
Volume 6, No. 5, May - June 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 24

Speculative Block Reuse in GPGPU

Suma S, N.P.Gopalan
Bharathiar university, Coimbatore

NIT, Tiruchirapally

Abstract— Speculative Parallelization is a technique used in the superscalar processors to process and compute the data based on certain

predictions like memory, control and data. To reduce memory stalls and to increase the instruction level parallelism, this paper provides a new

methodology in using the blocks of GPGPU’s to solve many generalized problems as speculative block reuse to store the low or high frequency

redundant computations to reuse without executing them repeatedly avoiding repeated execution of the instructions. If the prediction fails, the

processor executes normally and it does not alter state of execution. The speculative block reuse method of this paper provides more accuracy in

reusing the values from the shared memory.

Keywords— speculative parallelism, block reuse, computations,

GPGPU, finite automaton, transition states.

I. INTRODUCTION

During the program execution, some instructions and

computations are executed and performed repeatedly with

serial execution of programs. These instructions are

repeatedly executed and increases the execution of

instruction. To reduce instruction level parallelism, the

instructions that are executed repeatedly are rearranged

/reordered accordingly that these instructions are executed

and stored in the memory, whenever the instruction repeats

in the execution cycle, the instructions are speculatively

fetched from the memory and directly being used for

execution without again executes the instructions which

avoids usage of many resources and limited resources can

be used that in turn increases the performance.

Speculative parallelism is a technology incorporated

into present day processors to increase instruction level

parallelism and thread level speculations. It is being used in

modern microprocessors to enhance the instruction

computations performances tremendously. Speculative

parallelization technique basically uses many technical

aspects such as speculative parallel reuse, precomputation,

multithreading and compilation, value reuse such that some

part of the program is speculated which is not executed

during the program execution. If the predicted result is

correct, the values are directly being incorporated into the

speculated execution path else the results are squashed if the

speculation goes wrong, but the beauty of the execution is

that it does not alter the state of the execution of the

processor if the prediction id correct, it reduces the

instruction cycle, increases instruction execution

performance. If the speculation goes wrong, it executes

normally, the predicted path is squashed. Hence the state of

the processor is unchanged. Many processor architecture

adopted this techniques as the value predicted is priory

being executed and set with the profiled data, the values are

analysed before the prediction being done. So the accuracy

of predicting the data as the technique serves to provide the

increased performance of data.[2,3]

GPGPU refers to the general purpose graphics

processors used in the modern processors for solving

general purpose problems along with the huge volume of

data .it the hybrid architecture of CPU and GPU together

computes the data with coarse grained data by the CPU and

fine grained data on GPU and CPU refers to the task

parallelism and GPU refers to the data parallelism. In the

graphics processors, the architecture consists of the grids.

Each of the grid holds blocks and in turn blocks consists of

n number of threads. Each thread is identified by the

threadID and each block is identified by the blockID. The

atomic operations are executed by the each thread in a block

using the local memory and registers. The threads of the

block cooperate with each other through shared memory.

The threads of the block communicate with each other while

the blocks cannot communicate with each other. But the

blocks can be reused for the computations that occur

repeatedly.[4,5]

Jaekyu Lee., Nagesh B. Lakshminarayana., Hyesoon

Kim., Richard Vuduc., proposes new hardware and

software prefetching mechanisms referred as many thread

aware prefetching techniques to GPGPU systems.[6,7]

II. SPECULATIVE BLOCK REUSE

In the graphics processors, the blocks are referred as the

specblocks that can be predicted or reused for the

computations.The repeatedly used computations or the

redundant blocks can be identified and used to increase the

performance of instruction precomputation speculatively.

The precomputed instructions are unique computations that

can either occur as high frequency computations or low

frequency computations. The output values are forwarded to

speculatively executable instructions, but the threads of the

blocks in the graphic processors do not cooperate with each

other. The threads use shared memory for synchronization to

share data values. The specblocks are determined where the

precomputed or reusable values are stored in the reference

table. Once the data/value is speculated, the values are

referenced to the reference table and used in the

computations, the value is committed by the checking for

the correctness of the data. The checking of the data values

are done through the formal languages as deterministic finite

automaton by the compiler.

Suma S et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 24-26

© 2015-19, IJARCS All Rights Reserved 25

The steps of the process are as follows.

 CPU GPU

Figure.1 The steps of execution along the CPU&GPU.

Fig. 1 shows the steps of the execution of program on

the CPU and GPU.

The transition graph is a finite automaton with the finite

number of states and once the input symbol is entered ,it

determines the state the machine enters and it may have zero

or one transition. On accepting input symbol the machine

enters the final state and then the values are committed and

sent to the CPU for the result. On rejecting the input symbol

by the finite automaton the predicted value/data is wrong

and the results are squashed without committing the result

and the CPU normally executes the computations and the

state of the system is unaltered. The speculated results are

correct results in reducing some instructions cycles i.e.,

fetch and execute cycles such that the performance of the

computations or processor is increased.

Consider some general statements like I am latha. I am

a girl. In these two sentences, I am repeats with sequential

execution of the code, both the statements are executed but

with block reuse speculative code, the code is reordered

such that I and am are placed in the respective blocks called

specblocks and the blockid is referenced in the reference

table. When the compiler refers to I and am need not be

fetched and executed directly from the shared memory and

predicts the results avoiding 2 cycles of memory read

operations.

Figure.2 The DFA of committing the input on acceptance.

III. PERFORMANCE

To maximize the performance the execution time

should be minimized for any task computer on the machines.

The performance and execution time for any machine is

related as

Performance=1/execution time.

CPU execution time for a program=CPU clock cycles for a

program X clock cycle time.

The cycle rate and clock cycle time are inverse, so

CPU execution time for a program=CPU clock cycles for a

program/ clock rate.[1]

Suppose our program runs in 20 seconds with 400 MHz

clock,

The clock cycles required are determined as

CPU time=CPU clock cycles/clock rate

20 seconds=CPU clock cycles/400*10
6
 cycles/second.

CPU clock cycles=10seconds*400*10
6
cycles/second.

CPU clock cycles=4000*10
6
 cycles.

If the program is reordered and rearranged such CPU clock

cycles can be reduces and stalled.

If the same program after reordering takes 6 seconds with

speculative block reuse technique, the

CPU clock cycles=6seconds*400*10
6
cycles/second.

CPU clock cycles=2400*10
6
 cycles/second.

So the difference of the CPU clock cycles are

(4000-2400)=1600 cycles/second can be saved.

So for all programs the speculative techniques saves lot

of instruction execution cycles/second if they are adopted.

Otherwise the CPU execution continues normally without

altering the state of the processors. So speculation is not

affecting the processor architecture as well as the execution

conditions of the system also.

IV. CONCLUSION

As the graphic processors execute the fine grained

computations with parallelization parts proved to be good

technique with the reusing of the redundant instructions that

resulted in saving of the 1600 cycles/second is a

comparatively good technique for increasing the instruction

execution and reducing the execution time for the

computations or the program with parallel techniques.

Suma S et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 24-26

© 2015-19, IJARCS All Rights Reserved 26

V. RESULTS

Figure.3 shows the system performance when running a program.

VI. REFERENCES

[1]. David A Patterson., John L. Hennessy., ”Computer

Organization and Design”, Second edition, chapter 2,pg.58-

60.

[2]. David Kaeli., pen-chung yew., “Speculative Execution in

high performance computer Architectures” Chapman &

hall/CRC Chapter13,14.

[3]. Suma S ,N.P. Gopalan,“ Coalesced Speculative Prefetching

and Inter thread Data Dependences IEEE international

Conference on Computer Communication and Informatics

(ICCCI 2014) Sri Shakthi Engineering college,

Coimbatore ,India Jan 3-5 2014. CFP1408R-

CDR/ISBN978-1-4799-2352-6/14©2014IEEE.

[4]. NVIDIA. CUDA: Compute Unified Device Architecture.

URL http://developer.nvidia.com/cuda.

[5]. NVIDIA. NVIDIA CUDA C Programming Guide version

4.0. 2011.

[6]. Jaekyu Lee., Nagesh B. Lakshminarayana., Hyesoon Kim.,

Richard Vuduc., “Many-Thread Aware Prefetching

Mechanisms for GPGPU Applications” 43rd Annual

IEEE/ACM International Symposium on Micro architecture

(MICRO), December 2010.

[7]. G. C. Caragea, A. Tzannes, F. Keceli, R. Barua, and U.

Vishkin. Resource-aware compiler prefetching for many-

cores. In ISPDC-9, 2010.

