Ghosh et al, International Journal of Advanced Research in Computer Science, 7 (2), March- April, 2016,35-41

© 2015-19, IJARCS All Rights Reserved 40

Table XVIII: Frequent 3-Itemset

Sr.
No.

Items Support Item with
Min_support

Transaction_IDs

1 I1I2I3 2 (X) I1 T1,T3,T7,T9,T10

2 I1I3I4 1 (X) I4 T5,T7,T8

3 I2I3I4 3 I4 T5,T7,T8

B. Algorithm for reducing database size and number of
scans (Algorithm 2)

Table XIX. Reduced Database For Frequent 2-Itemset

Sr. No. Transaction Items
1 T1 I1,I3,I7

2 T2 I2,I3,I7

3 T3 I1,I2,I3

4 T4 I2,I3

5 T5 I2,I3,I4,I5

6 T6 I2,I3

7 T7 I1,I2,I3,I4,I6

8 T8 I2,I3,I4,I6

9 T9 I1

10 T10 I1,I3

Table XX. Frequent 2-Itemset

Sr.
No.

Items Support Item with
Min_support

Transaction_IDs

1 I1I2 2 (X) I1 T1,T3,T7, T10

2 I1I3 4 I1 T1,T3,T7, T10

3 I1I4 1 (X) I4 T5,T7,T8

4 I2I3 7 I2 T2,T3,T4,T5,T6,T7,T8

5 I2I4 3 I4 T5,T7,T8

6 I3I4 3 I4 T5,T7,T8

Table XXI.Frequent 3-Itemset

Sr.
No.

Items Support Item with
Min_support

Transaction_IDs

1 I1I2I3 2 (X) I1 T1,T3,T7

2 I1I3I4 1 (X) I4 T5,T7,T8

3 I2I3I4 3 I4 T5,T7,T8

C. Transaction Reduction and Matrix Method
(Algorithm 3)

Figure 4. Frequent 1-Itemset.

Figure 5. Frequent 2-Itemset.

Figure 6. Frequent 3-Itemset.

D. Proposed Improved Algorithm
Table XXII. Frequent 2-Itemset

Sr. No. Items Support Item with

Min_support
Transaction_IDs

1 I1I2 2 (X) I1 T1,T3,T7, T10

2 I1I3 4 I1 T1,T3,T7, T10

3 I1I4 1 (X) I4 T5,T7,T8

4 I2I3 7 I2 T2,T3,T4,T5,T6,T7,T8

5 I2I4 3 I4 T5,T7,T8

6 I3I4 3 I4 T5,T7,T8

Table XXIII. Frequent 3-Itemset

Sr. No. Items Support Item with

Min_support
Transaction_IDs

1 I2I3I4 3 I4 T5,T7,T8

Now all the algorithms for the second example are compare in
Table XXIV and Table XXV.

Table XXIV. Comparison among the Number of Scans

Algorithm Number Of Scans
1-Itemset 2-Itemset 3-Itemset Total

Normal Apriori
algorithm

70 60 30 160

Algorithm 1 70 26 11 107

Algorithm 2 70 24 9 103

Algorithm 3 70 54 12 136

Proposed Improved
Algorithm

70 24 3 97

Anneshya Ghosh et al, International Journal of Advanced Research in Computer Science, 7 (2), March- April, 2016,35-41

© 2015-19, IJARCS All Rights Reserved 41

Table XXV. Comparison among the Number of Candidate Keys Generated

Algorithm Number Of Candidate Keys
1-Itemset 2-Itemset 3-Itemset Total

Normal Apriori
algorithm,
Algorithm 1, 2 and
3

7 6 3 16

Proposed Improved
Algorithm

7 6 1 14

In this example also, the final result for all the algorithms is
again the same, that is {I2, I3, I4}. And from the table it is
seen that the number of scans and candidate keys generated is
minimum in the proposed improved algorithm.

VI. CONCLUSION

Association rule mining is an important technique in data
mining in order to discover the frequently occurring patterns in
the database. Apriori algorithm is one of the oldest and
efficient algorithms in the field of association rule mining. In
spite of its simplicity, the Apriori algorithm suffers from a
number of drawbacks. The objective of this paper is to study
the limitations of Apriori algorithm and enhance the
performance of the Apriori algorithm. Here an improvement of
Apriori algorithm is proposed for discovering association rules
in large databases. The proposed algorithm can efficiently
extract the association rules between the data items in large
databases. After comparing all the algorithms with the
proposed improved algorithm, it can be concluded that the
improved algorithm has successfully reduced the number of
database scans required and the number of candidate keys
generated. As less number of candidate keys is generated,

memory required to hold this candidate keys also gets reduced.
But in this proposed improved algorithm, the step, where
before the generation of (k+1) frequent itemsets, the
transaction which contains less than (k+1) items are deleted,
consumes time, as every time we have to check the database to
perform this step.

VII. REFERENCES

[1] J. Han, M. Kamber, J. Pei “Data Mining Concepts and
Techniques,” Morgan Kaufmann Publisher, Third Edition,
Year 2012.

[2] S. Nasreen, M. A. Azamb, K. Shehzada, U. N. M. Ali
Ghazanfara, “Frequent Pattern Mining Algorithms for
Finding Associated Frequent Patterns for Data Streams: A
Survey” Procedia Computer Science 37, pages 109 – 116,
Year 2014.

[3] R. Agrawal and R. Srikant. “Fast algorithms for mining
association rules,” In Proc. 1994 Int. Conf. Very Large
Data Bases, pages 487–499, Santiago, Chile, September
1994.

[4] M. Al-Maolegi1, B. Arkok, AN IMPROVED APRIORI
ALGORITHM FOR ASSOCIATION RULES,”
International Journal on Natural Language Computing
(IJNLC), vol. 3, No.1, February 2014.

[5] S. Aggarwal and R. Sindhu, An approach to improve the
efficiency of apriori algorithm. PeerJ PrePrints 3:e1410
https://doi.org/10.7287/peerj.preprints.1159v1, 2015

[6] V. Mangla, C. Sarda, S. Madra, “Improving the efficiency
of Apriori Algorithm in Data Mining,” International
Journal of Engineering and Innovative Technology
(IJEIT), Vol. 3, Issue 3, September 2013.

	Introduction
	apriori algorithm
	Description
	Limitations

	Existing Improved apriori algorithms
	A. Algorithm for reducing the number of scan (Algorithm 1)
	B. Algorithm for reducing database size and number of scans (Algorithm 2)
	Transaction Reduction and Matrix Method (Algorithm 3)

	proposed algorithm
	A. The algorithm

	Results and discussion
	Algorithm for reducing the number of scan (Algorithm 1)
	B. Algorithm for reducing database size and number of scans (Algorithm 2)
	C. Transaction Reduction and Matrix Method (Algorithm 3)
	D. Proposed Improved Algorithm

	conclusion
	References

